

Pre-proceedings of the

Sixth European Conference on Planning

ECP-01

Toledo, Spain

September 12-14, 2001

Edited by

Amedeo Cesta and Daniel Borrajo

Pre-proceedings of the

Sixth European Conference on Planning

ECP-01

Museum Victorio Macho

Toledo, Spain

September 12-14, 2001

Edited by

Amedeo Cesta and Daniel Borrajo

The distribution of these Pre-proceedigs is strictly limited to the conference participants. The
official Proceedings of ECP-01 will be published by Springer-Verlag in the series Lecture Notes in
Artificial Intelligence.

Editors

Amedeo Cesta
 National Research Council of Italy
 IP-CNR [PST]
 Viale Marx, 15
 I-00137 Rome, Italy
 e-mail: cesta@ip.rm.cnr.it

Daniel Borrajo
 Departamento de Informatica - ScaLAB
 Universidad Carlos III de Madrid
 Avda. de la Universidad, 30
 28911-Leganes, Madrid, Spain
 e-mail: dborrajo@ia.uc3m.es

These Pre-proceedigs are printed with a grant from IP-CNR, Institute of Psychology of the Italian
National Research Council, Rome, Italy.

ECP is a major international conference for presentation of new research in AI Planning and Scheduling, and
a fruitful opportunity for contact and cross-fertilization among the different "souls" in the field. It has taken
place in Europe every other year since 1991. It has evolved very quickly from a restricted workshop mainly
devoted to the presentation of European research to a well established conference devoted to the presentation
of rigorous and innovative research results from the international community. The sixth ECP conference
takes place in the center of historical Toledo, the very well known old Spanish city, crossing of many
different cultures. ECP-01 will follow its established scientific tradition, including events that highlight
specific aspects of planning and scheduling research in the new millennium.

The Conference program includes long, short and demo paper presentations, an open Benchmark, Poster and
Demo Session and three invited talks given by Prof. Hector Geffner, Prof. Vladimir Lifschitz and Prof.
Pascal Van Hentenryck.

Papers in these proceedings are the result of a quite severe selection made by the Program Committee
members out of the 92 submitted papers. We acknowledge the support of a number of additional reviewers
that with their expertise helped in the selection process.

Program Committee

Ruth Aylett (University of Salford)
Chris Beck (ILOG S.A.)
Michael Beetz (University of Munich)
Susanne Biundo (University of Ulm)
Daniel Borrajo (Universidad Carlos III de Madrid -- local chair)
Luis Castillo (Universidad de Granada)
Amedeo Cesta (Nat. Research Council of Italy -- programme chair)
Steve Chien (Jet Propulsion Laboratory)
Berthe Choueiry (University of Nebrasca at Lincoln)
Rina Dechter (University of California at Irvine)
Giuseppe De Giacomo (University of Rome “La Sapienza”)
Maria Fox (University of Durham)
Hector Geffner (Universidad Simon Bolivar)
Alfonso Gerevini (University of Brescia)
Malik Ghallab (LAAS-CNRS, Toulouse)
Enrico Giunchiglia (University of Genoa)
Joachim Hertzberg (GMD, St.Augustin)
Peter Jonsson (University of Linkoping)
Subbarao Kambhampati (Arizona State University)
Jana Koehler (IBM Research, Zurich)
Sven Koenig (Georgia Institute of Technology)
Claude Le Pape (ILOG S.A.)
Lee McCluskey (University of Huddersfield)
Alfredo Milani (University of Perugia)
Nicola Muscettola (NASA Ames Research Center)
Karen Myers (SRI, Menlo Park)
Martha Pollack (University of Michigan)
Jussi Rintanen (Albert-Ludwigs-University Freiburg)
Alessandro Saffiotti (University of Orebro)
Camilla Schwind (LIM-CNRS, Marseille)
David E. Smith (NASA Ames Research Center)
Stephen F. Smith (Carnegie Mellon University)
Sam Steel (University of Essex)
Sylvie Thiebaux (CSIRO, Canberra)
Paolo Traverso (IRST, Trento)
Manuela Veloso (Carnegie Mellon University)

Additional Reviewers

Riccardo Aler

Jeremy Baxter
Ralph Becket
Piergiorgio Bertoli
Guido Boella
Ronen Brafman
Brett Browing

Alessandro Cimatti

Binh Minh Do

Nader Faisal Mohamed
Jeremy Frank
David Furcy

Max Garagnani
Ian Gent
Antonio Gonzales
Tim Grant
Emanuel Guere

Patrick Haslum
Laurie Hiyakumoto
Joerg Hoffmann

Froduald Kabanza
Gal A. Kaminka
Lars Karlsson
Gerry Kelleher

Rune M. Jensen

Peter Jarvis

Luca Iocchi

Philippe Laborie
John Levine
Yaxin Liu

Angelo Oddi

Andrew J. Parkes
Marco Pistore
Patrick Prosser

Riccardo Rosati
Marco Roveri

Romeo Sanchez Nigenda
Araceli Sanchis
Roberto Sebastiani
Ivan Serina
Francis Sourd
Biplav Srivastava

Gérard Verfaillie
Thierry Vidal
Vincent Vidal

Romain Trinquart
Ioannis Tsamardinos

Terry Zimmerman

ECP-01 Sponsors

Artificial Intelligence Journal

PLANET 2, the Network of Excellence in AI Planning

Ministerio de Ciencia y Tecnología (MCYT)

APSOLVE, a BTexaCT Technologies Company

AI*IA, the Italian Association for Artificial Intelligence

IP-CNR, Institute of Psychology of the Italian National Research Council

Universidad Carlos III de Madrid

ScALAB, Systems, Complex and Adaptive Laboratory

PST, Planning and Scheduling Team at IP-CNR

Table of Contents

Long Papers

September 12

Combining Progression and Regression in State-Space Heuristic Planning
D.Vrakas, I.Vlahavas .. 1

Planning with Pattern Databases
S.Edelkamp ... 13

A Forward Search Planning Algorithm with a Goal Ordering Heuristic
I.Razgon, R.I. Brafman ... 25

On the Extraction, Ordering, and Usage of Landmarks in Planning
J.Porteous, L.Sebastia, J.Hoffmann .. 37

The Operational Traffic Control Problem: Computational Complexity and Solutions
W.Hatzack, B.Nebel ... 49

Toward an Understanding of Local Search Cost in Job-Shop Scheduling
J-P.Watson, J.C.Beck, A.E.Howe, L.D.Whitley ... 61

Flexible Integration of Planning and Information Gathering
D.Camacho, D.Borrajo, J.M.Molina, R.Aler .. 73

Supply restoration in power distribution systems -- a benchmark for planning under uncertainty
S.Thiébaux, M-O.Cordier .. 85

The DATA-CHASER and Citizen Explorer Benchmark Problem Sets
B.Engelhardt, S.Chien, A.Barrett, J.Willis, C.Wilklow ... 97

September 13

Sapa: A Domain-Independent Heuristic Metric Temporal Planner
M.B.Do, S.Kambhampati ... 109

Heuristic Planning with Time and Resources
P.Haslum, H.Geffner .. 121

Integrating Planning and Scheduling through Adaptation of Resource Intensity Estimates
K.L.Myers, S.F.Smith, D.W.Hildum, P.A.Jarvis, R.deLacaze 133

Using Abstraction in Planning and Scheduling
B.Clement, A.C.Barrett, G.R.Rabideau, E.H.Durfee ... 145

From Abstract Crisis to Concrete Relief. A Preliminary Report on Combining State Abstraction
and HTN Planning
S.Biundo, B.Schattenberg .. 157

On the Adequacy of Hierarchical Planning Characteristics for Real-World Problem Solving
L.Castillo, J.Fdez-Olivares, A.González .. 169

Slack-based Techniques for Robust Schedules
A.J.Davenport, C.Gefflot, J.C.Beck .. 181

Dynamic Schedule Management: Lessons from the Air Campaign Planning Domain
B.Drabble, N.Haq .. 193

Algorithms for Propagating Resource Constraints in AI Planning and Scheduling: Existing
Approaches and New Results
P.Laborie .. 205

An Extended Functional Representation in Temporal Planning: Towards Continuous Change
R.Trinquart, M.Ghallab ... 217

Constraint-Based Strategies for the Disjunctive Temporal Problem: Some New Results
A.Oddi ... 229

September 14

Improvements to SAT-Based Conformant Planning
C.Castellini, E.Giunchiglia, A.Tacchella .. 241

Symbolic Techniques for Planning with Extended Goals in Non-Deterministic Domains
M.Pistore, R.Bettin, P.Traverso ... 253

OBDD-Based Optimistic and Strong Cyclic Adversarial Planning
R.M.Jensen, M.M.Veloso, M.H.Bowling .. 265

Multi-Agent Off-Line Coordination: Structure and Complexity

C.Domshlak, Y.Dinitz ... 277

Approximate Planning for Factored POMDPs
Z.Feng, E.A.Hansen ... 289

Solving Informative Partially Observable Markov Decision Processes
W.Zhang, N.L.Zhang ... 301

Improved Integer Programming Models and Heuristic Search for AI Planning
Y.Dimopoulos .. 313

RIFO Revisited: Detecting Relaxed Irrelevance
J.Hoffmann, B.Nebel, ... 325

Using Reactive Rules to Guide a Forward-Chaining Planner
M.Shanahan, .. 337

On the Complexity of Planning in Trasportation Domains
M.Helmert, .. 349

Short Papers

Generating hard Satisfiable Scheduling Instances
J.Argelich et al. .. 361

Learning Robot Action Plans for Controlling Continuous, Percept-driven Behavior
M.Beetz, T.Belker .. 367

Reinforcement Learning for Weakly-Coupled MDPs and an Application to Planetary Rover Control
D.S.Bernstein, S.Zilberstein .. 373

Conditional Planning under Partial Observability as Heuristic-Symbolic Search in Belief Space
P.Bertoli, A.Cimatti, M.Roveri ... 379

Beyond Plan Length: Heuristic Search Planning for Maximum Reward Problems
J.Farquhar, C.Harris ... 385

Combining Two Fast-Learning Real-Time Search Algorithms Yields Even Faster Learning
D.Furcy, S.Koenig ... 391

Time-Optimal Planning in Temporal Problems

A.Garrido, E.Onaindía, F.Barber .. 397

Randomization and Restarts in Proof Planning
A.Meier, C.P.Gomes, E.Melis ... 403

Modeling Clairvoyance and Constraints in Real-time Schedule
K.Subramani ... 409

Flexible Dispach of Disjunctive Plans
I.Tsamadinos, M.E.Pollack, P.Ganchev .. 417

Optimising Plans using Genetic Programming
C.H.Westerberg, J.Levine .. 423

Demo Papers

A Demostration of Robust Planning, Scheduling and Execution for the Techsat-21 Autonomous
Sciencecraft Constellation
S.Chien et al. .. 429

DISCOPLAN: an Efficient On-line System for Computing Planning Domain Invariants
A.Gerevini, L.Schubert .. 433

CODA: Coordinating Human Planners
K.L.Myers, P.A.Jarvis, T.J.Lee ... 437

An Integrated Planning and Scheduling Prototype for Automated Mars Rover Command
Generation
R.Sherwood et al. .. 441

GIPO: An Integrated Graphical Tool to Support Knowledge Engineering in AI Planning
R.M.Simpson et al. .. 445

Long Papers

September 12

Combining Progression and Regression
in State-Space Heuristic Planning

Dimitris Vrakas and Ioannis Vlahavas
Department of Informatics

Aristotle University of Thessaloniki
54006, GREECE

[dvrakas,vlahavas]@csd.auth.gr
Fax: ++3031 998419

Abstract. One of the most promising trends in Domain Independent AI
Planning, nowadays, is state-space heuristic planning. The planners of this
category construct general but efficient heuristic functions, which are used as a
guide to traverse the state space either in a forward or a in backward direction.
Although specific problems may favor one or the other direction, there is no
clear evidence why any of them should be generally preferred.

This paper proposes a hybrid search strategy that combines search in both
directions. The search begins from theInitial State in a forward direction and
proceeds with a weighted A* search until no further improving states can be
found. At that point, the algorithm changes direction and starts regressing the
Goalstrying to reach the best state found at the previous step. The direction of
the search may change several times before a solution can be found. Two
domain-independent heuristic functions based on ASP/HSP planners enhanced
with a Goal Ordering technique have been implemented. The whole bi-
directional planning system, named BP, was tested on a variety of problems
adopted from the recent AIPS-00 planning competition with quite promising
results. The paper also discusses the subject of domain analysis for state-space
planning and proposes two methods for the elimination of redundant
information from the problem definition and for the identification of
independent sub-problems.

Keywords: Planning, Heuristic Search, Bi-Directional Search

1. Introduction
Motivated by the work of Drew McDermott in the mid 90’s on heuristic state-space
planning, a number of researchers turned to this direction. During the last few years a
great amount of work has been done in the area of domain-independent, state-space,
heuristic planning and a significant number of planning systems with remarkable
performance were developed.

Hector Geffner in his recent work on HSP-2 [3] studies the matter of search
direction and the HSP-2 planning system enables the user to decide for the direction
of the search. It is clear from the experimental results that there are specific problems,
which favor one or the other search directions, but in general there is no clear
evidence why any of the two directions should be preferred.

In this paper we propose a hybrid search strategy for domain-independent, state-
space heuristic planning that combines both progression (forward chaining) and
regression (backward chaining). The search begins from theInitial Stateand proceeds
with a weighted A* search until no further improving states can be found from the

1

Goals. At that point the algorithm changes direction and regress theGoals trying to
reach the best state found at the previous step. The direction of the search may change
several times before a solution can be found.

Two domain-independent heuristic functions based on ASP/HSP enhanced with a
Goal Ordering technique were implemented and the whole bi-directional planning
system, named BP, was tested on a variety of problems adopted from the recent
AIPS-00 planning competition with quite promising results.

This paper also discusses the subject of automatic domain analysis and the
utilization of the information extracted from it in the planning process. We propose
two methods, based on the planning graphs created by the heuristic functions of BP,
which can identify valuable information about the internal structure of the problems.
The methods are utilized in BP for eliminating redundant information from the
definition of the domain and for dividing the problem in a number of easier sub-
problems that can be tackled in parallel.

The rest of the paper is organized as follows: Section 2 provides a brief review of
the work related to state-space, heuristic planning and other approaches to bi-
directional planning. Section 3 describes the bi-directional search strategy in detail
and deals with certain issues that arise while regressing the goals of a problem.
Section 4 describes the heuristic functions of BP and describes the adoption of a Goal
Ordering technique to heuristic state space planning. Section 5 presents experimental
results that illustrate the efficiency of BP on a variety of problems adopted from the
AIPS-00 planning competition. Section 6 discusses a number of domain analysis
techniques that result from the construction of planning graphs and section 7
concludes the paper and poses future directions.

2. Related Work
One of the most promising trends in domain-independent planning was presented over
the last few years. It is based on a relatively simple idea where a general domain
independent heuristic function is embodied in a heuristic search algorithm such as
Hill Climbing, Best-First Search or A*. A detailed survey of search algorithms can be
found in [9]. Examples of planning systems in this category are UNPOP[13], the
ASP/HSP family [2,3,4], GRT[16], AltAlt[14] and FF[7].

The first planner in this category was UNPOP[13], a regression planner that
constructed at each step a graph, namedgreedy regression-match graph. The graph
was used in the search, for creating the heuristic function and cutting down the
branching factor by pruning certain actions.

The direct descendant of UNPOP was HSP[4], which searches the state space in
the forward direction though and constructs a more sophisticated heuristic function
from a similar graph. HSP was followed by HSP-R[2], a similar planer with two main
differences from HSP. The search is performed in a backwards manner and the
heuristic is created in the opposite direction, which enables HSP-R to create the
planning graph only once. HSP and HSP-R were later embodied in a unifying
planning system called HSP-2[3]. GRT [18] is another extension to HSP that searches
in the forward direction and creates the heuristic backwards once at the beginning.

Nigenda, Nguyen and Kambhampati presented a hybrid planning system, named
AltAlt [14], which was created using programming modules from STAN [10] and
HSP-R. In the first phase, AltAlt uses the module from STAN to create a planning

2

graph, from which it extracts a heuristic function that is used to guide the backward
hill-climbing search, which is performed in an HSP-R manner.

One of the latest planners in this category and the most effective according to the
results of the AIPS-00 planning competition1 is Hoffmann’s FF planning system [7].
FF constructs a graph similar to this of GRAPHPLAN from which it extracts a sketch
plan. The sketch plan is then used in a forward enforced hill-climbing search in two
ways. Firstly, the length of the sketch plan is used as an estimate for the distance
between theInitial state and theGoals and secondly a set ofhelpful actions is
extracted which helps in cutting down the branching factor of the search.

Bi-directional search is a well-known search strategy mentioned in almost any
textbook about Artificial Intelligence. However, it has not been broadly adopted as a
search strategy. Especially in planning, there are only a few systems performing a
combined search in both directions. The only bi-directional planners that have been
developed, to the knowledge of the authors, are PRODIGY [19], NOLIMIT[18],
FLECS[20] and RASPUTIN[6]. All of these planners have been developed by
researchers of the Carnegie Mellon University’s PRODIGY project and are based on
the combination of goal-directed backward chaining with simulation of plan
execution [18]. Although these planners perform some kind of search in both
directions, they are actually forward-direction planners, which utilize the backward
search as an action selection mechanism.

3. The Search Strategy of BP
The planners presented in the previous section have shown quite impressive
performance and they have proved to be able to handle a large variety of difficult
problems. However, they usually present variations in their efficiency among
different domains or even between problems of the same domain.There are two main
reasons that justify this behavior:
a) Although the heuristic functions constructed by all the planners are general, they

seem to work better with specific domains.
b) There are domains and problems that clearly favor one of the two search

directions (forward or backward).
The first argument, which is also a conclusion drawn from the experience of the

authors, has been stated by Stone, Veloso and Blythe in [17]. The second argument is
the main conclusion drawn by Bart Massey in an extensive study in the directions of
planning presented in [11]. Bonet and Geffner have pushed the same argument one
step further: “Although we don’t fully understand yet when HSP will run better than
HSP-R, the results suggest nonetheless that in many domains a bi-directional planner
combining HSP-R and HSP could probably do better than each planner separately”
[2]. The answer to the question posed by Bonet and Geffner above has been answered
by Massey in [11], where the planning problems are discriminated into forward and
backward problems, in the sense that strongly directed planners will find the problems
of the opposite direction intractable.

Motivated by the conclusions stated above we developed BP, a heuristic state-
space planner, which combines search in both directions. A part of the plan is

1 A complete review of the participating systems, the domains and the results of the
AIPS-00 competition can be found at the URL: http://www.cs.toronto.edu/aips2000/

3

constructed with the progression module (forward chainer) and the rest is constructed
with the regression module (backward chainer). The sub-plan of the regression
module is inversed and merged with that of the progression module in order to
produce the final plan. However the case is not always that simple, because usually
BP interleaves the execution of both modules several times before a solution is found.
Details about the search strategy are presented later in this section but first we
describe the progression and the regression search modules.

3.1 The Progression Module
The progression module employs a best-first search method starting from the initial
state and moving forward trying to reach the goals with two main differences:
a) the size of the planning agenda is limited by an upper limitSOF_AGENDA. This

means that if there are N states (N>SOF_AGENDA) only the SOF_AGENDA
most promising (according toh) states will be stored and the rest will be pruned.
This fact sacrifices completeness but it is necessary, since otherwise a lot of
problems would become intractable.

b) The progression module will stop the search when it is not further possible to
move to a state, the distance of which is not greater than the distance of the
current state plusT. This part of the algorithm is crucial to the unified bi-
directional search strategy, since the value ofT determines how frequently will
the algorithm change the search direction.
The progression module takes five arguments, which are: a) the initial stateI’ of

the sub-problem, b) the goalsG’ of the sub-problem, c) the maximum size
SOF_AGENDAof the planning agenda d) a thresholdT declaring when should the
search stop and e) a heuristic functionh capable of estimating distances between
states. The progression module returns a new stateS, which is the state closer toG’
that the module could find.

3.2 The Regression Module
The algorithm of the regression module is quite similar to the one of the progression
module, since the search strategy is symmetric. The only differences are in the way of
finding the applicable actions and forming the successor states. The regression module
makes extensive use of binary mutual exclusions between facts. Two factsp andq are
mutual exclusive, denoted asmx(p,q), if no valid state contains both of them at the same
time. Mutual exclusions are calculated in a way similar to the one they are calculated in
GRAPHPLAN [1].

An actionA is backward applicable to stateS if S contains at least one add and
no del effects ofA and there are no mutual exclusions between facts ofSand the facts
added byA. StateS’ is produced from the backward application of actionA to stateS
by removing the del effects ofA from Sand adding the add ones.

3.3 Combining the two Search Modules
The underlying framework of the bi-directional search strategy is based on a
relatively simple idea. Usually, single-directional planners reach a point in the search
process where the heuristic function becomes less informative. Two of the main
reasons that justify this behavior are: a) the branching factor of the current sub-
problem is too large for the heuristic to produce accurate estimates b) the sub-problem
is much too complex and the heuristic function becomes obsolete as the search goes
on, especially when it is constructed only once at the beginning.

4

In contrast, BP constructs the heuristic function in the backward direction and
starts performing a forward directed search until it reaches a stateSB from where it is
difficult to proceed. Then it reconstructs the heuristic function in the opposite
(forward) direction and starts searching, in the opposite direction (backward), from
the Goals towardsSB. If the backward search is also blocked after some steps in a
stateSB2, BP will restart the planning process replacing theInitial state withSB and
theGoalswith SB2. The value of theThresholdis increased each time a search module
returns without improving its initial state. The bi-directional search strategy of BP is
outlined in Figure 1, whereSt.planrepresents the plan from theInitial state toSt for
the progression module and the plan from theGoalsto St for the regression one.

Search Algorithm of BP
Input I, G, Output Plan
Plan1=Plan2=[],S = I,F = G,Direction=Forward,Threshold=Init_Thr
While F⊄ S
Begin
If Direction = Forward
begin
Create backward heuristic function hB
St=Progression_module(S,F,MAX_SOF_AGENDA,Threshold,hB)
If St≠ S Plan1=Plan1+St.plan, Threshold=Init_Thr, S=St
Else Threshold=Threshold+STEP
Direction = Backward

end
Else
begin
Create forward heuristic function hF
St=Regression_module(S,F,MAX_SOF_AGENDA,Threshold,hF)
If St≠ F Plan2=Plan2+ St.plan,Threshold=Init_Thr,F=St
Else Threshold=Threshold+STEP
Direction = Forward

End
end
Return Plan1+reversed(Plan2)

Figure 1: The Search algorithm of BP

There are two reasons that enable BP to face the problems stated above: a) the
change in the direction enables BP to update the heuristic function, b) due to the
adaptive way in which BP changes directions, it tends to solve the major part of the
problem in the direction, which best fits it.

4. BP’s Heuristic Functions
In order to test the efficiency of the bi-directional search strategy, we developed two,
relatively simple, domain independent heuristics functions that were embedded in the
BP planning system. The two heuristic functions are quite similar and are based on
exactly the same idea, but the first one is used for the progression module and the
other for the regression one. Note here, that both search modules of BP adopt a
weighted A* search strategy, where the total cost of a stateS is calculated as:
w1*L(S)+w2*h(S). In this formula,L(S) is the number of steps needed to achieve state

5

Sstarting from the Initial state (Goals in case of regression),h(S) is the value returned
by the heuristic function andw1 andw2 are user-defined constants.

4.1 The Progression Heuristic Function
The heuristic function used for the progression module is similar to the one of the
GRT planning system. The heuristic function is extracted from a leveled graph,
similar to the one built by GRAPHPLAN. The graph consists of all the subgoals of
the domain (the action levels of the GRAPHPLAN are omitted) that are generated
from the Initial state, tagging them with a number K, identifying the minimum
number of steps needed to generate them starting from the Goals.

The graph construction begins from the Goals of the problem (level 0) and
proceeds backwards adding iteratively a new levelL with all the subgoals that are
generated by actions that are applicable at levelL-1. An actionA is applicable at level
L-1, if at least one add-effect ofA exists inL-1. For each actionA that is applicable at
level L-1, the algorithm computes a valueV as the sum of the tags of all the facts in
add(A). The facts in its precondition list are then added at levelL and tagged withV+1
if they have not already been tagged with a smaller value thanV+1. The expansion of
the graph iterates until the graph reaches levelLMAX, where no more subgoals can be
generated with a cost smaller than the one in its tags.

After the creation of the graph, which is done only once as long as the planner
does not change direction, the tags of the facts are used to produce estimates for the
distance between any stateS in the domain and the goals, just by summing up the tags
of the facts inS.

4.2 The Regression Heuristic Function
As stated earlier in this section, the regression heuristic function is similar to the
progression one and just differs in the direction in which the graph is created. The
graph for the regression is built starting from the facts in the Initial state (level 0) and
proceeds forwards until it reaches a levelLMAX, where no more facts can be added to
the graph with a cost smaller than the one in their tags. Here, an actionA is applicable
at levelL, if all the preconditions ofA exist inL.

4.3 Refining the heuristic functions with Goal Ordering
Goal ordering for planning has been an active research topic over the last years and a
number of techniques have been successfully adopted by state-of-the-art planning
systems. The research so far has been focused on two tasks: a) how to automatically
extract as much information as possible about orderings among the goals of the
problem, with minimum computational cost and b) how to use this information during
planning. McCluskey and Porteous with their work on PRECEDE[12] proposed a
method for identifying goal orderings between pairs of atomic facts, based on direct
domain analysis. The more recent work of Koehler and Hoffman on GAM [8] have
resulted in two techniques for identifying goal orderings, one based on domain
analysis and another utilizing the information gained by the construction of a planning
graph. The simplest and yet quite effective orderings extracted by these techniques
have been described asreasonable ordersand are based on the following idea:

“A pair of goals A and B can be ordered so that B is achieved before A if it isn’t
possible to reach a state in which A and B are both true, from a state in which A is
true, without having to temporarily destroy A.”[15].

6

IPP [8] and FF[7] make use of reasonable orderings during planning through the
construction of a goal agenda that divides the goals into an ordered set of sub-goals.
The planners sequentially achieve the first sub-goal in the agenda, which has not yet
been achieved. Experimental results have shown that the use of the goal agenda yields
in significance improvement in terms of both planning time and plan quality.

BP adopts a slightly different method to compute reasonable orderings between
goals, which is based on mutual exclusions between facts of the domain. Since the
planner calculates the set of binary mutual exclusions, in order to use them for the
regression phase, the overhead imposed by the calculation of reasonable orderings is
negligible. FunctionOB (Ordered Before), which is outlined in Figure 2, is iteratively
ran on every pair of goals in order to identify the possible orderings between the goals
of the problem.

Function OB
Input: Goals a and b

Output: True (a should be ordered beforeb) or False
For each action O: a∈add(O)
begin

MutexPre=false
For each fact f: f∈prec(O)

If mx(b,f)=true MutexPre=true
If MutexPre = false return false

end
Return true

Figure 2: The OB Function

The orderings extracted by OB are used in the planning phase, in order to refine
the results of the heuristic functions and not to divide the goals into sub-sets. More
specifically, after the evaluation of a stateS by one of the two heuristic functions, as
exemplified by sub-sections 4.1 and 4.2, BP searches stateS for possible violations of
the goal orderings. Fact f of a state S is violating the goal ordering if:
f∈Goals and∃ goal g: g� S and OB(g,f)=true

For every ordering violation in state S, the estimated distance between S and the
Goals is increased by a constant number, since at a later point the ordering breaches
will have to destroyed and re-achieved after the correct ordering has been reinstated.

5. Experimental Results
In order to test the efficiency of BP we implemented two additional planners: a) PMP
(Progression Module Planner), a progression planner using the progression module
and heuristic function of BP and b) RMP (Regression Module Planner), a regression
planner using the regression module and heuristic function of BP. The search modules
in PMP and RMP were slightly modified, so as to continue their search until a
solution is found. The three planning systems were tested on a large variety of
problems adopted by the recent AIPS-2000 planning competition.

The codes of the planners were based on the publicly available code of the
second version of GRT and were implemented in C++. All the tests were run on a
SUN ENTERPRISE 3000 parallel computer, with a SPARC-1 processor at 167 MHz
and 256 MB of RAM. The underlying operating system was SUN Solaris 2.6 and the

7

programs were compiled by GNU C++ compiler. For the tests we have chosen the
following configuration for the three planners:
MAX_SOF_AGENDA=200,Init_Thr = 2,STEP = 2, w1=0.4 andw2=1.0.

The three planners (PMP, RMP and BP) were tested on all problems of theblocks
world, the logistics, the MIC-10 and thefreecell domains used in the AIPS-00
planning competition. Tables 1, 2, 3 and 4 present the results of the tests. Columns 1,2
and 3 present the number of steps of the plan found by each planner and the time needed
to solve the problem (in brackets). Note that short dashes mean that the problem could
not be solved within the 180 seconds limit in CPU time set on all planners. Plan lengths
written in bold note the minimum plan length found by the three planners. Note that due
to space limitations, tables 1, 2, 3 and 4 present only a part of the tested problems.

5.1 Blocks world
It is clear from table 1 that the specific problems favor regression planners. RMP was
able to solve 47% more problems than PMP producing in all problems shorter plans
in much less time, while BP presented results quite similar to RMP. Specifically, BP
solved 1 problem less than RMP, producing 16% longer plans, spending though 45%
less time on average. BP clearly outrivaled PMP, producing 67% shorter plans and
spending almost 20 times (1930%) less time on average.

5.2 Logistics
In the logisticsproblems the choice of planning direction didn’t seem to play a very
important role. RMP and BP solved more problems than PMP, but produced slightly
worse plans than the latter. Specifically, BP produced 3% longer plans than PMP but
solved 32% more problems in 7% less time on average. RPM solved the same number
of problems with BP and was quite faster (9%) than the latter. However the plans it
produced were 5% longer than those of BP.

Prob PMP RMP BP
4-0 6 (40) 6 (40) 6 (60)
5-0 12 (790) 12 (100) 12 (110)
6-0 42 (14790) 12 (140) 18 (270)
6-2 54 (15820) 24 (640) 22 (260)
7-0 44 (12930) 20 (410) 22 (390)
7-1 70 (13990) 22 (430) 24 (440)
7-2 106 (42890) 20 (530) 22 (410)
8-1 88 (27360) 20 (490) 30 (850)
8-2 18 (250) 16 (410) 16 (390)
9-1 - 30 (5150) 30 (3570)
9-2 - 26 (5130) 28 (1740)
10-1 - 38 (21350) 42 (7490)
10-2 - - 114 (40200)
11-0 62 (5270) 34 (4730) 78 (8490)
11-1 - 30 (2080) -
11-2 - - 220(125030)
12-0 - 34 (5040) 48 (8680)
12-1 - 38 (18380) -
13-1 - - -
14-0 - 38 (8170) -
14-1 - 36 (5910) -
17-0 - - 50 (59280)

Table 1: Plan length and solution time
(in msec) for Blocks world problems

Prob PMP RMP BP
4-0 20 (150) 23 (240) 20 (240)
5-0 27 (220) 32 (350) 27 (350)
6-0 25 (210) 33 (440) 28 (450)
7-1 62 (10730) 51 (1340) 50 (1830)
8-0 31 (640) 41 (1230) 37 (1340)
9-1 32 (590) 34 (1230) 32 (1320)
10-0 74 (29650) 54 (3790) 50 (5010)
12-0 45 (4590) 51 (3820) 45 (4960)
13-1 - 83 (17620) 81 (24160)
14-0 - 78 (15490) 79 (31140)
14-1 76 (5970) 93 (20410) 87 (30120)
15-0 112 (70170) 95 (21480) 106 (38620)
15-1 76 (20240) 85 (20070) 82 (24410)
16-0 - 109(35820) 112 (47130)
16-1 83 (10330) 108 (40890) 85 (16430)
17-0 - 116 (41350) 114(53130)
17-1 - 120(45650) 120(85490)
18-1 104 (90900) 101(46410) 102 (59810)
19-1 - 119 (70160) 113(89260)
20-0 - 127(73580) 138 (116440)
20-1 110(22620) 123 (66510) 112 (33480)

Table 2: Plan length and solution time
(in msec) for Logistics problems

8

5.3 MIC-10
MIC-10 is a domain that clearly favored progression planners, as shown by the
experimental results. RMP was unable to solve problems harder than s4-1, while PMP
and BP solved almost every problem of the domain. We tried to increase the size of
the planning agenda for RMP and as a result the planner was able to solve a few more
problems (up to s5-2) but this had a negative impact on planning time. Concerning the
other two planners, BP clearly outperformed PMP by solving 7.5% more problems in
35% less time on average and by producing 10% shorter plans.

5.4 Freecell
Like the logistics domain, freecell does not clearly favor a specific planning

direction. However PMP seemed to perform better than RMP and this is probably due
to the fact that there is too much implied information that is omitted from the goals. In
this domain BP solved 3 problems more than RMP and 2 less than PMP, producing
plans of lower quality (approx. 6% longer plans) than both RMP and PMP. However,
concerning planning time, BP clearly outperformed the other two, needing 35% less
time than PMP and 614% less time than RMP on average.

6. Domain Analysis through Planning Graphs
The relaxed planning graphs built by the heuristic functions of BP, as described in
sections 4.1 and 4.2, can be used as a means for extracting valuable information about
the structure of the domain. This information can then be used in various ways, such
as a) removing redundant information from the definition of the problem and thus
cutting down the branching factor and b) identifying independent sub-goals that can
be solved in parallel.

6.1 Simplifying the Definition of the Problem
The simplification of the problem’s definition concerns facts of theInitial state that
are useless for the planning process. For example, in thelogisticsdomain theInitial
state may contain facts noting the initial location of packages, which do not need to be

Prob PMP RMP BP
S1-0 4 (0) 4 (10) 4 (20)
S3-0 12 (40) 10 (320) 11 (40)
S4-0 16 (100) - 15 (100)
S10-0 40 (1980) - 36 (1390)
S11-0 41 (2400) - 39 (1580)
S12-0 48 (4280) - 41 (2500)
S15-0 60 (8710) - 52 (5130)
S17-0 67 (12840) - 62 (7880)
S17-4 65 (14280) - 57 (8040)
S18-4 70 (16050) - 62 (9140)
S19-0 - - 66 (11520)
S19-2 74 (26090) - 64 (11990)
S19-3 - - 67 (12100)
S19-4 77 (21910) - 66 (11570)
S20-0 - - 70 (16560)
S20-1 84 (28640) - 71 (13450)
S20-2 79 (23800) - 65 (12850)
S20-3 - - 72 (14770)
S20-4 - - 70 (15570)

Table 3: Plan length and solution
time (in msec) for MIC-10 problems

Prob PMP RMP BP
2-1 9 (3920) 9 (37660) 11 (4240)
2-2 8 (3910) 8 (34110) 9 (4150)
2-3 8 (3510) 8 (38860) 9 (3940)
2-4 8 (4110) 8 (32920) 9 (4150)
2-5 9 (3930) 9 (33770) 11 (4390)
3-1 18 (18990) 15 (88360) 18 (43870)
3-2 17 (20190) 19 (100650) 19 (15000)
3-3 16 (30130) 19 (90870) 15 (10580)
3-4 15 (14950) 13 (71910) 13 (9990)
3-5 16 (38760) 16 (83530) 17 (19310)
4-1 27 (106590) - 28 (93750)
4-2 24 (25090) 21 (150020) -
4-3 28 (78620) - 38 (86140)
4-4 26 (67300) 19 (127580) -
4-5 30 (100620) - 24 (27880)
5-1 - - -
5-2 28 (159790) - -
5-3 - - 46 (152930)
5-4 29 (85080) - 39 (153630)

Table 4: Plan length and solution time
(in msec) for Freecell problems

9

moved. This information is present in the description of the world, for means of
completeness, but increases the branching factor of the problem with useless actions.

BP employs a simple but efficient method for eliminating useless facts from the
Initial state, which is based on the backward graph built by the progression heuristic
function. After the initial construction of the backward graph, the method eliminates
all the facts of theInitial state that do not appear in the graph. If a factf does not
appear in the backward graph, there is no way to reach a stateS where f∈S, by
regressing theGoals. This means that the facts added by the actions that havef in
their preconditions, are not present in the graph too and thereforef does not contribute
at all in the process of reaching theGoalsof the problem. So it is safe to remove it
from theInitial state without jeopardizing completeness.

There is no actual overhead imposed by the above method, since the backward
graph is built by the progression heuristic function no matter if the method for
eliminating useless facts is applied or not. As far as the efficiency of the method is
concerned, the method is not complete, in the sense that it does not identify all the
forms of information that could be safely removed from the definition of the problem.

6.2 Identifying Independent Sub-Goals
Motivated by the results of the method for eliminating useless facts from theInitial
state, we developed a second method for identifying independent sub-goals that can
be solved in parallel. Given the definition of a problem <I,A,G>, the method
iteratively buildsN (size ofG) backward planning graphs, removing at each time one
of the goals inG. It follows from the method in the previous sub-section that if we
remove goalGk from G, then the facts inI (noted asIk), that do not appear in the
backward graph ofG-{ Gk,} are closely related toGk and they are not needed for the
achievement of the rest of the goals. After the creation of the graphs, the algorithm
comes up with a numberL of sets of the form <Ik,Gk>, which indicate that the setIK of
initial facts is only needed for the achievement of goalGK.

Consider, for example, alogisticsproblem with a city consisting of two locations
(airport andcenter), two trucks (tr1 andtr2) and three packages (P1, P2 and
P3) that have to be moved. The initial state and the goals of the problem are:

I={at(P1,center),at(P2,center),at(P3,center),at(tr1,center),a
t(tr2,center)}

G={at(P1,airport),at(P2,airport),at(P3,center)}
The independent goals and the sub-sets of G used for the graphs are the following:

G1=at(P1,airport), G-{G1}={at(P2,airport),at(P3,center)}
G2=at(P2,airport), G-{G2}={at(P1,airport),at(P3,center)}
G3=at(P3,center), G-{G3}={at(P1,airport),at(P2,airport)}

The three subsets of theInitial state that are extracted from the backward graphs are
the following:

I1={at(P1,center)}
I2={at(P2,center)}
I3={at(P3,center)}

So the sets extracted by our method are the following:
S1=<{at(P1,center)}, at(P1,airport)>
S2=<{at(P2,center)}, at(P2,airport)>
S3=<{at(P3,center)}, at(P1,center)>

At a first step, these sets can be used for further elimination of redundant facts
from the problem’s definition. If for a given set <Ik,Gk>, the size ofIk is equal to 1 and

10

Ik � { Gk}, it is safe to removeGk from G and Ik from I and discard <Ik,Gk>. This is
exactly the case with setS3 of the previous example, where it is obvious that fact
at(P3,center) could be safely removed fromI andG.

The second use of the sets of the form <Ik,Gk> is for dividing G in sub-goals the
plans of which that can be combined in a parallel plan. The benefits of such a method
are: a) a speedup in the planning process since tackling each sub-problem
independently is usually easier than tackling the whole problem as one and b) a
parallel plan which will probably be executed in less time than any sequential one.

The first argument is also supported by experimental results. We developed a
planner, named BP-SP (Bi-directional Planner for Sub Problems), which uses the
above method for dividing the initial problem into a number of sub-problems and then
uses BP for solving the sub-problems sequentially. Supposing that we have Lsets of
the form <Ik,Gk> and I and G are the initial state and the goals respectively, BP-SP
starts with the sub-problem <I’,A ,G’> where:

I’ = I - k

L

k

IU
2=

, G’ = {G1}

If BP manages to solve <I’,A ,G’> it will encounter a stateS’ whereG’⊆S’. S’will be
used for the next iteration of BP-SP to form the new sub-problem <I’’ ,A,G’’ > as
follows:
I’’ =S’-{ G1} ∪ I2, G’’ ={G2}
This process is repeatedL times and the overall plan returned by BP-SP is constructed
by concatenating the plans of the sub-problems.

The two planners (BP and BP-SP) were tested on all 80logisticsproblems of the
AIPS-00 planning competition. BP-SP managed to solve 66 problems, 20 more than
BP, and it was almost 4 times faster on average. The resulted plans were
approximately 30% longer but this could be probably overcome by a planner utilizing
the fact that the sub-plans of BP-SP can be combined in a parallel plan. It lies in our
future plans, to enhance BP with the ability to handle parallel problems.

7. Conclusions and Future Work
It is a generally accepted fact that there are certain domains or certain problems of
domains that can be tackled more efficiently by forward planners and others that can
be tackled more efficiently by backward ones. The matter of direction in planning is
an active field of research and yet no clear answer has been given to the question of
which direction should be generally preferred. This paper proposed BP, a hybrid
planning system that combines search in both directions. BP changes the search
direction in an adaptive way, which enables it to solve the major part of the problems
in the direction that best fits them.

BP has been tested on a variety of problems used in the AIPS-00 competition
and has been compared to two single-direction planners (a forward and a backward)
that utilize the same heuristic function and optimization techniques. Experimental
results have shown that BP has a stable performance on all domains, outperforming,
in general, both of the single-direction planners.

It is in our future plans to develop a more sophisticated heuristic function and
embody it in BP, along with several optimization techniques extracted from automatic
domain analysis. Our experience with BP has shown that a large amount of useful

11

information can be extracted from the combination of planning graphs in both
directions and this information can be used to construct efficient optimization
techniques, such as the two methods discussed in section 6.

8. References
[1] Blum, L., and Furst M., 1995, Fast planning through planning graph analysis, InProc., 14th

Int. Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 636-642.
[2] Bonet, B. and Geffner, H. 1999, Planning as Heuristic Search: New Results, In Proceedings,

ECP-99, Durham UK.
[3] Bonet, B. and Geffner, H. 2000, Planning as Heuristic Search, Artificial Intelligence,

forthcoming.
[4] Bonet, B., Loerincs, G., and Geffner, H., 1997, A robust and fast action selectionmechanism

for planning, In Proc., 14th Int. Conference of the American Association of Artificial
Intelligence (AAAI-97), Providence, Rhode Island, pp. 714-719.

[5] Fikes, R., and Nilsson, N., 1971, STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving.Artificial Intelligence, 2: 189-208.

[6] Fink, E. and Blythe, J. 1998, A complete bidirectional planner, In proceedings, 4th

International Conference on AI Planning Systems.
[7] Hoffmann, J. 2000, A Heuristic for Domain Independent Planning and its Use in an Enforced

Hill-climbing Algorithm, 12th Int. Symposium on Methodologies for intelligent Systems.
[8] Koehler, J. and Hoffmann, J. 2000, On Reasonable and Forced Goal Orderings and their Use

in an Agenda-Driven Planning Algorithm, JAIR (12).
[9] Korf, R. 1998, Artificial intelligence search algorithms, CRC Handbook of Algorithms and

Theory of Computation, Atallah, M. J. (Ed.), CRC Press, Boca Raton, FL, pp. 36-1 to 36-20
[10] Long, D. and Fox, M. 1998. Efficient Implementation of the Plan Graph in STAN, JAIR, 10,

pp. 87-115.
[11] Massey, B. 1999, Directions In Planning: Understanding the Flow of Time in Planning,

Available as a Technical Report from the University of Oregon.
[12] McCluskey, T. and Porteous, J. 1997, Engineering and Compiling Planning Domain Models

to Promote Validity and Efficiency, Artificial Intelligence, 95.
[13] McDermott, D. 1996, A Heuristic Estimator for Means-End Analysis in Planning, In

Proceedings, AIPS-96
[14] Nguyen, X., Kambhampati, S. and Nigenda, R. 2000, AltAlt: Combining the advantages of

Graphplan and Heuristics State Search, In Proceedings, 2000 International Conference on
Knowledge-based Computer Systems, Bombay, India.

[15] Porteous, J. and Sebastia, L., 2000, Extracting and ordering Landmarks for Planning, In
Proceedings, 18th Workshop of the UK Planning and Scheduling SIG

[16] Refanidis, I., and Vlahavas, I., 1999,GRT: A Domain Independent Heuristic for STRIPS
Worlds based on Greedy Regression Tables, InProceedings, 5th European Conference on
Planning, Durham, UK, pp. 346-358.

[17] Stone, P., Veloso, M. and Blythe, J. 1994, The Need for Different Domain-Independent
Heuristics, In proceedings, AIPS-94, Chicago, USA.

[18] Veloso, M. 1994, Planning and learning by Analogical Reasoning, Springer-Verlag.
[19] Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E. and Blythe, J. 1995, Integrating

Planning and Learning: The PRODIGY Architecture, Journal of Experimental and
Theoretical Artificial Intelligence, 7(1).

[20] Veloso, M. and Stone, P. 1995, FLECS: Planning with a Flexible Commitment Strategy,
JAIR (3).

12

Planning with Pattern DatabasesStefan EdelkampInstitut f�ur InformatikAlbert-Ludwigs-Universit�atGeorges-K�ohler-Allee, Geb�aude 51D-79110 FreiburgeMail: edelkamp@informatik.uni-freiburg.deAbstract. Heuristic search planning e�ectively �nds solutions for var-ious benchmark planning problems, but since the estimates are eithernot admissible or too weak, optimal solutions are found in rare casesonly. In contrast, heuristic pattern databases are known to signi�cantlyimprove lower-bound estimates for optimally solving challenging single-agent problems like the 24-Puzzle and Rubik's Cube.This paper studies the e�ect of pattern databases in the context of deter-ministic planning. Given a �xed state description based on instantiatedpredicates, we provide a general abstraction scheme to automaticallycreate admissible domain-independent memory-based heuristics for plan-ning problems, where abstractions are found in factorizing the planningspace. We evaluate the impact of pattern database heuristics in A* andhill climbing algorithms for a collection of benchmark domains.1 IntroductionGeneral propositional planning is PSPACE complete [3], but when tackling spe-ci�c benchmark planning instances, improving the solution quality usually re-veals the intrinsic hardness of the problems. For example, plan existence of Lo-gistic and Blocks World problem instances is polynomial, but minimizing thesolution lengths for these planning problems is NP-hard [11]. On the other handfor some benchmark domains like Sokoban and Mystery even plan existence isNP-hard. Therefore, we propose a planner that is able to �nd optimal plansand, if challenging planning problems call for exponential resources, the plannerapproximates the optimal solution.1.1 Optimal Planning ApproachesGraphplan [1] constructs a layered planning graph containing two types of nodes,action nodes and proposition nodes. In each layer the preconditions of all opera-tors are matched, such that Graphplan considers instantiated actions at speci�cpoints in time. Graphplan generates partially ordered plans to exhibit concur-rent actions and alternates between two phases: graph extension to increase the
13

search depth and solution extraction to terminate the planning process. Graph-plan �nds optimal parallel plans, but does not approximate solution lengths; itsimply exhausts the given resources.Another optimal planning approach is symbolic exploration simulating abreadth-�rst search according to the binary encoding of planning states. Theoperators unfold the initial state over time and an e�cient theorem prover thensearches for a satisfying truth assignment. A Boolean formula ft describes the setof states reachable in t steps. If ft contains a goal state, the problem is solvablewith the minimal t as the optimal solution length.Two approaches have been proposed. Satplan [17] encodes the planning prob-lem with a standard representation of Boolean formulae as a conjunct of clauses.The alternative in the planner Mips [8] is to apply binary decision diagrams(BDDs); a data structure providing a unique representation for Boolean func-tions [2]. The BDD planning approach is in fact reachability analysis in modelchecking [4]. It applies to both deterministic and non-deterministic planning andthe generated plans are optimal in the number of sequential execution steps.Usually, symbolic approaches cannot approximate except for recent preliminaryresults with domain abstractions [15] and with symbolic best-�rst search [6].Though promising, the solution quality is not as good as in explicit search.1.2 Heuristic Search PlanningDirected search is currently the most e�ective approach in classical AI-planning:four of �ve honored planning systems in the general planning track of the AIPS-2000 competition at least partially incorporate heuristic search. However, intraversing the huge state spaces of all combinations of grounded predicates,all planners rely on inadmissible estimates. The currently fastest deterministicplanner, FF [13], solves a relaxed planning problem for each state to computean inadmissible estimate. Furthermore, non-general pruning rules in FF such ashelpful action cuts and goal ordering cuts help to avoid plateaus and local optimain the underlying hill-climbing algorithm. Completeness in undirected problemgraphs is achieved by breadth-�rst searching improvements for the estimate andby omitting pruning in case of backtracks. Nevertheless, the daunting problem forFF are directed problem graphs with dead-ends from which its move committinghill-climbing algorithm cannot recover.The best admissible estimate that has been applied to planning is the max-pair heuristic [10] implemented in the HSP planner. However, even by sacri�cingoptimality due to scaling, in AIPS-2000 this estimate was too weak to com-pete with the FF-heuristic. Moreover, own experiments with an improvement tomax-pair according to a minimum matching on a graph weighted with fact-pairsolution lengths were discouraging.This paper proposes a pre-computed admissible heuristic that easily outper-forms max-pair and by scaling the inuence of the heuristic even the state-of-the-art FF-heuristic is beaten. To build the database we exhaustively searchall state-to-goal distances in tractable abstractions of the planning state-spacethat serve as lower bound estimates for the overall problem. After studying the
14

pattern database framework, we present experiments with a sizable number ofbenchmark planning problems of AIPS-1998 and AIPS-2000 and draw conclud-ing remarks.2 Planning Space RepresentationFor the sake of simplicity we concentrate on the STRIPS formalism [9], in whicheach operator is de�ned by a precondition list P , an add list A, and a delete listD, but the presented approach can be extended to various problem descriptionlanguages which can be parsed into a �xed state encoding. We refer to statedescriptions and lists as sets/conjuncts of grounded predicates also called factsor atoms. This is not a limitation since all state-of-the-art planners performgrounding; either prior to the search or on the y.De�nition 1. Let F be the set of grounded predicates and O be a set of groundedSTRIPS operators. The result S0 of an operator o = (P;A;D) 2 O applied toa state S � F is de�ned as S0 = (S nD) [A in case P � S. Inverse STRIPSoperators o�1 are given by o�1 = ((P nD) [A;D;A).We exemplify our considerations in the Blocks World domain of AIPS-2000,speci�ed with the four operators pick-up, put-down, stack, and unstack. Forexample, the grounded operator (pick-up a) is de�ned asP = f(clear a); (ontable a); (handempty)g,A = f(holding a)g, andD = f(ontable a), (clear a); (handempty)gThe goal of the instance 4-1 is de�ned by f(on d c),(on c a),(on a b)gand the initial state is given by f(clear b) (ontable d), (on b c), (on c a),(on a d)g. The �rst step to construct a pattern database is a domain analysisprior to the search. The output are mutex groups of mutually exclusive facts.In every state (reachable from the initial state), exactly one of the atoms ineach group will be true. In general this construction is not unique such that weminimize the state description length over all possible partitionings as proposedfor the MIPS planning system [7]. In the example problem we �nd the followingnine mutex-groups.{ G1 = f(on c a); (on d a); (on b a); (clear a); (holding a)g,{ G2 = f(on a c); (on d c); (on b c); (clear c); (holding c)g,{ G3 = f(on a d); (on c d); (on b d); (clear d); (holding d)g,{ G4 = f(on a b); (on c b); (on d b); (clear b); (holding b)g,{ G5 = f(ontable a); trueg,{ G6 = f(ontable c); trueg,{ G7 = f(ontable d); trueg,{ G8 = f(ontable b); trueg, and{ G9 = f(handempty); trueg,
15

where true refers to the situation, when none of the other atoms is presentin a given state description.De�nition 2. Let G = fG1; : : : ; Gkg with Gi � F [ftrueg for i 2 f1; : : : ; kgbe the set of mutex groups, i.e. fi 6= fj for fi 2 Ginftrueg and fj 2 Gjnftrueg.A state is a conjunct f1^ : : :^fk of facts fi 2 Gi, i 2 f1; : : : ; kg. All representedstates span the planning space1 P.3 Pattern DatabasesA recent trend in single-agent search is to calculate the estimate with heuristicpattern databases (PDBs) [5]. The idea is to generate heuristics that are de�nedby distances in space abstractions. PDB heuristics are consistent2 and havebeen e�ectively applied to solve challenging (n2 � 1)-Puzzles [19] and Rubik'sCube [18]. In the (n2� 1)-Puzzle a pattern is a collection of tiles and in Rubik'sCube either a set of edge-cubies or a set of corner-cubies is selected.For all of these problems the construction of the PDB has been implementedproblem-dependently, i.e. by manual input of the abstraction for the puzzles andits storage by suitable perfect hash functions. In contrast, we apply the concept ofPDBs to general problem-independent planning and construct pattern databasesfully automatically.3.1 State AbstractionsState space abstractions in the context of PDBs are concisely introduced in [12]:A state is a vector of �xed length and operators are conveniently expressedby label sets, e.g. an operator mapping hA;B; i to hB;A; i corresponds to atransposition of the �rst two elements for any state vector of length three. Thestate space is the transitive closure of the seed state S0 and the operators O. Adomain abstraction is de�ned as a mapping � from one label set L to anotherlabel set K with jKj < jLj such that states and operators can be simpli�ed byreducing the underlying label set. A state space abstraction of the search problemhS0; O; Li is denoted as h�(S0); �(O);Ki. In particular, the abstraction mappingis non-injective such that the abstract space (which is the image of the originalstate space) is therefore much smaller than the original space.The framework in [12] only applies to certain kinds of permutation groups,where in our case the abstract space is obtained in a more general way, sinceabstraction is achieved by projecting the state representation.1 The planning space P is in fact smaller than the set of subsets of grounded predicates,but includes the set of states reachable from the initial state.2 Consistent heuristic estimates ful�ll h(v) � h(u) + w(u; v) � 0 for each edge (u; v)in the underlying, possibly weighted, problem graph. They yield monotone meritsf(u) = g(u) + h(u) on generating paths with weight g(u). Admissible heuristicsare lower bound estimates which underestimate the goal distance for each state.Consistent estimates are indeed admissible.
16

De�nition 3. Let F be the set of grounded predicates. A planning space ab-straction � is a mapping from F to F [ftrueg such that for each group Geither for all f 2 G : �(f) = f or for all f 2 G : �(f) = true:Since planning states are interpreted as conjuncts of facts, � can be extendedto map each planning state of the original space P to one in the abstract spaceA. In the example problem instance we apply two planning space abstractions�odd and �even. The mapping �odd assigns all atoms in groups of odd index tothe trivial value true and, analogously, �even maps all uents in groups witheven index value to true. All groups not containing a atoms in the goal state arealso mapped to true3. In the example, the goal is partitioned into �even(G) =f(on c a)g and �odd(G) = f(on a b); (on d c)g, since the groups G4 to G9are not present in the goal description.Abstract operators are de�ned by intersecting their precondition, add anddelete lists with the set of non-reduced facts in the abstraction. This acceleratesthe construction of the pattern table, since several operators simplify.De�nition 4. Let � be a planning space abstraction and ��(S1; S2) be the graph-theoretical shortest path between to two states S1 and S2 in A. Furthermore, letS0 be the start and St be the set of goal states in P. A planning pattern database(PDB) according to � is a set of pairs, with the �rst component being an abstractplanning state S and the second component being the minimal solution length inthe abstract problem space, i.e.,PDB(�) = f(S; ��(S; �(St))) j S 2 Ag:PDB(�) is calculated in a breadth-�rst traversal starting from the set of goalsin applying the inverse of the operators. Two facts about PDBs are important.When reducing the state description length n to �n with 0 < � < 1 the statespace and the search tree shrinks exponentially; e.g. 2n bit vectors correspondto an abstract space of 2�n elements.The second observation is that once the pattern database is calculated, ac-cessing the heuristic estimate is fast by a simple table lookup (cf. Section 3.3).Moreover, PDBs can be re-used for the case of di�erent initial states. PDB(�even)and PDB(�odd) according to the abstractions �even and �odd of our exampleproblem are depicted in Table 1. Note that there are only three atoms presentin the goal state such that one of the pattern databases only contains patternsof length one. Abstraction �even corresponds to G1 and �odd corresponds to theunion of G2 and G4.3.2 Disjoint Pattern DatabasesDisjoint pattern databases add estimates according to di�erent abstractions suchthat the accumulated estimates still provide a lower bound heuristic.3 To include mutex-groups into PDB calculations which are not present in the goalstate, we may generate all possible instances for the fact set. In fact, this is theapproach that is applied in our implementation.
17

((clear a),1)((holding a),2)((on b a),2)((on d a),2)
((on d c)(clear b),1) ((on a b)(clear c),1)((on d c)(holding b),2) ((clear c)(clear b),2)((on d c)(on d b),2) ((on a b)(holding c),2)((on a c)(on a b) ,2) ((clear c)(holding b),3)((clear b)(holding c),3) ((on a c)(clear b),3)((on d b)(clear c),3) ((holding c)(holding b),4)((on b c)(clear b),4) ((on a c)(holding b),4)((on c b)(clear c),4) ((on d b)(holding c),4)((on a c)(on d b),4) ((on b c)(holding b),5)((on a b)(on b c),5) ((on d b)(on b c),5)((on c b)(holding c),5) ((on a c)(on c b),5)((on c b)(on d c),5)Table 1. Pattern databases PDB(�even) and PDB(�odd) for the example problem.De�nition 5. Two pattern databases PDB(�1) and PDB(�2) are disjoint, if thesum of respective heuristic estimates always underestimates the overall solutionlength, i.e., ��1(�1(S); �1(St)) + ��2(�2(S); �2(St)) � �(S; St);8S 2 P :PDBs are not always disjoint. Suppose that a goal contains two atoms p1and p2, which are in groups 1 and 2, respectively, and that an operator o makesboth p1 and p2 true. Then, the distance under abstraction �1 is 1 (because theabstraction of o will make p2 in group 2 true in one step) and the distance under�2 is also 1 (for the same reason). But the distance in the original search spaceis also 1.De�nition 6. An independent abstraction set I is a set of group indices suchthat no operator a�ects both atoms in groups in I and atoms in groups that arenot in I. The according abstraction �I that maps all atom groups not in I totrue is called an independent abstraction.Theorem 1. A partition of the groups into independent abstractions sets yieldsdisjoint pattern databases.Proof. Each operator changes information only within groups of a given partitionand an operator of the abstract planning space contributes one to the overallestimate only if it changes facts in available fact groups. Therefore, by addingthe solution lengths of di�erent abstract spaces each operator on each path iscounted at most once.For some domains like Logistics operators act locally according to any par-tition into groups so that the precondition of Theorem 1 is trivially ful�lled.3.3 Perfect HashingPDBs are implemented as a (perfect) hash table with a table lookup in timelinear to the abstract state description length.

18

According to the partition into groups a perfect hashing function is de�nedas follows. Let Gi1 ; Gi2 ; : : : ; Gik be the selected groups in the current abstractionand o�set(k) be de�ned as o�set(k) =Qkl=1 jGil�1 j with jGi0 j = 1. Furthermore,let group(f) and position(f) be the group index and the position in the group offact f , respectively. Then the perfect hash value hash(S) of state S ishash(S) =Xf2S position(f) � o�set(group(f)):Since perfect hashing uniquely determines an address for the state S, S can bereconstructed given hash(S) by extracting all corresponding group and positioninformation that de�ne the facts in S. Therefore, we establish a good compres-sion ratio, since each state in the queue for the breadth-�rst search traversalonly consumes one integer. The breadth-�rst-search queue is only needed forconstruction and the resulting PDB is a plain integer array of size o�set(k + 1)encoding the distance values for the corresponding states, initialized with 1 forpatterns that are not encountered. Some states are not generated, since they arenot reachable, but the above scheme is more time and space e�cient than ordi-nary hashing storing the uncompressed state representation. Since small integerelements consume only a few bytes, on current machines we may generate PDBsof a hundred million entries and more.3.4 ClusteringIn the simple example planning problem the combined sizes of groups and thetotal size of the generated pattern databases PDB(�even) and PDB(�odd) di�erconsiderably. Since we perform a complete exploration in the generation process,in larger examples the requirements in time and space resources for computingPDBs might be exhausted. Therefore, an automatic way to �nd a suitable bal-anced partition according to given memory limitations is required. Instead of abound on the total size of all PDBs together, we globally limit the size of eachpattern database, which is in fact the number of expected states. The restrictionis not crucial, since the number of di�erent pattern databases is small in practice.The threshold is the parameter to tune the quality of the estimate. Obviously,large threshold values yield optimal estimates in small problem spaces.We are confronted with a Bin-Packing variant: Given the sizes of groups, thetask is to �nd the minimal number of pattern databases such that the sizes donot exceed a certain threshold value. Notice that the group sizes are multipliedin order to estimate the search space size. However, the corresponding encodinglengths add up. Bin-Packing is NP-hard in general, but good approximationalgorithms exist. In our experiments we applied the best-�t strategy.4 ResultsAll experimental results were produced on a Linux PC, Pentium III CPU with800 MHz and 512 MByte. We chose the most e�cient domain-independent plan-ners as competitors. In Logistics, the program FF is chosen for comparison and
19

0.01

0.1

1

10

100

1000

0 10 20 30 40 50

S
ea

rc
h

T
im

e
[s

ec
]

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

PDB construction

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45

E
xp

an
si

on
s

[n
od

es
]

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

Fig. 1. Time performances and numbers of expansions of A* and hill climbing in theLogistics domain with respect to the PDB and FF heuristic on a logarithmic scale.PDB construction time is included in the overall search time.in Blocks World, the pattern database approach is compared to the optimalplanner Mips.4.1 LogisticsWe applied PDBs to Logistics and solved the entire problem set of AIPS-2000.The largest problem instance includes 14 trucks located in one of three locationsof the 14 cities. Together with four airplanes the resulting state space has asize of about 314 � 144 � 6042 � 8:84223 � 1085 states. All competing plannersthat have solved the entire benchmark problem suite are (enforced) hill-climberswith a variant of the FF heuristic and the achieved results have about the samecharacteristics [14]. Therefore, in Table 1 we compare the PDB approach withthe FF-heuristic. In the enforced hill climbing algorithm we allow both plannersto apply branching cuts, while in A* we scale the inuence of the heuristic with afactor of two. The e�ects of scaling are well-known [22]: weightening A* possiblyresults in non-optimal solution, but the search tends to succeed much faster. Inthe AIPS-2000 competition, the scaling factor 2 has enhanced the inuence ofthe max-pair heuristic in the planner HSP. However, even with this improvementit solves only a few problems of this benchmark suite.The characteristics of the PDB and FF heuristics in Figure 1 are quite dif-ferent. The number of expanded nodes is usually larger for the former one butthe run time is much shorter. A* search with PDBs outperforms FF with hillclimbing and branching cuts. The savings are about two orders of magnitudewith respect to FF and A* and one order of magnitude with respect to FF andhill climbing, while the e�ect for the number of expansions is the exact opposite.In the example set the average time for a node expansion in PDB-based planningis smaller by about two orders of magnitude compared to FF.On the other hand, in larger problem instances enforced hill climbing ac-cording to the PDB heuristic generates too many nodes to be kept in mainmemory. In a few seconds the entire memory resources were exhausted. This
20

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

S
ol

ut
io

n
Le

ng
th

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

180

190

200

210

220

230

240

250

260

270

280

30 32 34 36 38 40 42 44

S
ol

ut
io

n
Le

ng
th

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

Fig. 2. Overall and magni�ed solution quality of A* and enforced hill climbing in theLogistics domain with respect to to the PDB and FF heuristic.suggests applying memory limited search algorithm like thresholding in IDA*and alternative hashing strategies to detect move transpositions in high searchdepths.We summarize that hill climbing is better suited to the FF heuristic whileweighted A* seems to perform better with PDBs. The solution qualities are aboutthe same as Figure 2 deptics. Even magni�cation to larger problem instances failsto establish a clear-cut winner.4.2 Blocks WorldAchieving approximate solutions in Blocks World is easy; 2-approximations runin linear time [24]. Moreover, di�erent domain-dependent cuts drastically reducethe search space. Hence, TALPlanner [20] with hand-coded cuts and FF with hillclimbing, helpful action and goal ordering cuts �nd good approximate solutionsto problems with �fty Blocks and more. FF using enforced hill climbing withoutcuts is misguided by its heuristic, backtracks and tends to get lost in local optimafar away from the goal. We concentrate on optimal solutions for this domain.Since any n-Tower con�guration is reachable from the initial state state, thestate space grows exponentially in n, and indeed, optimizing Blocks World isNP-hard. Graphplan is bounded to about 9 blocks and no optimal heuristicsearch engine achieves a better performance, e.g. HSP with max-pair is boundedto about 6-7 blocks. Model checking engines like BDD exploration in Mips anditerative Boolean satis�ability checks in Satplan are best in this domain andoptimally solve problems with up to 12-13 blocks. Table 3 depicts that PDBsare competitive and that the solution lengths match.Moreover, better scaling in time seems to favor PDB exploration. However,in both approaches space consumption is more crucial than time. In the bidi-rectional symbolic breadth-�rst search engine of Mips the BDD sizes grow veryrapidly and large pattern databases with millions of entries still lead to millionsof node expansions. When searching for optimal solutions to 13-block benchmark
21

0.01

0.1

1

10

100

1000

2 4 6 8 10 12 14

T
im

e
[s

ec
]

Problem Number

PDB construction
PDB (A*)

MIPS (BDD)

5

10

15

20

25

30

35

2 4 6 8 10 12 14

Le
ng

th

Problem Number

PDB (A*)
MIPS (BDD)

Fig. 3. Time performance and solution quality of BDD expoloration and optimal PDBplanning in Blocks World. PDB construction time is included in the overall search time.problems this thrashes the memory resources in both planning approaches. Insummary, optimal solving Blocks World is still hard for general planning engines.4.3 Other DomainsGripper (AIPS-1998) spans an exponentially large but well-structured searchspace such that greedy search engines �nds optimal solutions. On the otherhand, Gripper is known to be hard for Graphplan. Both FF with hill-climbingand cuts and PDB with weighted A* �nd optimal solutions in less than a second.Like Logistics, the NP-hard [11] Mystery domain (AIPS-1998) is a trans-portation domain on a road map. Trucks are moving around this map and pack-ages are being carried by the mobiles. Additionally, various capacity and fuelconstraints have to be satis�ed. Mystery is particularly di�cult for heuristicsearch planning, since some of the instances contain a very high portion of unde-tected dead-ends [14]. In contrast to the most e�ective heuristic search plannerGRT [23], the PDB planning algorithm does not yet incorporate manual refor-mulation based on explicit representation of resources. However, experimentsshow that PDB search is competitive: problems 1-3, 9, 11, 17, 19, 25-30 were op-timally solved in less then 10 seconds, while problem 15 and 20 required about 5and 2 minutes, respectively. At least problem 4,7, and 12 are not solvable. Timeperformance and the solution qualities are better than in [23] Scaling reduces thenumber of node expansion in some cases but has not solved any new problem.The start position of Sokoban consists of a selection of balls within a maze anda designated goal area into which the balls have to be moved. A man, controlledby the puzzle solver, can traverse the board and push balls onto adjacent emptysquares. Sokoban has been proven to be PSPACE complete and spans a directedsearch space with exponentially many dead-ends, in which some balls cannot beplaced onto any goal �eld [16]. Therefore, hill climbing will eventually encounter adead-end and fail. Only overall search schemes like A*, IDA* or best-�rst preventthe algorithm from getting trapped. In our experiments we optimally solved all52 automatically generated problems [21] in less than �ve seconds each. The
22

screens were compiled to PDDL with a one-to-one ball-to-goal mapping so thatsome problems become unsolvable. Since A* is complete we correctly establishunsolvability of 15 problems in the test set. Note that the instances span statespaces much smaller than the 90 problem suite considered in [16] with problemscurrently too di�cult to be solved with domain independent planning.As expected, additional results in Sokoban highlight that in contrast to thePDB-heuristic, the FF-heuristic, once embedded in A*, yields good but notoptimal solutions. BDD exploration in Mips does �nd optimal solutions, but forsome instances it requires over a hundred seconds for completion.5 ConclusionHeuristic search is currently the most promising approach to tackle huge problemspaces but usually does not yield optimal solutions. The aim of this paper is toapply recent progress of heuristic search in �nding optimal solutions to planningproblems by devising an automatic abstraction scheme to construct pre-compiledpattern databases.Our experiments show that pattern database heuristics are very good admis-sible estimators. Once calculated our new estimate will be available in constanttime since the estimate of a state is simply retrieved in a perfect hash table byprojecting the state encoding. We will investigate di�erent pruning techniquesto reduce the large branching factors in planning. There are some known gen-eral pruning techniques such as FSM pruning [25], Relevance Cuts and PatternSearches [16] that should be addressed in the near future.Although PDB heuristics are admissible and calculated beforehand, theirquality can compete with the inadmissible FF-heuristic that solves a relaxedplanning problem for every expanded state. The estimates are available in asimple table lookup, and, in contrast to the FF-heuristic, A* �nds optimal solu-tions. Weighting the estimate helps to cope with di�cult instances for approx-imate solutions. Moreover, PDB heuristics in A* can handle directed problemspaces and prove unsolvability results.One further important advantage of PDB heuristics is the possibility of asymbolic implementation. Due to the representational expressiveness of BDDs,a breadth-�rst search (BFS) construction can be completed with respect to largerparts of the planning space for a better quality of the estimate. The explorationyields a relation H(estimate; state) represented with a set of Boolean variablesencoding the BFS-level and a set of variables encoding the state. AlgorithmBDDA*, a symbolic version of A*, integrates the symbolic representation ofthe estimate [6]. Since PDBs lead to consistent heuristics the number of itera-tions in the BDDA* algorithms is bounded by the square of the solution length.Moreover, symbolic PDBs can also be applied to explicit search. The heuristicestimate for a state can be determined in time linear to the encoding length.Acknowledgments We thank J. Ho�mann for the Sokoban problem generator,M. Helmert for eliminating typos, the anonymous referees for helpful comments,and P. Haslum for fruitful discussions on this research topic.
23

References1. A. Blum and M. L. Furst. Fast planning through planning graph analysis. InIJCAI, pages 1636{1642, 1995.2. R. E. Bryant. Symbolic manipulation of boolean functions using a graphical rep-resentation. In DAC, pages 688{694, 1985.3. T. Bylander. The computational complexity of propositional STRIPS planning.Arti�cial Intelligence, pages 165{204, 1994.4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.5. J. C. Culberson and J. Schae�er. Pattern databases. Computational Intelligence,14(4):318{334, 1998.6. S. Edelkamp. Directed symbolic exploration and its application to AI-planning. InAAAI Symposium (Model-based Validation of Intelligence), pages 84{92, 2001.7. S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems tominimize state encoding length. In ECP, LNCS, pages 135{147. Springer, 1999.8. S. Edelkamp and M. Helmert. The model checking integrated planning systemMIPS. AI-Magazine, 2001. To Appear.9. R. Fikes and N. Nilsson. Strips: A new approach to the application of theoremproving to problem solving. Arti�cial Intelligence, (2):189{208, 1971.10. P. Haslum and H. Ge�ner. Admissible heuristics for optimal planning. In Arti�cialIntelligence Planning and Scheduling (AIPS), pages 140{149, 2000.11. M. Helmert. On the complexity of planning in transportation and manipulationdomains. Master's thesis, Computer Science Department Freiburg, 2001. Availablefrom http://www.informatik.uni-freiburg.de/~ki/theses.html.12. I. T. Hern�adv�ogyi and R. C. Holte. Experiments with automatic created memory-based heuristics. In SARA, 2000.13. J. Ho�mann. A heuristic for domain independent planning and its use in anenforced hill climbing algorithm. In ISMIS, LNCS, pages 216{227. Springer, 2000.14. J. Ho�mann. Local search topology in planning benchmarks: An empirical analysis.In IJCAI, 2001. To appear.15. R. Jensen and M. M. Veloso. OBDD-based universal planning for synchronizedagents in non-deterministic domains. JAIR, 13, 2000.16. A. Junghanns. Pushing the Limits: New Developments in Single-Agent Search.PhD thesis, University of Alberta, 1999.17. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, andstochastic search. In AAAI, pages 1194{1201, 1996.18. R. E. Korf. Finding optimal solutions to Rubik's Cube using pattern databases.In AAAI, pages 700{705, 1997.19. R. E. Korf and A. Felner. Disjoint pattern database heuristics. Arti�cial Intelli-gence, 2001. To appear (http://www.elsevier.nl/locate/artint).20. J. Kvarnstr�om, P. Doherty, and P. Haslum. Extending TALplanner with concur-rency and resources. In ECAI, pages 501{505, 2000.21. Y. Murase, H. Matsubara, and Y. Hiraga. Automatic making of Sokoban problems.In Paci�c Rim Conference on AI, 1996.22. J. Pearl. Heuristics. Addison-Wesley, 1985.23. I. Refanidis and I. Vlahavas. Heuristic planning with resources. In ECAI, pages521{525, 2000.24. J. Slaney and S. Thi�ebaux. Blocks world revisited. Arti�cial Intelligence, pages119{153, 2001.25. L. A. Taylor and R. E. Korf. Pruning duplicate nodes in depth-�rst search. InAAAI, pages 756{761, 1993.
24

A Forward Searh Planning Algorithm with aGoal Ordering HeuristiIgor Razgon and Ronen I. BrafmanComputer Siene DepartmentBen-Gurion University, 84105, Israelfirazgon,brafmang�s.bgu.a.ilAbstrat. Forward haining is a popular strategy for solving lassialplanning problems and a number of reent suessful planners exploit it.To sueed, a forward haining algorithm must arefully selet its nextation. In this paper, we introdue a forward haining algorithm thatselets its next ation using heuristis that ombine bakward regressionand goal ordering tehniques. Bakward regression helps the algorithmfous on ations that are relevant to the ahievement of the goal. Goalordering tehniques strengthens this �ltering property, foring the for-ward searh proess to onsider ations that are relevant at the urrentstage of the searh proess. One of the key features of our planner isits dynami appliation of goal ordering tehniques: we apply them onthe main goal as well as on all the derived sub-goals. We ompare theperformane of our planner with ff { the winner of the AIPS'00 plan-ning ompetition { on a number of well-known and novel domains. Weshow that our planner is ompetitive with ff, outperforming it on moreomplex domains in whih sub-goals are typially non-trivial.List of keywords: forward haining, bakward regression, goal ordering,relaxed problem1 IntrodutionForward haining is a popular strategy for solving lassial planning problems.Early planning systems, suh as GPS [12℄, used forward haining but were quiklyoverome by regression-based methods suh as partial-order planning [17℄ and,more reently,Graphplan [2℄. These methods were viewed as more informed, orfoused. However, with the aid of appropriate heuristi funtions, reent forward-haining algorithms [3, 6℄ have been able to outperform other planners on manydomains.To sueed, a forward-haining planner must be informed in its seletion ofations. Ideally, the ation hosen at the urrent state must bring us loser tothe goal state. To ahieve this goal, reent forward-haining planners use new,improved heuristi funtions in whih regression tehniques play an importantrole. The idea of bakward regression through forward haining was �rst expli-itly stated by MDermott [13℄. It was impliitly used in GPS and ff [6℄ and in its
25

more general form in Graphplan and its desendants [2, 9, 11℄ (as a polynomialstruture onstruted in a diretion opposite to the main searh diretion). Itwas used also in [1℄ for relevane omputation.In this paper we extend regression-based relevane �ltering tehniques witha dynami goal-ordering heuristis. This results in a planning algorithm { ro(Regression + Goal-Ordering) { that has a better hane of hoosing ations thatare relevant and timely. The bakward regression heuristis used in our planneris somewhat similar to the one used in GPS. That is, we onstrut a sequene ofsubgoals, where the �rst subgoal is the main goal and the last subgoal is satis�edin the urrent state. The di�erene between ro and previous algorithms is inthe way this subgoal sequene is generated. More spei�ally, given the urrentsubgoal in the onstruted sequene, the next subgoal is omputed as follows:we selet the proposition that we believe should be ahieved �rst in the urrentsubgoal { we use a goal ordering heuristis to make this seletion. Then, weselet an ation that has this proposition as an add-e�et. Finally, we add thepreonditions of this hosen ation to the beginning of the onstruted sequene.Thus, we have a ombination of a bakward regression method with a goalordering tehnique, where the ordering is omputed dynamially for all subgoalsof the sequene of goals generated by the bakward regression proess.The ombination of bakward regression with goal ordering is based on thefollowing intuition: One of the main goals of bakward searh in the ontext offorward haining algorithm is to avoid onsidering irrelevant ations. [1℄. How-ever, when a relevant ation is inserted in an inappropriate plae in the plan,we either obtain a plan that is longer than neessary or we must perform ex-pensive baktraking. By ordering subgoals, we strengthen the �ltering propertyof bakward regression and redue the need for baktraking beause we forethe forward haining proess to onsider ations that are relevant at the urrentstage of the searh proess.Typially, goal ordering is done for the original goal only, and prior to theinitiation of searh { it is stati in nature. Next, the problem is divided intosmaller subproblems, eah of whih an be solved separately [12, 10℄. Dynamiordering of propositions is often seen in CSP problems. It was used in the ontextof Graphplan's bakward searh, viewed as a CSP problem, in [8℄. This paperis among the �rst to use dynami goal ordering in the planning proess, and thepartiular dynami goal ordering approah we introdue here is the main novelontribution of this paper.The rest of this paper is organized as follows: Setion 2 provides a short re-view of related work. Setion 3 desribes the proposed algorithm. In Setion 4we provide an empirial omparison between our planner and the winner of theAIPS 2000 planning ompetition, ff [6℄. The main onlusion of our experimen-tal analysis is that ro is ompetitive with ff, outperforming it on domains inwhih the subproblems obtained after ordering the top level goal are non-trivial.Finally, Setion 5 onludes this paper.
26

2 Related WorkIn this setion we provide a short review of forward searh algorithms and goalordering methods and their use in planning. This will help provide some of theneessary bakground and will plae this work in its proper ontext.2.1 Reent forward searh algorithmshsp The hsp algorithm [3℄ is a forward haining algorithm without baktrak.Eah step, the ation leading to the state with minimal approximated dis-tane to the goal is hosen. This distane is approximated by solving a relaxedproblem in whih the delete e�ets of all ations were removed. Given this re-laxed problem, we approximate the distane from the urrent state ur to astate s using the sum (or maximum) of the weights of the propositions thathold in s. The weight of a proposition p is 0 if it belongs to ur. Otherwise,weight(p) = minall ats ahieving p 1 + dist(preond(at)), i.e., one more thanthe minimal distane of the set of preonditions of ations that ahieve p.ff ff (Fast Forward) [6℄ is a forward searh algorithm that selets an ationat eah step using an approximated distane measure. The distane from theurrent state to the goal is approximated by the plan length for ahieving the goalin a relaxed problem indued by the urrent problem. ff uses Graphplan tosolve the relaxed problem. Beause the relaxed problem does not have del-e�ets,there are no mutually exlusive pairs of propositions and ations in the problem.Therefore, it an be solved in polynomial time. To make the measure near-optimal, various heuristis for dereasing the length of the extrated solutionare applied.The algorithm applies breadth-�rst searh from the urrent state s until it�nds a state s0 that has a stritly better value. The ordering tehnique from [10℄,desribed below, is applied to make ff more e�etive. ff won the AIPS 2000planning ompetition.2.2 Goal ordering methodsThere has been muh work on goal ordering methods and their use in planning.Most of this work addresses the following four questions1. How to order two propositions? [7, 10, 8℄2. How to derive a total order on propositions given an ordering on all pairs ofpropositions? [10℄3. How to use a total order on goal propositions in planning? [12, 10, 8℄4. How to inorporate propositions that are not in the top-level goal into thegoal order? [14℄
27

For our purpose, the �rst and the third questions are the most relevant.An interesting lassi�ation of methods determining the order between twogiven propositions is introdued in [7℄. Aording to it, we may onlude thatp < q if at least one of the following onditions holds.1. Goal subsumption. To ahieve q we must ahieve p2. Goal lobbering. When ahieving p we destroy q if it existed in some pre-vious state. An example of goal lobbering is the pair of propositions on(1; 2)and on(2; 3) in the BloksWorld problem. on(2; 3) has to be ahieved beforeon(1; 2), beause on(1; 2) is destroyed in the proess of ahieving on(2; 3)3. Preondition violation. Ahievement of q makes ahievement of p impos-sible (dead-end).Two riteria for ordering propositions based on the priniple of goal lob-bering are given in [10℄. A modi�ed version of the �rst of them is used is theproposed algorithm and desribed in detail in the next setion.A widespread method for using a goal ordering in planning is to iterativelyapply the planning algorithm to ahieve inreasing subsets of the goal. For ex-ample if we have a goal ordering(p1; :::; pn), then �rst we try to ahieve a state s1in whih fp1g holds, starting at the initial state. Next, we try to ahieve fp1; p2gstarting at s1, et. The last plan ahieves the required goal from s1; : : : ; sn�1.By onatenating the resulting plans, we get a omplete plan.3 Algorithm desription.We now proeed to desribe the ro planning algorithm. In Setion 3.1 we de-sribe the algorithm and its ation seletion heuristi. In Setion 3.2 we providemore details on some of the subroutines used during ation seletion. In Setion3.3, we disuss some optimization implemented in the urrent version of ro.Finally, in Setion 3.4., we demonstrate the work of RO on a running example.3.1 The Proposed Algorithm and its Ation Seletion Heuristiro is a forward haining planner with hronologial baktraking. It reeives adomain desription as input and an integer n denoting searh-depth limit (thedefault value of n is 2000).The �rst step of ro is to ompute some data that will be useful duringthe searh proess. In partiular ro onstruts an approximated set of pairs ofmutually exlusive propositions. It is known that exat omputation of all mutualexlusive pairs of preonditions is not less hard than the planning problem [2℄.Therefore, only approximation algorithms are aeptable in this ase. RO obtainsan approximate set of mutual exlusive pairs as the omplement of a set ofreahable pairs whih is found by a modi�ation of Reahable-2 algorithm [4℄.Next, a standard depth-�rst searh with hronologial baktraking is per-formed (Figure 1). (Note, that to obtain the desired plan, we have to run this
28

funtion on the initial state and the empty plan). The heart of this algorithm isthe heuristi seletion of ation that will be appended to the urrent plan (line5). This heuristis is based on bakward searh without baktraks (bakwardregression). The depth of this regression phase, MaxDeep,is a parameter of theplanner (the default value of MaxDeep is 50). The ode of this proedure isgiven in Figure 2.As we an see from the ode in Figure 2, this proedure builds a sequeneof subgoals, starting with the main (i.e., original) goal as its �rst element. Ateah iteration, the urrent (last) subgoal in this sequene is proessed as follows:its propositions are ordered (line 2) and the minimal proposition that is notsatis�ed in the urrent state (the required proposition) is seleted (line 3).Next, an ation ahieving this proposition is hosen (line 4). If this ation isfeasible in the urrent state, it is returned. Otherwise, the set of preonditionsof this ation is appended to the subgoal sequene beoming the new urrentsubgoal, and the proess is repeated.We see that ro ombines goal ordering and bakward regression tehniques:eah time a new subgoal is seleted, its propositions are ordered, and this order-ing is used to selet the next ation for the regression proess. This ombinationis the main novel ontribution of this work.ComputeP lan(CurState;n; CurP lan)1. For i = 1 to Num Feasible Do //Num Feasible is the number of ations feasible inthe urrent state2. Begin3. If Goal � CurState then return CurP lan4. If n = 0 then return FAIL5. at := BakwardReg(CurGoal;MaxDeep) //this funtion hooses an ation whihwas not hosen before6. NewCurState := apply(CurState;at)7. NewCurP lan := append(CurP lan; at)8. Answer = ComputeP lan(NewCurState; n� 1; NewCurP lan)9. If Answer is not FAIL then return (Answer)10. End11. Return FAIL Fig. 1. The main algorithm3.2 Auxiliary proedures for the proposed forward searh heuristisIn this setion, we desribe two auxiliary proedures (lines 2 and 4 of theBakwardReg funtion). The �rst orders the propositions of a given subgoal.The seond �nds an ation ahieving the given proposition and satisfying someadditional onstraints.Goal ordering is based on a number of riteria. The main riterion is a mod-i�ed version of the Graphplan riterion from [10℄. This riterion is mentioned
29

BakwardReg(CurGoal;MaxDeep)1. If MaxDeep = 0 Choose randomly an ation feasible in the urrent step that was nothosen before, and return it2. Order propositions of CurGoal by order of their ahievement3. Let CurProp be the proposition of the CurGoal, whih is minimal inCurGoal n CurState4. Choose an ation at ahieving CurProp that was not hosen before in the CurState.5. If it is not possible to hoose suh an ation, then hoose randomly an ation feasiblein the urrent step that was not hosen before, and return it6. If at is feasible in the urrent state then return at7. Let NewCurGoal be the set of preonditions of at8. Return(BakwardReg(NewCurGoal;MaxDeep� 1))Fig. 2. The Main Heuristi of the Algorithm
in 2.2. It states that for two propositions p and q, p must be ahieved beforeq if every ation ahieving p onits with q. The modi�ed version used herestates that p must be ahieved before q if the perent of ations oniting withq among ations ahieving p is more than the perent of ations oniting withp among ations ahieving q.Thus, if for two given propositions p and q the \hane"that q will be de-stroyed while ahieving p is higher than the \hane" that p will be destroyedwhile ahieving q, it is preferable to ahieve p before q. The original versionof this riterion was derived from analysis of problems suh as BloksWorld,HanoiTower and so on, where it is diretly appliable. The proposed modi�a-tion of this method extends its appliability. For example it is appliable formany Logistis-like problem.Intuitively, the ation seletion funtion uses the following rule: Selet anation that an be the last ation in a plan ahieving the required propositionfrom the urrent state. In partiular, the ation seletion funtion performs threesteps. First, it omputes the relevant set whih ontains the required proposi-tion and all propositions that are mutually exlusive with it. The non-relevantset is determined as the omplement of the relevant set. Next, it builds a tran-sition graph whose nodes orrespond to the elements of the relevant set. Thisgraph ontains an edge (a; b) for eah ation with a preondition a and an add-e�et b. Finally, it selets an ation orresponding to the last edge in a pathfrom a proposition that is true in the urrent state to the required proposi-tion. If there is no suh path, it returns FAIL. If there are few suh paths, ithooses a path with the minimal number of non-relevant preonditions of theorresponding ations (in order to �nd a path as lose as possible to a "real"plan).

30

3.3 OptimizationsThe atual implementation of ro introdues a number of optimizations to theabove algorithm. We desribe them next.The �rst feature is a more ompliated baktrak ondition. There are basi-ally two onditions that an trigger baktraking: either the plan exeeds some�xed length or a state has been visited twie. However, the �rst baktrak mustbe triggered by the �rst ondition. The state we baktrak to is determined asfollows: If no state appears more than one (i.e., we baktraked beause of planlength), we simply baktrak one step. If a state appears twie in the urrentstate sequene, we baktrak to the state prior to seond appearane of the�rst repeated state. For example, suppose our maximal plan length is 6, thestate sequene is (A;C;B;B;C;D), and we have not baktraked before. In thissequene, both B and C appear twie. However, B is the �rst state to ourtwie. Therefore, we baktrak to before the seond appearane of B. Thus, thenew sequene, after baktraking, is (A;C;B). From this point on, we baktrakwhenever the urrent state appears earlier in the sequene, even if plan lengthis smaller than the maximal length.The seond optimization is the memoization of the sequene of subgoalsgenerated by the main heuristis. Instead of reomputing the whole subgoalsequene in eah appliation of the searh heuristi, we use the subgoal sequenethat was onstruted in the previous appliation (if suh a sequene exists). Themodi�ed algorithm eliminates from the tail of the subgoal sequene all subgoalsthat were ahieved in the past, and ontinues onstrution from the resultingsequene.This memoization method has two advantages. First, it saves time by avoid-ing the omputation of the full subgoal sequene. Seond, and more importantly,is that it maintains a onnetion between subsequent appliations of the searhheuristis. This way, eah appliation of the searh heuristi appliation buildson top of the results of the previous appliation and avoids aidental destru-tion of these results. The running example in the next setion demonstrates theusefulness of this approah.3.4 A Running ExampleConsider a well-known instane of the BloksWorld domain alled the SussmanAnomaly. It is an instane with three bloks, its initial state is fon(3; 1); on �table(1); lear(3); on�table(2); lear(2)g and the goal is fon(1; 2); on(2; 3)g. Note,there is only a single reahable state that satis�es the goal riteria. In this state,the proposition on�table(3) holds. However, on�table(3) is not stated expliitlyin the goal. This raises a diÆulty for algorithms that employ goal ordering be-ause they are strongly a�eted by interations between ations in the goal. Forexample, in our ase, the propositions of the goal have to be ordered as follows(on(2; 3); on(1; 2)). However, before ahieving on(2; 3), it is neessary to ahieveon� table(3).
31

Let us run RO on this instane. We onsider the simplest version of theBloksWorld domain with two ations only: one for moving a blok from thetable on top of another blok, and one for moving a blok to the table. Belowwe show the result of eah appliation of the searh heuristis.First appliation.The urrent state is the initial state, i.e. fon(3; 1)on� table(1); lear(3); on�table(2); lear(2)g, the subgoal sequene is not onstruted yet, so it needs to beonstruted from srath. Its �rst subgoal is the main goal whih is ordered as(on(2; 3); on(1; 2)). The required proposition of this level is on(2; 3), RO seletsation put � on(2; 3) to ahieve this proposition. This ation is feasible in theurrent state and it is returned, so the �rst appliation is �nished here. Note,that the �rst appliation of the searh heuristis selets a wrong ation!Seond appliation. The urrent state is fon(2; 3); on(3; 1); on�table(1); lear(2)g.The only subgoals in the subgoal sequene are (on(2; 3); on(1; 2)). RO hoosesthe required proposition to be on(1; 2) and selets ation put � on(1; 2) toahieve this proposition. As we an see, this ation is not feasible in the ur-rent state and so the subgoal sequene is extended. Now, it ontains boththe main goal and the preonditions of ation put � on(1; 2), namely, it is((on(2; 3); on(1; 2))(lear(1); lear(2))). Note, that the ordering of the seondsubgoal is hosen randomly and it does not matter here. Now, the required propo-sition is lear(1). The ation seletion heuristi hooses ation take� out(3; 1).This ation is also not feasible and this fat leads us to further extend the subgoalsequene. The next ordered subgoal in this sequene will be (on(3; 1); lear(3))(again, the order of the propositions does not matter here). The new requiredproposition will be lear(3). To ahieve this proposition, RO selets ationtake � out(2; 3), whih is returned, beause it is feasible in the urrent state.Note that in spite of the fat that after an appliation of this ation we arriveat a state that appeared before, baktraking is not performed beause the �rstbaktrak ours only one we exeed the maximal plan length { and this didnot our, yet.Third appliation. The new urrent state is the initial state! However, wehave learned something in the proess, and this is reeted in the sequene ofsubgoals we now have: ((on(2; 3); on(1; 2))(lear(1); lear(2))). (The last subgoalwas eliminated beause it was fully ahieved). This information was not availablewhen we started our searh. In fat, the new required proposition is lear(1), aproposition that does not appear in the original goal. Beause we have hosenit as the required proposition, we will not repeat past mistakes. The algorithmselets ation take� out(3; 1) to ahieve this proposition. This ation is feasiblein the urrent state, therefore, it is returned.During the fourth and the �fth appliation, the algorithm ahieves the maingoal in a straightforward way: it puts blok 2 on blok 3 and then blok 1 onblok 2.The resulting plan is : (put� on(2; 3); take� out(2; 3); take� out(3; 1); put�on(2; 3); put� on(1; 2))
32

Obviously, this plan is not optimal. The �rst two appliations were spentonstruting a subgoal sequene whih then fored RO to selet the right ations.This feature of RO frequently leads to non-optimal plans. However, we believethat the resulting non-optimal plan usually ontains a near-optimal plan as asubsequene. Therefore, we an run a plan re�nement algorithm [1℄ on the outputof RO and obtain a near optimal plan. In some ases, this may be a more e�etiveapproah for obtaining a near optimal plan.4 Experimental AnalysisTo determine the e�etiveness of ro, we performed a number of experimentsomparing its performane to the ff planner { the winner of the AIPS 2000planning ompetition. These results are desribed and analyzed in this setion.All experiments were onduted on a SUN Ultra4 with 1.1GB RAM. Eahresult is given in the form A=B where A is the running time for the giveninstane, and B is the length of the returned plan. The input language is arestrited version of PDDL without onditional e�ets.The main onlusion of our experimental analysis is that ro is ompetitivewith ff, outperforming it on domains in whih the subproblems obtained afterordering the top level goal are non-trivial.4.1 Classial DomainsIn this subsetion we onsider well known lassial domains, suh as the BloksWorld,the Hanoi Tower, and two versions of the Logistis. The results are presented inthe table below. BloksWorld Hanoi Towersize ro ff size ro ff10 0.4/12 0.08/12 6 0.2/63 0.12/6315 2/18 0.14/17 7 0.3/127 0.3/12720 7/27 0.4/26 8 0.6/255 1.3/25525 19.9/36 1.01/35 9 1.3/511 3.61/51130 46.5/44 2.64/44 10 2.9/1023 23.06/1023Usual Logistis Logistis With Car Transportationsize ro ff size ro ff10 0.8/105 0.65/95 10 0.7/109 0.47/8020 8.5/210 10.5/191 20 7.3/239 8.83/16530 63.4/287 100/312 30 31.2/349 57.29/25040 127.9/419 248.3/383 40 92.7/479 234.17/33550 314.3/522 806.3/479 50 226.3/583 813/420Table 1. BloksWorld Running ResultsWe an see that ro is not ompetitive with ff on the BloksWorld. Thisstems from the simple nature of the subproblems obtained after goal ordering in
33

this domain whih make the additional omputational e�ort of ro redundant inthis ase.However, for some problems harder than BloksWorld, this omputationale�ort is worthwhile. One suh example is the HanoiTower domain. On this do-main, ff outperforms ro for small problem sizes (less than 7 diss). But whenthe number of diss is larger than 7, ro outperforms ff, with the di�ereneinreasing as the domain size inreases.The last example in this part is the Logistis domain. We onsider two ver-sions of this problem. The �rst one is the lassi domain. The seond one is aslight modi�ation of the �rst, where airplanes an load and unload ars.An instane of the Logistis is mainly haraterized by the initial and �naldistributions of pakages among ities. If the number of ities is small relativeto the number of pakages or if the majority of pakages have the same initialand �nal loations, ff outperforms ro. However, when pakages are distributedamong many ities and their �nal loations are also di�erent, ro outperformsff. Table 1 ontains running times for both version on the Logistis domain. Inall the examples we used, eah ity ontained exatly one pakage and the initialand �nal loation of eah pakage was di�erent. In addition, eah instane of theseond version ontains a single ar only.4.2 Modi�ed Classial DomainsIn addition to lassial domains, we onsidered two novel domains whih ombinefeatures of existing domains.Combination of the Logistis with the BloksWorld The �rst suh do-main ombines aspets of the Logistis and BloksWorld domains. Suppose wehave n loations and m objets plaed in these loations. A proposition at(i; k)means that objet i is at loation k. If objet i an move from loation l to loa-tion k, this fat is expressed as moves(i; k; l). We assume the graph of moves tobe undireted for eah objet, that is, moves(i; k; l) implies moves(i; l; k). Ob-jets an transport eah other. Propositions transports(i; k) and in(i; k) meanthat the objet i an transport the objet k and that the objet i is within theobjet k respetively. For this domain, we assume that the transport graph is aDAG. The transport graph is de�ned as follows: the nodes are the objets andan edge (a; b) appears in it i� the objet a an transport the objet b.The BloksWorld features of this domain are expressed by the fat that wean put one objet on another. The proposition expressing BloksWorld-likerelations are lear(i), at(i; k) and on(i; k). Note, that at(i; k) means that theobjet i is \on the table" at the loation k. This type of proposition plays therole of the onneting link between these two ombined domains.The set of ations in this domain is the union of the ations in the Logistisand the BloksWorld domain with a few small modi�ations. In partiular, anobjet an be loaded into another objet or moved between loations only if itis "lear" and "on ground"; also we an put one objet into another only if theyare in the same loation and not within another objet.
34

This domain has an interesting property that neither the Logistis nor theBloksWorld have: Top level goals interat with intermediate goals. An objet,whih is in intermediate level of a tower at some loation, may be required fortransportation of another objet. To do so, we must remove all the objets abovethis objet.To try planners on this domain, we onstruted a simple set of examples, inwhih the planner have to build towers of bloks in a few di�erent loation, andthe moving ubes must be in bottom plaes of these towers. ff behaves badlyon this set: it runs more than hour on an example with 11 ubes. However muhlarger examples of this domain are tratable for ro. For example, it orders 21ubes in 50 seonds and produes plan of length 628 steps.A Modi�ed Hanoi Tower A seond domain we onsider is a modi�ation ofthe Hanoi Tower domain. In this modi�ed version the number of loations isarbitrary. Initially all diss are in the �rst loation. The task is to move them tothe last loation using a number of rules. These rules are almost the same as theHanoi Tower domain rules with two exeptions: The �rst one is that if a dis isplaed on the �nal loation it an't be taken bak from this loation. The seondone is that all diss are enumerated and it is possible to put dis number a ondis number b i� b = a+ 1 or b = a+ 2. In essene, this domain is a simpli�edform of the FreeCell domain.The diÆulty of an instane in this domain depends on two fators: the num-ber of diss and the number of ells. The latter determines the onstrainednessof the instane (the fewer the ells, the more onstrained the instane is).For small number of diss (less than 12) ff outperforms ro independently ofonstrainedness of the proessed instane. This is the ase for weakly onstrainedinstanes with large number of diss, as well. However, tightly onstrained in-stanes of this domain are pratially intratable for ff. The table below presentsrunning results of ro for instanes whose solution for ff takes more than oneand a half hours. The size of an instane is given in form A=B, where A is thenumber of diss, B is the number of loations exept for the �nal one.instane time/length17/5 527.3/93318/6 76/27920/7 52/16022/7 62/18524/8 120/26525/8 152/28726/9 155/24328/9 269/20730/9 550/303Table 2. Running times for the Modi�ed Hanoi Tower domain

35

5 ConlusionsIn this paper we presented a forward searh planning algorithm. An implementa-tion of this algorithm was shown to be ompetitive with ff on domains in whihsubproblems obtained as a result of goal ordering are themselves non-trivial. Ouralgorithm makes a number of novel ontributions:{ A forward searh heuristis ombining bakward regression and goal orderingtehniques.{ A omplex memoization tehnique for reusing subgoal sequenes.{ A novel ombination of the Logistis and the BloksWorld domain.{ A better understanding of the weaknesses and strengths of ff.Referenes1. F. Bahus,Y. Teb Making Forward Chaining Relevant, AIPS-98, pages 54-61,19982. A. Blum, M. Furst Fast Planning Through Planning Graph Analysis, Arti�ialIntelligene, 90(1997), pages 281-300, 1997.3. B. Bonet, H. Ge�ner. Planning as Heuristi Searh: New Results, Arti�ial Intel-ligene, Proeedings of the 5th European Conferene on Planning, pages 359-371,1999.4. R.I.Brafman. Reahability, Relevane, Resolution and the Planning as Satis�abilityApproah,In Proeedings of the IJCAI' 99, 1999.5. P. Haslum, H. Ge�ner. Admissible Heuristis for Optimal Planning, AIPS2000pages 140-149, 2000.6. J. Ho�man, B. Nebel. The ff Planning System:Fast Plan Generation ThroughExtration of Subproblems, to appear in JAIR.7. J. Hullen, F. Weberskirh. Extrating Goal orderings to Improve Partial-OrderPlanning, PuK99, pages 130-144, 1999.8. S. Kambhampati,R. Nigenda. Distane-based Goal-ordering Heuristis for Graph-plan, AIPS2000 pages 315-322, 2000.9. S. Kambhampati,E. Parker,E. Lambreht. Understanding and Extending Graph-plan, 4th European Conferene of Planning, pages 260-272, 1997.10. J. Koehler, J. Ho�man. On Reasonable and Fored Goal Ordering and their Usein an Agenda-Driven Planning Algorithm, JAIR 12(2000), pages 339-386.11. J. Koehler, B. Nebel, J. Ho�man, Y. Dimopoulos. Extending Planning Graphs toADL Subset, ECP97, pages 273-285, 1997.12. R. E. Korf. Maro-Operators: A Weak Method for Learning,Arit�ial Intelligene,26 (1985), pages 35-77.13. D. MDermott. Using regression-math graphs to ontrol searh in planning., Ar-ti�ial Intelligene, 109(1-2), pages 111-159, 1999.14. J.Porteous,L.Sebastia. Extrating and Ordering Landmarks for Planning, Tehni-al Report, Dept. of Computer Siene, University of Durham, September 2000.15. I. Razgon. A Forward Searh Planning Algorithm with a Goal Ordering Heuristi,MS Thesis, Ben-Gurion University, Israel, 2001.16. D. Smith, M. Peot. Suspending Reursion in Partial Order Planning, AIPS96,191-198, 1996.17. D. Weld. An Introdution to Least Commitment Planning, AI Magazine 15(4),pages 27-61, 1994.
36

On the Extraction, Ordering, and Usage ofLandmarks in PlanningJulie Porteous1, Laura Sebastia2, and J�org Ho�mann31 Department of Computer Science, The University of Durham, Durham, UK,J.M.Porteous@durham.ac.uk2 Dpto. Sist. Inform�aticos y Computaci�on, Universidad Polit�ecnica de Valencia, Valencia,Spain, lstarin@dsic.upv.es3 Institut f�ur Informatik, Universit�at Freiburg, Freiburg, Germany,ho�mann@informatik.uni-freiburg.deAbstract. Many known planning tasks have inherent constraints concern-ing the best order in which to achieve the goals. A number of research e�ortshave been made to detect such constraints and use them for guiding search,in the hope to speed up the planning process.We go beyond the previous approaches by de�ning ordering constraints notonly over the (top level) goals, but also over the sub-goals that will ariseduring planning. Landmarks are facts that must be true at some pointin every valid solution plan. We show how such landmarks can be found,how their inherent ordering constraints can be approximated, and how thisinformation can be used to decompose a given planning task into severalsmaller sub-tasks. Our methodology is completely domain- and planner-independent. The implementation demonstrates that the approach can yieldsigni�cant performance improvements in both heuristic forward search andGRAPHPLAN-style planning.1 IntroductionGiven the inherent complexity of the general planning problem it is clearly im-portant to develop good heuristic strategies for both managing and navigating thesearch space involved in solving a particular planning instance. One way in whichsearch can be informed is by providing hints concerning the order in which planninggoals should be addressed. This can make a signi�cant di�erence to search e�ciencyby helping to focus the planner on a progressive path towards a solution. Work inthis area includes that of GAM [7] and PRECEDE [9]. Koehler and Ho�mann [7]introduce the notion of reasonable orders where a pair of goals A and B can beordered so that B is achieved before A if it isn't possible to reach a state in whichA and B are both true, from a state in which just A is true, without having totemporarily destroy A. In such a situation it is reasonable to achieve B before A toavoid unnecessary e�ort.The motivation of the work discussed in this paper is to extend those previousideas on orderings by not only ordering the (top level) goals, but also the sub-goalsthat will arise during planning, i.e., by also taking into account what we call thelandmarks. The key feature of a landmark is that it must be true on any solutionpath to the given planning task. Consider the Blocksworld task shown in Figure 1,which will be our working example throughout the paper.Here, clear(C) is a landmark because it will need to be achieved in any solutionplan. Immediately stacking B on D from the initial state will achieve one of the toplevel goals of the task but it will result in wasted e�ort if clear(C) is not achieved�rst. The ordering clear(C) � on(B D) is, however, not reasonable in terms ofKoehler and Ho�mann's de�nition yet it is a sensible order to impose if we wish
37

A

C

D

BD

CBA

initial state goal

Fig. 1. Example Blocksworld task.to reduce wasted e�ort during plan generation. We introduce the notion of weaklyreasonable orderings, which captures this situation. Two landmarks L and L0 arealso often ordered in the sense that all valid solution plans make L true beforethey make L0 true. We call such ordering relations natural. For example, clear(C)is naturally ordered before holding(C) in the above Blocksworld task.We introduce techniques for extracting landmarks to a given planning task, andfor approximating natural and weakly reasonable orderings between those land-marks. The resulting information can be viewed as a tree structure, which we callthe landmark generation tree. This tree can be used to decompose the planningtask into small chunks. We propose a method that does not depend on any par-ticular planning framework. To demonstrate the usefulness of the approach, wehave used the technique for control of both the forward planner FF(v1.0) [5] andthe GRAPHPLAN-style planner IPP(v4.0) [8], yielding signi�cant performance im-provements in both cases.The paper is organised as follows. Sections 2 to 4 explain how landmarks canbe extracted, ordered, and used, respectively. Empirical results are discussed inSection 5 and we conclude in Section 6.2 Extracting LandmarksThroughout the paper, we consider a propositional STRIPS framework where ac-tions are triples o = (pre(o); add(o); del(o)), plans are sequences of actions, theresult of applying an action o to a state S with pre(o) � S is Result(S; o) =(S [add(o)) n del(o), and planning tasks are triples (O; I;G) comprising the actionset, the initial state, and the goal state. In this section, we will focus on the land-marks extraction process and its properties. First of all, we de�ne what a landmarkis.De�nition 1. Given a planning task P = (O; I;G). A fact L is a landmark in Pi� L is true at some point in all solution plans, i.e., i� for all P = ho1; : : : ; oni;G �Result(I; P) : L 2 Result(I; ho1; : : : ; oii) for some 0 � i � n.All initial facts are trivially landmarks (let i = 0 in the above de�nition). For the�nal search control, they are not considered. They can, however, play an importantrole for extracting ordering information. In the Blocksworld task shown in Figure 1,clear(C) is a landmark, but on(A B), for example, is not. In general, it is PSPACE-hard to decide whether an arbitrary fact is a landmark.De�nition 2. Let LANDMARK RECOGNITION denote the following problem.Given a planning task P = (O; I;G), and a fact L. Is L a landmark in P?Theorem 1. Deciding LANDMARK RECOGNITION is PSPACE-hard.Proof Sketch: By a reduction of (the complement of) PLANSAT, the problem ofdeciding whether an arbitrary STRIPS planning task is solvable [2]: add an arti�cialby-pass to the task, on which a new fact L must be added.
38

Due to space restrictions, we include only short proof sketches in this paper. Thecomplete proofs can be found in a technical report [11]. The following is a simplesu�cient condition for a fact being a landmark.Proposition 1. Given a planning task P = (O; I;G), and a fact L. De�ne PL =(OL; I;G) as follows.OL := f(pre(o); add(o); ;) j (pre(o); add(o); del(o)) 2 O; L 62 add(o)gIf PL is unsolvable, then L is a landmark in P.With PL being unsolvable, the goal can not be reached without adding L, evenwhen ignoring delete lists. Deciding about solvability of planning tasks with emptydelete lists can be done in polynomial time by a GRAPHPLAN-style algorithm [1,6]. An idea is, consequently, to evaluate the above su�cient condition for each non-initial state fact in turn. However, this can be costly when there are many facts ina task. We use the following two-step process.1. First, a backward chaining process extracts landmark candidates.2. Then, evaluating Proposition 1 eliminates those candidates that are not prov-ably landmarks.The backward chaining process can select initial state facts, but does not neces-sarily select all of them. In veri�cation, initial (and goal) facts need not be consideredas they are landmarks by de�nition.2.1 Extracting Landmark CandidatesCandidate landmarks are extracted using what we call the relaxed planning graph(RPG): relax the planning task by ignoring all delete lists, then build GRAPH-PLAN's planning graph, chaining forward from the initial state of the task to agraph level where all goals are reached. Because the delete lists are empty, thegraph does not contain any mutex relations [6]. Once the RPG has been built, westep backwards through it to extract what we call the landmark-generation tree(LGT). This is a tree (N;E) where the nodes N are candidate landmarks and anedge (L;L0) 2 E indicates that L must be achieved as a necessary prerequisite forL0. Additionally, if several nodes L1; : : : ; Lk are ordered before the same node L0,then L1; : : : ; Lk are grouped together in an AND-node in the sense that those factsmust be true together at some point during the planning process. The root of thetree is the AND-node representing the top level goals.The extraction process is straightforward. First, all top level goals are added tothe LGT and are posted as goals in the �rst level where they were added in theRPG. Then, each goal is solved in the RPG starting from the last level. For eachgoal g in a level, all actions achieving g are grouped into a set and the intersectionI of their preconditions is computed. For all facts p in I we: post p as a goal in the�rst RPG level were it is achieved; insert p as a node into the LGT; insert an edgebetween p and g into the LGT. When all goals in a level are achieved, we move onto the next lower level. The process stops when the �rst (initial) level is reached.We also use the following technique, to obtain a larger number of candidates:when a set of actions solves a goal, we also compute the union of the preconditionsthat are not in the intersection. We then consider all actions achieving these facts.If the intersection of those action's preconditions is non-empty, we take the factsin that intersection as candidate landmarks as well. More details about the process(which are not necessary for understanding the rest of this discussion) are describedby Porteous and Sebastia [10].
39

L0 A1 L1 A2 L2 A3 L3on-table A pick-up A holding A stack B A on B A stack C A on C Aon-table B pick-up B holding B stack B D on B D stack C B on C Bon-table C unstack D C holding D stack B C on B C stack C D on C Don D C clear C put-down B : : : : : : : : :clear A : : :clear B pick-up C holding Cclear D : : : : : :arm-emptyFig. 2. Summarised RPG for the Blocksworld example shown in Figure 1.Let us illustrate the extraction process with the Blocksworld example from Fig-ure 1. The RPG corresponding to this task is shown in Figure 2. As we explainedabove, the extraction process starts by adding two nodes representing the goalson(C A) and on(B D) to the LGT (N = fon(C A),on(B D)g; E = ;). It alsoposts on(C A) as goal in level 3 and on(B D) in level 2. There is only one ac-tion achieving on(C A) in level 3: stack C A. So, holding(C) and clear(A) arenew candidates. holding(C) is posted as a goal in level 2, clear(A) is initially trueand does therefore not need to be posted as a goal. The new LGT is: N = fon(CA),on(B D),holding(C),clear(A)g; E = f((holding C),on(C A)); ((clear A),on(C A)g.As there are no more goals in level 3, we move downwards to solve the goals in level2. We now have two goals: on(B D) and holding(C). In both cases, there is onlyone action adding each fact (stack B D and pick-up C), so their preconditionsholding(B), clear(D), clear(C), on-table(C), and arm-empty(), as well as the re-spective edges, are included into the LGT. The goals at level 1 are holding(B) andclear(C), which are added by the single actions pick-up B and unstack D C. Theprocess ends up with the following LGT, where we leave out, for ease of reading,the initial facts and their respective edges: N = fon(C A), on(B D), holding(C),holding(B), clear(C), : : : g and E = f(holding(C),on(C A)), (holding(B),on(B D)),(clear(C),holding(C)); : : : g. Among the parts of the LGT concerning initial facts,there is the edge (clear(D),clear(C)) 2 E. As we explain in Section 3, this edge playsan essential role for detecting the ordering constraint clear(C) � on(B D) that wasmentioned in the introduction. The edge is inserted as precondition of unstack DC, which is the �rst action in the RPG that adds clear(C).2.2 Verifying Landmark CandidatesSay we want to move from city A to city D on the road map shown in Figure 3, usinga standard move operator. Landmarks extraction will come up with the followingLGT: N = fat(A), at(E), at(D)g; E = f(at(A), at(E)); (at(E), at(D))g|the RPG isonly built until the goals are reached the �rst time, which happens in this examplebefore move C D comes in. However, the action sequence hmove(A,B), move(B,C),move(C,D)i achieves the goals without making at(E) true. Therefore, the candidateat(E) 2 N is not really a landmark.
A B C D

EFig. 3. An example road map.We want to remove such candidates because they can lead to incompleteness inour search framework, which we will describe in Section 4. As was said above, wesimply check Proposition 1 for each fact L 2 N except the initial facts and the goals,i.e., for each such L in turn we ignore the actions that add L, and check solvability of
40

the resulting planning task when assuming that all delete lists are empty. Solvabilityis checked by constructing the RPG to the task. If the test fails, i.e., if the goals arereachable, then we remove L from the LGT. In the above example, at(A) and at(D)need not be veri�ed. Ignoring all actions achieving at(E), the goal is still reachableby the actions that move to D via B and C. So at(E) and its edges are removed,yielding the �nal LGT where N = fat(A), at(D)g and E = ;.3 Ordering LandmarksIn this section we de�ne two types of ordering relations, called natural and weaklyreasonable orders, and explain how they can be approximated. Firstly, consider thenatural orderings. As said in the introduction, two landmarks L and L0 are orderednaturally, L �n L0, if in all solution plans L is true before L0 is true. L is true beforeL0 in a plan ho1; : : : ; oni if, when i is minimal with L 2 Result(I; ho1; : : : ; oii) andj is minimal with L0 2 Result(I; ho1; : : : ; oji), then i < j. Natural orderings arecharacteristic of landmarks: usually, the reason why a fact is a landmark is that it isa necessary prerequisite for another landmark. For illustration consider our workingexample, where clear(C) must be true immediately before holding(C) in all solutionplans. In general, deciding about natural orderings is PSPACE-hard.De�nition 3. Let NATURAL ORDERING denote the following problem.Given a planning task P = (O; I;G), and two atoms A and B. Is there a naturalordering between B and A, i.e., does B �n A hold?Theorem 2. Deciding NATURAL ORDERING is PSPACE-hard.Proof Sketch: Reduction of the complement of PLANSAT. Arrange actions for twonew facts A and B such that one can either: add A, then B, then solve the originaltask; or add B, then A, then achieve the goal right away.The motivation for weakly reasonable orders has already been explained in thecontext of Figure 1. Stacking B on D from the initial state is not a good idea sinceclear(C) needs to be achieved �rst if we are to avoid unnecessary e�ort. However,the ordering clear(C) � on(B D) is not reasonable, in the sense of Koehler andHo�mann's formal de�nition [7], since there are reachable states where B is onD and C is not clear, but C can be made clear without unstacking B. However,reaching such a state requires unstacking D from C, and (uselessly) stacking A ontoC. Such states are clearly not relevant for the situation at hand. Our de�nitiontherefore weakens the reasonable orderings in the sense that only the nearest statesare considered in which B is on D. Precisely, Koehler and Ho�mann [7] de�neSA;:B, for two atoms A and B, as the set of reachable states where A has just beenachieved, but B is still false. They order B �r A if all solution plans achieving Bfrom a state in SA;:B need to destroy A. In contrast, we restrict the starting statesthat are considered to SoptA;:B, de�ned as those states in SA;:B that have minimaldistance from the initial state. Accordingly, we de�ne two facts B and A to have aweakly reasonable ordering constraint, B �w A, i�8 s 2 Sopt(A;:B) : 8 P 2 O� : B 2 Result(s; P)) 9 o 2 P : A 2 del(o)Deciding about weakly reasonable orderings is PSPACE-hard.De�nition 4. Let WEAKLY REASONABLE ORDERING denote the following prob-lem.Given a planning task P = (O; I;G), and two atoms A and B. Is there a weaklyreasonable ordering between B and A, i.e., does B �w A hold?
41

Theorem 3. Deciding WEAKLY REASONABLE ORDERING is PSPACE-hard.Proof Sketch: Reduction of the complement of PLANSAT. Arrange actions fortwo new facts A and B such that: A is never deleted, and achieved once beforethe original task can be started; B can be achieved only when the original goal issolved.3.1 Approximating Natural and Weakly Reasonable OrderingsAs an exact decision about either of the above ordering relations is as hard as plan-ning itself, we have used the approximation techniques described in the following.The approximation of �n is called �an, the approximation of �w is called �aw. Theorders �an are extracted directly from the LGT. Recall that for an edge (L;L0) inthe LGT, we know that L and L0 are landmarks and also that L is in the intersec-tion of the preconditions of the actions achieving L0 at its lowest appearance in theRPG. We therefore order a pair of landmarks L and L0 L �an L0, if LGT = (N;E),and (L;L0) 2 E.What about �aw, the approximations to the weakly reasonable orderings? Weare interested in pairs of landmarks L and L0, where from all nearby states in whichL0 is achieved and L is not, we must delete L0 in order to achieve L. Our method ofapproximating this looks at: pairs of landmarks within a particular AND-node ofthe LGT since these must be made simultaneously true in some state; landmarksthat are naturally ordered with respect to one of this pair since these give an orderedsequence in which \earlier" landmarks must be achieved; and any inconsistencies1between these \earlier" landmarks and the other landmark at the node of interest.As the �rst two pieces of information are based on the RPG (from which the LGTis extracted), our approximation is biased towards those states that are close tothe initial state. The situation we consider is, for a pair of landmarks in the sameAND-node in the LGT, what if a landmark that is ordered before one of them isinconsistent with the other? If they are inconsistent then this means that they can'tbe made simultaneously true, (ie achieving one of them will result in the other beingdeleted). So that situation is used to form an order in one of the following two ways:1. landmarks L and L0 in the same AND-node in the LGT can be ordered L �awL0, if: 9 x 2 Landmarks : x �an L ^ inconsistent(x; L0)2. a pair of landmarks L and L0 can be ordered L �aw L0 if there exists some otherlandmark x which is: in the same AND-node in the LGT as L0; and there is anordered sequence of �an orders that order L before x. In this situation, L andL0 are ordered, if9 y 2 Landmarks : y �an L ^ inconsistent(y; L0)In both cases the rationale is: look for an ordered sequence of landmarks requiredto achieve a landmark x at a node. For any landmark L in the sequence, if L isinconsistent with another landmark L0 at the same AND-node as x then there is nopoint in achieving L0 before L (since L0 will then be deleted in the e�ort to achievex). A �nal way in which we derive ordering constraints is based on analysis of any�an and �aw orders already identi�ed. We ommit the details here and refer theinterested reader to our technical report [11].1 A pair of facts is inconsistent if they can't be made simultaneously true. We approximateinconsistency using the respective function provided by the TIM API [3] available from:http://www.dur.ac.uk/computer.science/research/stanstuff/planpage.html
42

3.2 Extracting Natural and Weakly Reasonable OrderingsThe LGT is used for extracting orders as follows: (i) identify the �an orders; (ii)identify the �aw orders; (iii) analyse those orders to identify remaining �aw orders;(iv) remove cycles in the graph of orders; (v) �nally, add all orders as edges in theLGT for later use during planning.As an illustration of this process, consider again the example shown in �gure 1.First, the set of �an orders are extracted directly from the LGT. The set contains,amongst other things: clear D �an clear C, clear(C) �an holding(C), and holding(C)�an on(C A) (see Section 2). In the next step, the �aw orders are identi�ed. Let usfocus on how the order clear(C) �aw on(B D) (our motivating example) is found.From the �an orders we have the ordered sequence hclear(D), clear(C), holding(C),on(C A)i and the fact that on(C A) is in the same node as on(B D). Since clear(D)and on(B D) are inconsistent and clear(D) �an clear(C), the order clear(C) �awon(B D) is imposed. Note here the crucial point that we have the order clear(D) �anclear(C). We have that order because unstack D C is the �rst action in the RPGthat adds clear(C). The nearest possibility, from the initial state, of clearing C is tounstack D from C. This can only be done when D is still clear. Our approximationmethods recognise this, and correctly conclude that stacking B on D immediatelyis not a good idea.The next stage is a check to identify and remove any cycles that appear in thegraph of orderings. A cycle (or strongly connected component) such as, L �an L0and L0 �aw L, might arise if a landmark must be achieved more than once in asolution plan (for example, in the Blocksworld domain this is frequently the casefor arm empty()). At present, any cycles in the orders are removed since the searchprocess needs the LGT to be a tree structure. They are removed by �rstly identifyingfor each cycle the set of articulation points for it (a node in a connected componentis an articulation point if the component that remains, after the node and all edgesincident upon it are removed, is no longer connected). The cycles are broken byiteratively removing the articulation points and all edges incident upon these pointsuntil no more strongly connected components remain. For our small example nocycles are present so the �nal step is to add the �aw orders to the LGT.4 Using LandmarksHaving settled on algorithms for computing the LGT, there is still the questionof how to use this information during planning. For use in forward state spaceplanning, Porteous and Sebastia [10] have proposed a method that prunes stateswhere some landmark has been achieved too early. If applying an action achievesa landmark L that is not a leaf of the current LGT, then do not use that action.If an action achieves a landmark L that is a leaf, then remove L (and all orderingrelations it is part of) from the LGT. In short, do not allow achieving a landmarkunless all of its predecessors have been achieved already.Here, we explore an idea that uses the LGT to decompose a planning task intosmaller sub-tasks, which can be handed over to any planning algorithm. The ideais similar to the above described method in terms of how the LGT is looked at:each sub-task results from considering the leaf nodes of the current LGT, and whena sub-task has been processed, then the LGT is updated by removing achievedleaf nodes. The main problem is that the leaf nodes of the LGT can often not beachieved as a conjunction. The main idea is to pose those leaf nodes as a disjunctivegoal instead. See the algorithm in Figure 4.The depicted algorithm keeps track of the current state S, the current plan pre�xP , and the current disjunctive goalDisj, which is always made up out of the currentleaf nodes of the LGT. The initial facts are immediately removed because they are
43

S := I, P := h iremove from LGT all initial facts and their edgesrepeatDisj := leaf nodes of LGTcall base planner with actions O, initial state S and goal condition WDisjif base planner did not �nd a solution P 0 then fail endifP := P � P 0, S := result of executing P 0 in Sremove from LGT all L 2 Disj with L 2 add(o) for some o in P 0until LGT is emptycall base planner with actions O, initial state S and goal VGif base planner did not �nd a solution P 0 then fail endifP := P � P 0, output PFig. 4.Disjunctive search control algorithm for a planning task (O; I; G), repeatedly callingan arbitrary planner on a small sub-task.true anyway. When the LGT is empty|all landmarks have been processed|thenthe algorithm stops, and calls the underlying base planner from the current statewith the original (top level) goals. The algorithm fails if at some point the plannerdid not �nd a solution.Looking at Figure 4, one might wonder why the top level goals are no soonergiven special consideration than when all landmarks have been processed. Remem-ber that all top level goals are also landmarks. An idea is to force the algorithm,once a top level goal G has been achieved, to keep G true throughout the rest ofthe process. We have experimented with a number of variations of this idea. Theproblem with this is that one or a set of already achieved original goals might beinconsistent with a leaf landmark. Forcing the achieved goals to be true togetherwith the disjunction yields in this case an unsolvable sub-task, making the controlalgorithm fail. In contrast to this, we will see below that the simple control algo-rithm depicted above is completeness preserving under certain conditions ful�lledby many of the current benchmarks. Besides this, keeping the top level goals truedid not yield better runtime or solution length behaviour in our experiments. Thismay be due to the fact that, unless such a goal is inconsistent with some landmarkahead, it is kept true anyway.4.1 Theoretical PropertiesThe presented disjunctive search control is obviously planner-independent in thesense that it can be used within any (STRIPS) planning paradigm|a disjunctivegoal can be simulated by using an arti�cial new fact G as the goal, and adding oneaction for each disjunct L, where the action's precondition is fLg and the add listis fGg (this was �rst described by Gazen and Knoblock [4]). The search controlis obviously correctness preserving|eventually, the planner is run on the originalgoal. Likewise obviously, the method is not optimality preserving.With respect to completeness, matters are a bit more complicated. As it turnsout, the approach is completeness preserving on the large majority of the currentbenchmarks. The reasons for this are that there, no fatally wrong decisions can bemade in solving a sub-task, that most facts which have been true once can be madetrue again, and that natural ordering relations are respected by any solution plan.We need two notations.1. A dead end is a reachable state from which the goals can not be reached anymore[7], a task is dead-end free if there are no dead ends in the state space.2. A fact L is recoverable if, when S is a reachable state with L 2 S, and S0 withL 62 S0 is reachable from S, then a state S00 is reachable from S0 with L 2 S00.
44

Many of the current benchmarks are invertible in the sense that every action ohas a counterpart o that undoes o's e�ects [7]. Such tasks are dead-end free, and allfacts in such tasks are recoverable. Completeness is preserved under the followingcircumstances.Theorem 4. Given a solvable planning task (O; I;G), and an LGT (N;E) whereeach L 2 N is a landmark such that L 62 I. If the task is dead-end free, and forL0 2 N it holds that either L0 is recoverable, or all orders L � L0 in the tree arenatural, then running any complete planner within the search control de�ned byFigure 4 will yield a solution.Proof Sketch: If search control fails, then the current state S is a dead end. If itis not, an unrecoverable landmark L0 is added by the current pre�x P (L0 62 I so itmust be added at some point). L0 was not a leaf node at the time it was added, sothere is a landmark L with L � L0 that gets added after L0 in contradiction.Verifying landmarks with Proposition 1 ensures that all facts in the LGT reallyare landmarks; the initial facts are removed before search begins. The tasks con-tained in domains like Blocksworld, Logistics, Hanoi and many others are invertible[7]. Examples of dead-end free domains with only natural orders are Gripper andTsp. Examples of dead-end free domains where non-natural orders apply only torecoverable facts are Miconic-STRIPS and Grid. All those domains (or rather, alltasks in those domains) ful�ll the requirements for Theorem 4.5 ResultsWe have implemented the extraction, ordering, and usage methods presented in thepreceding sections in C, and used the resulting search control mechanism as a frame-work for the heuristic forward search planner FF-v1.0 [5], and the GRAPHPLAN-based planner IPP4.0 [1, 8]. Our own implementation is based on FF-v1.0, so pro-viding FF with the sub-tasks de�ned by the LGT, and communicating back theresults, is done via function parameters. For controlling IPP, we have implementeda simple interface, where a propositional encoding of each sub-task is speci�ed viatwo �les in the STRIPS subset of PDDL. We have changed the implementation ofIPP4.0 to output a results �le containing the spent running time, and a sequentialsolution plan (or a ag saying that no plan has been found). The running timesgiven below have been measured on a Linux workstation running at 500 MHz with128 MBytes main memory. We cut o� test runs after half an hour. If no plan wasfound within that time, we indicate this by a dash. For IPP, we did not count theoverhead for repeatedly creating and reading in the PDDL speci�cations of propo-sitional sub-tasks|this interface is merely a vehicle that we used for experimentalimplementation. Instead, we give the running time needed by the search controlplus the sum of all times needed for planning after the input �les have been read.For FF, the times are simply total running times.For scalability reasons, we ran our FF and IPP implementations on di�erenttesting suits. Due to space restrictions, all results are given in Figure 5. The leftpart of the table shows running time and solution length for FF-v1.0, FF-v1.0 con-trolled by our landmarks mechanism (FF-v1.0 + L), and FF-v2.2. The last systemFF-v2.2 is Ho�mann and Nebel's successor system to FF-v1.0, which goes beyondthe �rst version in terms of a number of goal ordering techniques, and a completesearch mechanism that is invoked in case the planner runs into a dead end [6].Let us consider the domains in Figure 5 from top to bottom. In the Blocksworldtasks taken from the BLACKBOX distribution, FF-v1.0 + L clearly outperformsFF-v1.0. The running time values are also better than those for FF-v2.2. Solution
45

FF-v1.0 FF-v1.0 + L FF-v2.2 IPP IPP+ Ltask time steps time steps time steps task time steps time stepsBlocksworld Blocksworldbw-large-a 0.01 12 0.17 16 0.01 14 bw-large-a 0.17 12 0.36 16bw-large-b 1.12 30 0.18 24 0.01 22 bw-large-b 11.05 18 0.79 26bw-large-c - - 0.24 38 1.02 44 bw-large-c - - 3.17 38bw-large-d 7.03 56 0.31 48 0.78 54 bw-large-d - - 11.73 54Grid Gridprob01 0.07 14 0.26 16 0.07 14 prob01 1.84 14 1.15 14prob02 0.46 39 0.44 26 0.47 39 prob02 30.61 29 5.11 30prob03 3.01 58 1.30 79 2.96 58 prob03 - - 56.08 79prob04 2.75 49 1.30 54 2.70 49prob05 28.42 149 390.01 161 29.39 145Logistics Logisticsprob-38-0 38.03 223 5.93 285 39.61 223 log-a - - 1.42 61prob-39-0 101.37 244 6.22 294 98.26 239 log-b - - 0.91 45prob-40-0 69.03 245 7.49 308 31.68 251 log-c - - 1.54 56prob-41-0 129.15 255 7.73 320 29.85 248 log-d - - 6.80 80Tyreworld Tyreworld�xit-1 0.01 19 0.18 19 0.01 19 �xit-1 0.20 19 0.23 19�xit-10 26.87 118 3.01 136 0.71 136 �xit-2 18.55 30 0.67 32�xit-20 - - 26.24 266 10.16 266�xit-30 - - 157.74 396 46.65 396Freecell Freecellprob-7-1 11.87 56 2.05 44 4.96 48 prob-2-1 8.98 9 0.48 10prob-7-2 4.18 50 1.99 45 4.58 52 prob-2-2 9.73 8 0.52 10prob-7-3 2.29 43 1.88 46 4.07 42 prob-2-3 8.37 9 0.53 11prob-8-1 19.31 63 (2.17) - 11.32 60 prob-2-4 9.17 8 0.49 10prob-8-2 9.89 57 2.48 49 35.52 61 prob-2-5 8.78 9 0.53 10prob-8-3 2.64 50 2.28 51 4.16 54 prob-3-1 - - 1.15 21prob-9-1 145.60 84 3.33 72 9.55 73 prob-4-1 - - 1.92 29prob-9-2 49.17 64 3.22 60 6.77 59 prob-5-1 - - 3.01 36prob-9-3 3.29 55 2.95 54 5.53 54 prob-6-1 - - 3.76 45prob-10-1 21.89 84 (3.48) - 61.85 87prob-10-2 15.70 70 (2.95) - 8.45 66 Gripperprob-10-3 7.68 56 3.63 61 9.32 64 prob01 0.02 11 0.20 15prob-11-1 (222.48) - (3.78) - - (160.91) - prob03 3.25 23 0.29 31prob-11-2 (17.76) - (3.42) - 117.62 (5.62) 74 prob20 - - 20.85 167prob-11-3 (35.13) - (4.39) - 10.52 83Fig. 5. Left part: running time until a solution was found, and sequential solution length forFF-v1.0, FF-v1.0 with landmarks control (FF-v1.0 + L), and FF-v2.2. Times in bracketsspecify the running time after which a planner failed because search ended up in a deadend. Right part: running time until a solution was found, and sequential solution lengthfor IPP and IPP with landmarks control (IPP + L). All times are given in seconds.lengths show some variance, making it hard to draw conclusions. In the Grid ex-amples used in the AIPS-1998 competition, running time with landmarks controlis better than that of both FF versions on the �rst four tasks. In prob05, however,the controlled version takes much longer time, so it seems that the behaviour of ourtechnique depends on the individual structure of tasks in the Grid domain. Solutionlength performance is again somewhat varied, with a tendency to be longer whenusing landmarks. In Logistics, where we look at some of the largest examples fromthe AIPS-2000 competition, the results are unmistakable: the control mechanismdramatically improves runtime performance, but degrades solution length perfor-mance. The increase in solution length is due to unnecessarily many airplane moves:once the packages have arrived at the nearest airports, they are transported to theirdestination airports one by one (we outline below an approach how this can be over-come). In the Tyreworld, where an increasing number of tyres need to be replaced,runtime performance of FF-v1.0 improves dramatically when using landmarks. FF-v2.2, however, is still superior in terms of running time. In terms of solution lengthsour method and FF-v2.2 behave equally, i.e., slightly worse than FF-v1.0.We have obtained especially interesting results in the Freecell domain. Datais given for some of the larger examples used in the AIPS-2000 competition. InFreecell, tasks can contain dead ends. Like our landmarks control, the FF search
46

mechanism is incomplete in the presence of such dead ends [5, 6]. When FF-v1.0 orour enhanced version encounter a dead end, they simply stop without �nding a plan.When FF-v2.2 encounters a dead end, it invokes a complete heuristic search enginethat tries to solve the task from scratch [6]. This is why FF-v2.2 can solve prob-11-2.For all planners, if they encountered a dead end, then we specify in brackets therunning time after which they did so. The following observations can be made: onthe tasks that FF-v1.0 + L can solve, it is much faster than both uncontrolled FFversions; with landmarks, some more trials run into dead ends, but this happensvery fast, so that one could invoke a complete search engine without wasting muchtime; �nally, solution length with landmarks control is in most cases better thanwithout.The right part of Figure 5 shows the data that we have obtained by running IPPagainst a version controlled by our landmarks algorithm. IPP normally �nds plansthat are guaranteed to be optimal in terms of the number of parallel time steps.Using our landmarks control, there is no such optimality guarantee. As a measureof solution quality we show, like in the previous �gure, the number of actions in theplans found. Quite obviously, our landmarks control mechanism speeds IPP up bysome orders of magnitude across all listed domains. In the Blocksworld, solutionsappear to get slightly longer. In Grid, solution length di�ers only by one moreaction used in prob02. Running IPP + L on the larger examples prob04 and prob05failed due to a parse error, i.e., IPP's parsing routine failed when reading in oneof the sub-tasks speci�ed by our landmarks control algorithm. This is probablybecause IPP's parsing routine is not intended to read in propositional encodings ofplanning tasks, which are of course much larger than the uninstantiated encodingsthat are usually used. So this failure is due to the preliminary implementationthat we used for experimentation. In the Logistics examples from the BLACKBOXdistribution, the solutions contain|like we observed for FF in the experimentsdescribed above|unnecessarily many airplane moves; those tasks were, however,previously unsolvable for IPP. In one long testing run, IPP + L solved even thecomparatively large Logistics task prob-38-0 (used for the FF variants) within 6571seconds, �nding a plan with 251 steps. In the Tyreworld, there is a small increasein solution length to be observed (probably the same increase that we observed inour experiments with FF). Running �xit-3 failed due to a parse error similar tothe one described above for the larger Grid tasks. In Freecell, where we show someof the smaller tasks from the AIPS-2000 competition, the plans found by IPP +L are only slightly longer than IPP's ones for those few small tasks that IPP cansolve. Running IPP + L on any task larger than prob-6-1 produced parse errors.In Gripper, the control algorithm comes down to transporting the balls one by one,which is why IPP + L can solve even the largest task prob-20 from the AIPS-1998competition, but returns unnecessarily long plans.In Gripper, and partly also in Logistics, the disjunctive search control fromFigure 4 results in a trivialisation of the planning task, where goals are simplyachieved one by one. While this speeds up the planning process, the usefulness ofthe found solutions is questionable. The problem is there that our approximateLGT does not capture the structure of the tasks well enough|some goals (like aball being in room B in Gripper) become leaf nodes of the LGT though there areother subgoals which should be cared for �rst (like some other ball being picked upin Gripper). One way around this is trying to improve on the information that isprovided by the LGT (we will say a few words on this in Section 6). Another wayis to change the search strategy: instead of posing all leaf nodes to the planner asa disjunctive goal, we tried posing a disjunction of maximal consistent subsets ofthose leaf nodes (we approximated consistency of a fact set as pairwise consistencyaccording to the TIM API). In Gripper, FF and IPP with landmarks control �ndthe optimal solutions with that strategy, in Logistics, the solutions are similar to
47

those found without landmarks control. This result is of course obtained at thecost of higher running times than with the fully disjunctive method. What's more,posing maximal consistent subsets as goals can lead to incompleteness when aninconsistency remains undetected.6 Conclusion and OutlookWe have presented a way of extracting and using information on ordered landmarksin STRIPS planning. The approach is independent of the planning framework onewants to use, and maintains completeness under circumstances ful�lled by many ofthe current benchmarks. Our results on a range of domains show that signi�cant,sometimes dramatic, runtime improvements can be achieved for heuristic forwardsearch as well as GRAPHPLAN-style planners, as exempli�ed by the systems FFand IPP. The approach does not maintain optimality, and empirically the improve-ment in runtime behaviour is sometimes (like in Logistics) obtained at the cost ofworse solution length behaviour. There are however (like in Freecell for FF) alsocases where our technique improves solution length behaviour.Possible future work includes the following topics: �rstly, one can try to improveon the landmarks and orderings information, for example by taking into accountthe di�erent \roles" that a top level goal can play (i.e. as a top level goal, oras a landmark for some other goal), or by a more informed treatment of cycles.Secondly, post-processing procedures for improving solution length in cases likeLogistics might be useful for getting better plans after �nding a �rst plan quickly.Finally, we want to extend our methodology so that it can handle conditional e�ects.References1. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.Arti�cial Intelligence, 90(1-2):279{298, 1997.2. Tom Bylander. The computational complexity of propositional STRIPS planning.Arti�cial Intelligence, 69(1{2):165{204, 1994.3. Maria Fox and Derek Long. The automatic inference of state invariants in tim. Journalof Arti�cial Intelligence Research, 9:367{421, 1998.4. B. Cenk Gazen and Craig Knoblock. Combining the expressiveness of UCPOP withthe e�ciency of Graphplan. In Steel and Alami [12], pages 221{233.5. J�org Ho�mann. A heuristic for domain independent planning and its use in an enforcedhill-climbing algorithm. In Proc. ISMIS-00, pages 216{227. Springer-Verlag, October2000.6. J�org Ho�mann and Bernhard Nebel. The FF planning system: Fast plan generationthrough heuristic search. Journal of Arti�cial Intelligence Research, 14:253{302, 2001.7. Jana Koehler and J�org Ho�mann. On reasonable and forced goal orderings and theiruse in an agenda-driven planning algorithm. Journal of Arti�cial Intelligence Research,12:338{386, 2000.8. Jana Koehler, Bernhard Nebel, J�org Ho�mann, and Yannis Dimopoulos. Extendingplanning graphs to an ADL subset. In Steel and Alami [12], pages 273{285.9. T. L. McCluskey and J. M. Porteous. Engineering and compiling planning domainmodels to promote validity and e�ciency. Arti�cial Intelligence, 95, 1997.10. Julie Porteous and Laura Sebastia. Extracting and ordering landmarks for planning.In Proc. SIG-00, 2000.11. Julie Porteous, Laura Sebastia, and J�org Ho�mann. On the extraction, ordering,and usage of landmarks in planning. Technical Report 4/01, Department of Com-puter Science, University of Durham, Durham, England, May 2001. Available fromhttp://www.dur.ac.uk/ dcs0www/research/stanstuff/planpage.html12. S. Steel and R. Alami, editors. Recent Advances in AI Planning. 4th European Con-ference on Planning (ECP'97), volume 1348 of Lecture Notes in Arti�cial Intelligence,Toulouse, France, September 1997. Springer-Verlag.
48

The Operational Traffic Control Problem:
Computational Complexity and Solutions

Wolfgang Hatzack and Bernhard Nebel

Institut für Informatik, Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee, Geb. 52, D-79110 Freiburg, Germany

E-mail:
�
last name� @informatik.uni-freiburg.de

Abstract. The operational traffic control problem comes up in a number of dif-
ferent contexts. It involves the coordinated movement of a set of vehicles and has
by and large the flavor of a scheduling problem. In trying to apply scheduling
techniques to the problem, one notes that this is a job-shop scheduling problem
with blocking, a type of scheduling problem that is quite unusual. In particular,
we will highlight a condition necessary to guarantee that job-shop schedules can
be executed in the presences of the blocking constraint. Based on the insight that
the traffic problem is a scheduling problem, we can derive the computational com-
plexity of the operational traffic control problem and can design some algorithms
to deal with this problem. In particular, we will specify a very simple method that
works well in fast-time simulation contexts.

1 Introduction

Assume a set of vehicles (or physical agents) with starting places, starting times, and
(perhaps multiple, sequential) goal locations. The problem is now to move the vehicles
as fast as possible to the respective goal locations. This is a problem one encounters
when trains in a railway system have to be coordinated, when airplanes have to be co-
ordinated in the air or on the ground, when autonomously guided vehicles (AGVs) in
a factory or warehouse have to be coordinated, or when a multi-robot group coordi-
nates the movement of the single robots. Interestingly, the problem does not come up
in traditional AI planning domains such asLogistics(or more generallytransportation
domains [3]). In these domains we never assume that there are capacity restrictions
for locations, which implies that vehicles never interfere with each other when moving
around.

In all traffic control problems, we can distinguish between thestrategic, thetactic,
and theoperationallevel. These levels refer to the time span of a day, a few hours, and
a few minutes, respectively. We are mainly interested in how to solve the short-time
problem, which is, of course, anon-lineproblem in the sense that we do not know the
complete input before we start to solve the problem. However, we will consider only
the static variant of the problem in the sequel.

In order to solve the problem, we will make some simplifying assumptions. This
will help us in finding a satisfycing solution in acceptable time and will at the same
time provide us with enough flexibility in the solution that will allow to accommodate
new information.

49

The main simplification we consider is that we assume that the road map for the
movements of the vehicles has been fixed in advance. In general, one may want to find
solutions independently of a road map. However, this problem can be computationally
very demanding. If we are operating in a two-dimensional, rectangular environment and
want to coordinate the movement of two-dimensional objects, the decision of whether
a goal configuration can be reached is PSPACE-complete [4].

Assuming that the road map is fixed simplifies the problem considerably. However,
the problem of finding the minimal number of steps one needs to move all vehicles to
the goal locations is still NP-hard as witnessed by the generalized 15-puzzle [10]. For
this reason, we will simplify this problem even more. We will assume that the routes the
vehicles take are pre-planned and that we only have toschedulethe movements along
these routes. Although this restriction sounds very severe, it is often used in traffic
contexts. Furthermore, although simplifying the problem even more, it is still NP-hard
to find an optimal solution (as we show below). The resulting problem is similar to the
multi-robotpath-coordinationproblem [5, p. 379].

The rest of the paper is structured as follows. In Section 2, we formalize the traffic
control problem. We then introduce in Section 3 terminology and notions fromschedul-
ing and show that the traffic problem is ajob-shopscheduling problem with ablocking
constraint, which implies that the problem is NP-hard. In Section 4, we will have a look
at conditions that guarantee the existence of a solution, and in Section 5 we have a look
at methods that allow for “fast-time” simulations. Finally, in Section 6, we report on
some experimental data using those methods.

2 The Traffic Control Problem

Each traffic system is based on a specificinfrastructurethat provides facilities on which
traffic movements take place, for example roads, airways or waterways. An infrastruc-
ture is often represented as a simple graph�������
	��� , where� is a set of intersections
or way-points, and� a set of legs. In this paper, however, we represent an infrastructure
as a graph where the nodes correspond to a set of resources����������	�������	������ . For our
purpose, this allows for a more adequate modeling of infrastructural elements such as
intersections, as depicted in Figure 1.

(a) Graph representation (b) Resource representation

Fig. 1.Different representations of an intersection

With ��� ��! � 	�������	�!#"$� we denote a fleet of vehicles that move along the resources
of a given infrastructure, where each!#%'&(� is associated with astart time)*% and an

50

arbitrary but fixedroute +,%-�.�/+,%/0 �1������	�+,%/0 2�345&6� 2 3 that might be the result of a path
search in the infrastructure or retrieved from a route library, for example. The minimum
time it takes! % to travel along resource+ %/0 7 is denoted by8 %90 7 . A traffic problem:;��9�<	��< is a set� of resources and a set� of vehicles with their associated start times
and routes. If vehicles never leave the infrastructure,: is called aclosedtraffic problem,
whereas in anopentraffic problem vehicles enter and leave the infrastructure.

The act of !#% moving along resource+,%/0 7 is calledmovement activity=,%/0 7 , which
allows us to model the movement of all!#%�&>� as amovement plan? =,%/0 ��	�������	�=@%90 2�3BA .
A traffic flow arises when vehicles move from their start position at their assigned start
time and travel along their specified route to their final position. Formally, a traffic flowC

is a set of movement activities=,%/0 7 to which a time interval? D$%90 7E	�FG%90 7�A has been as-
signed, writtenH/!#%4	�+,%/0 7#	�? DI%/0 7E	JFG%/0 7�A/K . For an orderly movement of vehicles, the following
conditions have to be satisfied:D$%90 �MLN)*% (1)FG%90 7POQD$%90 7�LR8�%/0 7 (2)F %90 7 �>D %/0 7�ST� 	*UV&W�,XE	�������	�Y % ONX�� (3)

These condition assure that the movement of!#%Z&Q� does not start before its assigned
start time)*% , that the actual travel timeFG%/0 7[OWDI%/0 7 on resource+,%/0 7 does not fall short of
the minimum travel time8 %/0 7 , and finally that the given order of movement activities is
preserved without a temporal gap.

For example, if:����\��	J�� is a traffic problem with,��� ��!]��	�!#^�� , � � ������	_��^�	_��`E	���aE	_��b�� ,
and the connections between the resources as shown in Figure 2 (a), thenC � c H/!]��	�����	�? de	�X�d#AfKJ	�H/!]��	���^#	�?gX�dh	�iEd�AjKJ	�H9!]��	_��`E	�? i#dh	�kEd#AjK�	H9!#^#	_��a]	�? dh	�X�d�AjKJ	�H9!#^#	_��^E	�?lX�dh	Ji#d#AjK�	�H/!#^E	���b#	�? i#de	_kEd#AjKMm
is a traffic flow for : that satisfies conditions (1) - (3), illustrated in Figure 2 (a).

r
1

r
2

r
3

r
4

r
5

r
1

r
2

r
3

r
4

(a) (b)

Fig. 2. Illustration of traffic flows

If we take a closer look atn , we can see that vehicleso]p and o#q plan to use the
same resourcer�q simultaneously. Such conflicts can be excluded with the following
condition: s@t9u vxw(s,y�u z-{}|,t9u v~w�|,y�u z���� �$t9u vE���Gt9u v��,��� �Iy�u z����Gy�u z_��w��

(4)

51

However, there is another type of conflict that is an artifact of our movement model.
Consider the infrastructure as in Figure 2 (b) and the following traffic flow:C � c H9! � 	_� � 	�? dh	�X�d�AjKJ	�H9! � 	_� ^ 	�?lX�dh	Ji#d#AjK�	�H/! � 	�� ` 	�? i#de	_kEd#AjK�	�H/! � 	�� a 	�? k]dh	��@d�AjKJ	H/!#^E	���aE	�? dh	�X�d�A�K�	�H/!#^E	���`#	�?lX�de	�i#d#AjK�	�H/!#^E	���^#	�? iEdh	_k]d�AjKJ	�H9!#^#	_����	�? k]dh	_�]d�AfKMm
Although this traffic flow satisfies conditions (1) - (4), both vehicles are going to ex-
change their positions at resources� ^ and � ` , which obviously leads to a frontal colli-
sion, as sketched in Figure 2 (b). Such situations are avoided if the following condition
is satisfied: + %90 7 �>+,� 0 ��S��
� + %90 7�S�� �(+@� 0 �P� F %90 7����D$� 0 �*S�� (5)

We say that a traffic flow issafeif it satisfies conditions (1) - (5). In general, safety
has to be established by explicitely resolving conflicts, either by delaying vehicles or
assigning new routes to them.1 Such intervention can be done by human controllers or
automatically applying rule-based conflict resolution strategies, for example.

Conflict resolution affects the efficiency of traffic flows, e.g., when a vehicle has to
stop in front of an intersection in order to give way to another one. There is a variety of
criteria for assessing efficiency of traffic flows. From an infrastructural point of view,
an optimal utilization of available resources is desirable, which, for a given set of ve-
hicles, can be achieved by minimizing the latest time at which a vehicle completes its
movement. From a vehicle point of view, the most efficient traffic flow minimizes the
delay accumulated on the way from its start to finish position.

The completion time�-% and delay��% of vehicle !#% are defined as follows:

– �-%���FG%90 2�3 ,
– � % ��� 2�37���� ?j�\F %90 7 O�D %/0 7
O�8 %90 7 AE�

Based on these definitions, themaximum completiontime �[�
��� and thetotal delay�~�
can be defined:

– � �
�4� �(� �#¡ �J¢G%9¢ "£� % ,
– �~�¤� � "%l�T� ��%��

A traffic flow
C

is optimal for �~� or � �
�4� , if it minimizes the given optimality crite-
rion.

3 Scheduling the Movements: Job-Shop Scheduling with Blocking

Scheduling is concerned with the optimal allocation of scarce resources to activities
over time [6]. As we will see in this section, there is a close analogy between finding
a safe and optimal traffic flow for a given traffic problem and finding a feasible and
optimal schedule for a certain type of scheduling problem.

A scheduling problem:¥�¤�\¦ 	J§T is a set of machines¦¨�;�/© � 	�������	�© � and a
set of jobs§(�ª�jU���	�������	BU " that have to be processed on machines in¦ .2 Typically,

1 Since we assume routes to be fixed, we do not consider the possibility of re-routing vehicles.
2 For a general introduction to scheduling, there exists a number of textbooks [1, 2, 8].

52

scheduling problems are classified in terms of a classification scheme�#«-¬ Z¬ ®¯� [9]. The
first field «°��« � « ^ describes the machine environment. If« � ��± , we have anopen
shopin which each jobU % consists of a set of operations�#² %/0 � 	�������	�² %/0 2 3_� where² %90 7 has
to be processed on machine©G7 for ³I%90 7 time units, but the order in which the operations
are executed is irrelevant. If«1�´&>� C 	�§T� , an ordering is imposed on the set of oper-
ations corresponding to each job. If« � � C , we have aflow shop, in which eachU %
consists of a sequence ofµ operations�9²�%90 ��	�������	�²�%/0 �' and ²�%90 7 has to be processed on©G7 for ³G%/0 7 time units. If «
�£� § , we have ajob shop, in which each eachU�% consists of
a sequence ofY % operations�9² %90 � 	�������	_² %90 2 34 and ² %90 7 has to be processed on a machine© %/0 7 &(¦ for ³ %90 7 time units, with © %90 7Q��.© %90 7�S�� for i �¶X#	�������	�Y 7�·¯� . Note that in a
flow shop themachine routingis for all jobs the same, while in a job shop the routing is
arbitrary but fixed. With«T^ the number of machines can be specified. The second field indicates a number of job characteristics, for example

– � pmtn�<¸¹ (preemption): job splitting is allowed, i.e., the processing of any oper-
ation may be interrupted and resumed at a later time.

– � nowait�º¸� : a job must leave a machine immediately after processing is com-
pleted. For example, this restriction can be found in the domain of steel production,
where molten steel expeditiously has to undergo a series of operations while it has
a certain temperature.

– � block�<¸» : a job has to remain on a machine after processing if the next machine
is busy. During that time, no other job can be processed on that machine. For ex-
ample, this phenomena occurs in domains without (or limited) intermediate buffer
storage.

The last field® refers to an optimality criterion which has to be minimized and is a
function based on the completion times of jobs which in turn depends on the schedule.
Thecompletion timeof operation² %/0 7 is denoted by� %/0 7 and the time jobU % exits the
system is denoted by�-% . Sometimes, for each jobU�% a release date��% and adue date¼ % is specified on whichU�% becomes available for processing or should be completed,
respectively. With this, the lateness of jobU % can be defined as½ % �¤� % O ¼ % and the
unit penaltyas ¾ %�� c X if � %
¿ ¼ %d else

Typically, ® is one of the following criteria:

– �[�
�4���(� �#¡h�J¢G%9¢ " �E�[%B� is the finish time of the last job.
– ½À�
���'�>� ��¡$��¢�%/¢ " ��½Á%B� the maximum lateness.
– � "%j��� �À7 the total flow time
– � "%j���GÂ % ¾ % the total weight of late jobs

A scheduleis an allocation of a time interval? D$%90 7#	�FG%/0 7�A on machine©Ã%90 7 to each op-
eration ²�%/0 7 of all jobs §h%x&°§ . A schedule isfeasibleif no job is processed before its
release date (if given), the interval allocated to an operation does not fall short of its
specified processing time, no two time intervals allocated to the same job overlap and
no two time intervals on the same machine overlap. In addition, a number of specific

53

requirements concerning machine environment and job characteristic have to be met. In
addition, a schedule isoptimal, if it minimizes a given optimality criterion.

In the sequel, we are mainly interested in job-shop scheduling withblocking. Inter-
estingly, job-shop scheduling with blocking is a rather unusual combination. For exam-
ple, Pinedo states that blocking is a phenomenon that occurs only in flow shops [8] and
in the survey article of Hall and Sriskandarajah complexity results only for job shop
with no-wait but not with blocking can be found [7]. One reason why most of the re-
search has focused on flow shops may be that most practical applications ofblocking
andno waitare in flow shops. However, our traffic control problem is best considered
a job-shop problem with blocking. Solutions for such problems have to satisfy the fol-
lowing conditions: D$%90 7ÄLÅ��% (6)F %/0 7 OQD %90 7 L�³ %90 7 (7)FG%90 7Æ�;D$%90 7�S�� (8)©Ã%90 7~�>© � 0 � � ²�%/0 7x�>² � 0 �1Ç�? DI%/0 7#	JFG%/0 7�A,È�? D � 0 ��	JF � 0 ��A��>É (9)

Condition (6) states that jobÊ should start at or after the release date of jobÊ and con-
dition (7) requires that the time on machine of theU th subtask of jobÊ is not less than
the minimum time required for that subtask. Condition (8) formalizes theblockingcon-
straint and, finally, condition (9) states that machines can only be exclusively used.

While these conditions seem to be enough to guarantee that the schedule can be
executed (and in fact, for flow-shop problems these conditions are sufficient), in a job-
shop environment it might be the case that two jobs with opposite machine routing meet
face to face, which is obviously a deadlock and might result in a complete breakdown
of the whole system. Therefore, condition© %/0 7 �>©Ã� 0 ��S��
� © %/0 7�S�� �°©Ã� 0 �P� F %/0 7V��>D$� 0 �*S�� (10)

should also be satisfied. Interestingly, this condition has not been discussed in the
scheduling literature yet. The main reason is probably that, as mentioned above, block-
ing usually happens in flow-shop contexts and the blocking constraint has not been
seriously considered for job-shop environments.

To model the traffic problem as a scheduling problem, we consider infrastructural
resources as machines, vehicles as jobs and movement activities as operations. There-
fore, we have to choose the job shop machine environment«¹�Ë§ , which allows us to
equate the sequence of movement activities of a vehicle with a jobs sequence of oper-
ations. A necessary job characteristic is� block��¸¥ , since if a vehicle!#% wants to
move from resource� %/0 7 to � %90 7�S�� but � %90 7�S�� is blocked by another vehicle,! % has to
wait on ��%90 7 until ��%90 7�S�� becomes available. Finally, the optimality criterion we choose
is ®°�Ì�[�
�4� , i.e., the minimization of the maximal completion time. In terms of the
classification scheme introduced in section 3,�]§-¬ block¬ �Á�
���]� is our type of scheduling
problem we are going to use for solving traffic problems.

The transformation of a traffic problem into a scheduling problem is straightfor-
ward: If : traff �Í�9�<	��< is a traffic problem with resources�¶�Î��� � 	�������	�� � � and
vehicles�Ì�Ë��!]��	�������	_! " � where each vehicle!#% is associated with a movement plan

54

? =,%90 ��	�������	_=,%/0 2�3*A , then: sched���9�<	��< is the corresponding scheduling problem where� is interpreted as a set of machines and� as a set of tasks. Each movement activity= %90 7 that has to be performed on resource+ %90 7 corresponds to an operation² %90 7 that has
to be performed on machine©Ã%90 7Ï&°� . Obviously, a feasible scheduleÐ directly cor-
responds to a safe traffic flow

C
. It is obvious that conditions (1) - (5) for safe traffic

flows are equivalent to conditions (6) - (10) for feasible schedules.

Proposition 1. If Ð is a feasible schedule for a job shop scheduling problem with block-
ing, thenÐ represents a safe traffic flow for the corresponding traffic problem.

From this correspondence we can immediately derive a complexity result.

Theorem 1. The traffic control problem is strongly3 NP-hard if we want to optimize the
maximum completion time.

Proof. As shown by Hall and Sriskandarajah [7], the problem
C `@¬ blocking¬ �[�
��� is

strongly NP-hard. This however, is clearly a special case of§,`@¬ blocking¬ �[�
�4� , which
implies that the traffic control problem with three resources is already strongly NP-hard.

While this result is not surprising, it nevertheless shows that the traffic control prob-
lem is a computationally difficult problem. Moreover, the result implies that we should
look for heuristic approaches in order to solve it.

4 Solution Existence and the Infrastructure

If we know that regardless of the movements of our vehicles the goals can be reached,
we can concentrate on finding a schedule that minimizes the overall costs. Conversely,
if it is possible that a system state can be reached from which some vehicles cannot
proceed to the goal positions, then we better focus on avoiding such states and consider
optimization as secondary.

Let us first consider the situation in Figure 3. Clearly, regardless of what we do, the

r
1

r
2

r
3

r
4

Fig. 3.A traffic problem instance without a solution

depicted problem instance does not have a solution. Conversely, if we consider problem
instances such that the start and final points are not on the routes of other vehicles, then
the problem instance has a solution. The reason is that we could move each vehicle to

3 Strong NP-hardness means that even if the numbers in the problem description are coded in
unary way, the problem remains to be NP-hard.

55

its final destination, starting with a new vehicle once the starting time has come and the
previous vehicle has reached its final destination. This guarantees that we can move all
vehicles collision-free to its goals – provided it is enough to start a vehicle movement at
some point after its start time. If we have to begin the vehicle movement exactly at the
start time, we may run into problems. While the entire restriction sounds very severe,
the restriction is satisfied, for example, inopeninfrastructures, such as airports and train
stations. For example, at airports we might delay the landing of an airplane for as long
as the taxi ways are blocked.

However, even if the problem instance is solvable, it might be possible that a system
state is reachable from which the goal cannot be achieved. For example, in Figure 4 a

r
1

r
6

r
2

r
3

r
4

r
5

r
1

Fig. 4.A traffic problem instance with a possible deadlock situation

situation with a possible deadlock situation is depicted. Such deadlocks can, of course,
be anticipated and avoided in the scheduling procedure. However, due to the on-line
nature of the problem, it can happen that while executing the activity plan, one vehicle
is delayed and the deadlock happens accidentally. In order to avoid that, often the use
of resources is restricted in certain ways. For instance, often roads can only be used in a
uni-directional way resulting sometimes in detours but avoiding head-on conflicts such
as the possible one in Figure 4.

5 Very Fast Approximations for Fast-Time Simulations

In this section, we introduce a very fast algorithm for creating a safe traffic flow for a
given traffic problem. Our simulation results indicate that the efficiency of the automatic
generated traffic flow can keep up with the efficiency of a traffic flow obtained by a
human controller. As a possible application we show how such an automatic traffic
controller can be used for assessing the capacity limit of a given infrastructure.

For the corresponding job shop problem with blocking, we built a feasible schedule
by incrementally inserting jobs in a first-come-first-served manner into the schedule.
The order in which jobs are inserted is determined by their release date. IfÐ is a sched-
ule, then Ð¯Ñ�ÒR�Ó��²�� 0 � &.Ð£¬ ©Ã� 0 � �Ô© 7 � is the machine scheduleof © 7 &Ì¦ and
idle �/©G7#	_DG	JF� is true if and only if no operation is processed on©G7 during time ? DG	�F$A .
Furthermore,Õ Ñ Ò~���EF � 0 ��¬ ² � 0 �~&ÖÐ Ñ Ò�� is the set of finish times at©G7 andDØ×%90 7 � c ��% U���XF %/0 7�·Ã� U ¿ X
is theearliest possible start timeof ² %90 7 . If ² %90 7 has to be inserted into scheduleÐÃÑ�3�Ù Ò ,
we consider only a finite number of potential start times:

56

Ú %/0 7 � ��DØ×%90 7 �ZÛÖ�#FW&ÏÕ
Ñ�3/Ù Ò@¬ F ¿ DØ×%/0 7 �
For the example shown in Figure 5,

Ú %90 7x���]Ü@	_Ýe	�X��e	�X�Ý@� . Finally, the predicate insertable��ÐT	_²�%90 7#	_DÃ
5 10 15 20

o
i,j

Fig. 5.Potential start times considered for insertion

is true, if and only if in the given scheduleÐ
1. idle�/©Ã%90 7#	_DG	�D1Þ£³I%90 7� is true, i.e., no other operation is planned on©Ã%/0 7 during ? DG	_D
Þ³ %90 7 A .
2. Condition (8) can be satisfied, i.e., ifU ¿ X , idle�/© %90 7�·¯� 	JF %90 7�·¯� 	_DÃ has to be true.
3. Condition (10) is not violated, i.e.,² %90 7 does not exchange machines with any other² � 0 � .

As stated above, the basic idea is to sequentially insert jobs into the schedule, so the
main algorithmAutoControlleris very simple:

Algorithm AutoController
Params:sequence�jU � 	�������	*U�"e of jobs with U % ���\² %/0 � 	�������	�² %/0 2 3�
Returns: feasible scheduleÐÐ¹ßàÉ
for all U % &Ö��U � 	�������	BU�"$� do

inserted =á�=,â\ã�ä
ScheduleActivity��ÐT	_²�%90 ��	 inserted

end for
return Ð

For every jobU�%�	 the recursive procedureScheduleActivityis called. In a nutshell, this
procedure inserts a given operation² %90 7 into Ð and continues recursively with the sub-
sequent operation²�%90 7�S�� , until finally the last operation²�%90 2�3 has been inserted, causing
the boolean variableinsertedto be set to)B��å�ä :

Procedure ScheduleActivity
Params:scheduleÐ , operation²�%/0 7 , bool inserted

if UVæNY % thenÚ %/0 7'ß}�EF ×%90 7 �ZÛÖ�#FW&ÄÕ Ñ 3/Ù Ò]¬ F ¿ D ×%/0 7 � // compute potential start times for²�%/0 7

57

while
Ú %/0 7 ���É �´ç inserteddoD�ß¶�Vèfé Ú %/0 7 // get next pot. start timeÚ %90 7 ß Ú %/0 7-ê �#DØ�

if Insertable��ÐT	_²�%90 7E	_DÃ thenD$%90 75ßëD ; FG%/0 75ßëDI%/0 7-Þ68�%/0 7 // assign start/end time to²�%/0 7
if U ¿ X thenFI%90 7�·¯�'ßëD$%90 7 // adapt end time of preceeding operation
end if
ScheduleActivity�\Ð1	_² %90 7�S�� 	 inserted // continue recursion with² %/0 7�S��
if ç insertedthenÐ6ß}Ð ê �#²�%/0 7��

if U ¿ X thenF %90 7�·¯� ßàD %90 7�·¯� Þ68 %90 7�·¯� // reset end time of preceeding operation
end if

end if
end if

end while
else

insertedß true// last operation of taskU�% has been inserted
end if

Proposition 2. For a given job shop scheduling problem with blocking, theAutoCon-
troller algorithm returns a feasible schedule.

That a solution is returned follows from the fact that a new job can always be in-
serted at the end of a partial schedule. In particular, for every operation² %/0 7 the set of
useful start times

Ú %/0 7 is never empty and the predicate insertable�\ÐT	�² %/0 7 	_� ��¡�� Ú %90 7 4 is
always true. It is easy to show that conditions (6) - (10) are satisfied after each insertion
of an operation, so it follows that the returned schedule is feasible.

6 Experimental Results

We tested the AutoController in a traffic simulation based on the infrastructure partially
displayed in Figure 6. It is an open traffic system where vehicles dynamically arrive
at entry resources, receive a fixed route randomly taken from a standard route library
(with average route length 60 resources) and move along that route to a loading point.
After a 10-15 minute stay, they move to an exit resource and leave the traffic system.
The minimum time needed to travel along a resource is 10 secs for all vehicles.

Both a human controller and theAutoControllerhave been confronted with the
same random sequence of 58 vehicles whose start times are equally distributed over 1
hour. The resulting traffic flow contains 123 conflicts and is even for skilled controllers
very demanding. Since the latest leave time strongly depends on the arrival times of
the last few vehicles, both the human controller andAutoControllerachieved the same
completion time. Hence, we use average delay as our secondary optimization criterion
that plays an important role for an economic utilization of the traffic system. As can

58

Fig. 6.Simulated infrastructure

be seen in Figure 7 (a), the AutoControllers traffic flow includes 27 secs more average
delay than the human controllers traffic flow, which is a difference in performance of
20.77%.

average delay turnaround time
00:00:00

00:03:36

00:07:12

00:10:48

00:14:24

00:18:00

00:21:36

00:25:12

00:28:48

00:02:10

00:26:43

00:02:37

00:27:09

Human vs. AutoCon

Human

FCFS

Optimality Criterion

T
im

e

5 10 15 20 25 30 35 40 45 50
00:00

00:22

00:43

01:05

01:26

01:48

02:10

02:31

02:53

03:14

03:36

03:58

Delay Increase

Traff ic Density [ops/h]

A
vg

. D
el

ay
 [

m
in

]

(a) Comparison of human and automatic control (b) Traffic Density and Average Delay

Fig. 7.Simulation Results

However, when taking into account the total time a vehicle spends on the infrastruc-
ture (turnaround time), this amounts to a loss of efficiency of merely 1.62%.

Although theAutoControlleris a backtracking algorithm, in our simulation hardly
any backtracking occurred. A total of 3429 movement activities has been scheduled and
only 83 times an insertion was reversed. Consequently, the algorithm is extremely fast
and it took less than 0.5 secs to compute a safe traffic flow on a 300 MHz PC, while
on the other hand even a skilled human controller has to run the simulation most of the
time in real time which takes about 30-45 minutes.

A typical application that requires the coordination of vehicle movements are fast-
time traffic simulations that, among others, are used to evaluate the impact of infras-
tructural or operational changes in terms of capacity increase or decrease. The capacity
limit of a given infrastructure is assessed by gradually increasing traffic density [ops/h]
until an acceptable delay limit is exceeded. With theAutoControlleralgorithm, the re-

59

lationship between traffic density and average delay can be determined within minutes,
even if an entire day has to be simulated. An example for our infrastructure is shown in
Figure 7. In our experiment with the infrastructure as depicted in Figure 6, the capacity
limit is 45 [ops/h] if 2:30 min is the acceptable delay limit.

7 Conclusions

The traffic problem is a very common problem occurring when multiple vehicles have
to be coordinated. Examples are airport ground traffic coordination, train station co-
ordination, and multi-robot path coordination. We have shown that this problem is a
particular kind of scheduling problem, namely, ajob-shopscheduling problem with
blocking. This is a rather unusual scheduling problem and it turns out that it is neces-
sary to consider new constraints on schedules, which have not been discussed in the
scheduling literature yet, in order to guarantee executability. Nevertheless, the reformu-
lation of the traffic control problem as a scheduling problem allows us to derive the
computational complexity of the traffic control problem. Furthermore, on the practical
side, the reformulation suggests methods to generate schedules.

We consider restrictions on the problem which guarantee the existence of a solution
and we specify a simple, albeit powerful method that is able to generate schedules that
are reasonably good. In particular, this method is so fast that it can be used in fast-
time traffic simulations, which are needed when doing infrastructure assessments. In
an experiment we demonstrate that the simulation method is reasonably good and fast
enough to simulate a traffic flow in an infrastructure in a fraction of the time necessary
to execute this flow in real-time.

References

1. K. R. Baker.Introduction to Sequencing and Scheduling. Wiley, 1974.
2. R. W. Conway, W. L. Maxwell, and L. W. Miller.Theory of Scheduling. Addison-Wesley,

1967.
3. M. Helmert. On the complexity of planning in transportation and manipulation domains,.

Diplomarbeit, Albert-Ludwigs-Universität, Freiburg, Germany, 2001.
4. J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion planning for

multiple independent objects: PSPACE-hardness for the ‘warehousman’s problem’.Int. J.
Robotics Research, 3:76–88, 1984.

5. J.-C. Latombe.Robot Motion Planning. Kluwer, Dordrecht, Holland, 1991.
6. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and

scheduling: algorithms and complexity. In S. C. Graves, P. H. Zipkin, and A. H. G. Rinnooy
Kan, eds.,Logistics of Production and Inventory: Handbooks in Operations Research and
Management Science, vol. 4, pp. 45–522. North-Holland, 1993.

7. C. Sriskandarajah N.G. Hall. A survey of machine scheduling problems with blocking and
no-wait in process.Operations Research, 44(3), 1996.

8. M. Pinedo.Scheduling - Theory, Algorithms, and Systems. Prentice-Hall, 1995.
9. J. Lenstra R. Graham, E. Lawler and A. Kan. Optimization and approximation in deter-

ministic sequencing and scheduling: a survey.Annals of Discrete Mathematics, 5:287–326,
1979.

10. D. Ratner and M. Warmuth. Finding a shortest solution for the (N x N)-extension of the
15-puzzle is intractable.J. Symbolic Computation, 10:111–137, 1990.

60

Toward an Understanding of Loal Searh Cost inJob-Shop ShedulingJean-Paul Watson1, J. Christopher Bek2,Adele E. Howe1, and L. Darrell Whitley11 Colorado State University, Fort Collins, CO 80523-1873 USAfwatsonj,howe,whitleyg�s.olostate.edu2 ILOG, S.A., 9, rue de Verdun, B.P. 85F-94523 Gentilly Cedex Franebek�ilog.frAbstrat. Loal searh algorithms are among the most e�etive approahes forsolving the JSP, yet we have little understanding of whih problem features inu-ene searh ost in these algorithms. We study a desriptive ost model of loalsearh in the job-shop sheduling problem (JSP), borrowing from the MAX-SATost models. We show that several fators known to inuene the diÆulty of loalsearh in MAX-SAT diretly arry over to the general JSP, inluding the numberof optimal solutions, bakbone size, the distane between initial solutions and thenearest optimal solution, and an analog of bakbone robustness. However, thesesame fators only weakly inuene loal searh ost in JSPs with workow, whihpossess strutured onstraints. While the fators for the MAX-SAT ost modelsprovide an aurate desription of loal searh ost in the general JSP, our resultsfor workow JSPs raise onerns regarding the appliability of ost models derivedusing random problems to those exhibiting spei� struture.1 IntrodutionLoal searh algorithms, partiularly those based on tabu searh, are among the moste�etive approahes for solving the JSP [BDP96℄. Yet, we have little understanding as towhy these algorithms work so well, and under what onditions. In this paper, we studydesriptive ost models of loal searh in the JSP. Desriptive ost models relate searhspae features to searh ost; better models aount for more of the variane in searhost aross di�erent problem instanes. We examine the ost of tabu searh in the JSP byonsidering an algorithm introdued by Taillard (1994), whih is losely related to manystate-of-the-art algorithms for the JSP (e.g., [NS96℄), and is signi�antly more amenableto analysis.Although no desriptive ost models for the JSP exist, researhers have expendedsigni�ant e�ort in reent years to produe relatively aurate desriptive ost models ofloal searh for MAX-SAT [SGS00℄. Intuitively, we would expet some fators present inthese models, suh as the number of optimal solutions, to inuene the diÆulty of loalsearh in other problems suh as the JSP. At the same time, both the searh spae andonstraint struture of the JSP di�er in many important ways from MAX-SAT, makingthe a-priori appliability of these models unlear.
61

We investigate whether or not the desriptive ost models for MAX-SAT an beleveraged in an e�ort to understand loal searh ost in the JSP. We demonstrate thatthe fators present in the MAX-SAT ost models also inuene loal searh ost in theJSP, inluding the number of solutions [CFG+96℄, bakbone size [Par97℄, the distanebetween initial solutions and the nearest optimal solution [SGS00℄, and an analog of bak-bone robustness [SGS00℄. Together, these fators form the basis of a relatively auratedesriptive model of loal searh ost in the general JSP.The onstraints in both MAX-SAT (lauses) and the general JSP (mahine proessingorders) are randomly generated, and in expetation are unstrutured. In ontrast, theonstraints in real-world problems are often strutured. We apply the same analysis toJSPs with workow, a restrited form of the JSP with simple, strutured onstraints.We �nd that the fators present in the MAX-SAT and general JSP desriptive ostmodels only weakly inuene searh ost in workow JSPs. We onlude by disussingthe impliations of our analysis for the JSP, MAX-SAT, and loal searh in general.2 The JSP and Problem DiÆultyWe onsider the well-known n�m stati JSP, in whih n jobs must be proessed exatlyone on eah of m mahines for an arbitrary, pre-spei�ed duration. Eah mahine anproess only one job at a time, and one initiated, proessing annot be interrupted.Any job an start at time 0, and the objetive is to minimize the makespan, or themaximum ompletion time of any job. In the general JSP, the mahine proessing ordersare independently sampled from a uniform distribution. In the workow JSP, mahinesare typially divided into two equal-sized partitions ontaining mahines 1 through m=2and m=2 + 1 through m, respetively, and every job must be proessed on all mahinesin the �rst partition before any mahine in the seond partition. Within eah partition,the mahine proessing orders are sampled from a uniform distribution.While no desriptive ost models for the JSP exist, some general qualitative obser-vations regarding problem diÆulty have emerged. First, independent of loal searhalgorithm, we have the following trends:1. For both general and workow JSPs, \square" (n=m � 1) problem instanes aresigni�antly harder than \retangular" (n=m� 1) problem instanes.2. Given �xed n and m, workow JSPs are substantially more diÆult than generalJSPs.Seond, given either general or workow JSPs with a �xed n andm, the relative diÆultyof problem instanes appears to be algorithm-independent: e.g., a problem instane thatis diÆult for tabu searh is likely to be diÆult for simulated annealing. Clearly, anydesriptive ost model for the JSP must be onsistent with eah of these observations.Mattfeld et al. (1999) perform a quantitative analysis of problem diÆulty in the JSP,identifying signi�ant di�erenes in the searh spaes of some well-known 50�10 generaland workow JSPs. Spei�ally, they show that the extension of the searh spae (asmeasured by the average distane between random loal optima) is larger in workowJSPs, suggesting a ause for the generally larger searh ost assoiated with these prob-lem instanes. Two other measures, entropy and orrelation length, also demonstratedquantitative di�erenes in the searh spaes of these same problems.
62

While Mattfeld et al. do identify di�erenes in the searh spaes of general and work-ow JSPs, it is unlear whether these di�erenes aount for the variane in loal searhost for di�erent problem instanes of the same size and workow on�guration. In pre-liminary experiments, we found that while the fators introdued by Mattfeld et al. didinuene searh ost, the inuene was muh weaker than for the fators we disuss inSetion 5. Furthermore, Mattfeld et al. did not investigate whether these same fatorswere responsible for the relative diÆulty of square versus retangular JSPs.3 The MAX-SAT Desriptive Cost ModelThe MAX-SAT desriptive ost model is the basis for our study. Many methods forharaterizing problem diÆulty have found appliation in a wide variety of problems, forexample phase transitions and the assoiated peak in searh ost. Given suh universals,it is important to examine, and if possible leverage, any existing analysis on problemdiÆulty. However, the literature on loal searh yields desriptive ost models for onlytwo, related problems: MAX-SAT and MAX-CSP. Outside of these two examples, thedominant methods for quantifying problem diÆulty are unable to aount for the largeost variane found in di�erent problem instanes of a given size. For example, orrelationlength [RS01℄ is stritly a funtion of problem size (e.g., the number of ities in the TSP).Intuitively, a derease in the number of optimal solutions should yield an inrease inloal searh ost. This observation formed the basis of the �rst desriptive ost modelfor MAX-SAT, in whih Clark et al. (1996) demonstrated a relatively strong (negative)log-log orrelation between the number of solutions and loal searh ost, with r-valuesranging anywhere from �0:77 to �0:91. However, the model failed to aount for thelarge ost variane in problems with very small numbers of optimal solutions, wheremodel residuals varied over three or more orders of magnitude.Singer et al. (2000) subsequently introdued a desriptive ost model that largelyorreted the de�ieny present in the Clark model, and went further by proposing aausal model for loal searh ost in MAX-SAT. The bakbone of a problem instaneis a key onept in Singer's desriptive ost model. The bakbone of a MAX-SAT in-stane onsists of the subset of literals that have the same truth value in all optimalsolutions[Par97℄. Singer demonstrated that the bakbone size does inuene searh ostin MAX-SAT, showing that when the bakbone is small, there is a strong (negative)log-log orrelation (r � �0:77) between the number of optimal solutions and the loalsearh ost. However, this orrelation nearly vanishes (r � �0:12) when the bakbone islarge [SGS00℄.Loal searh algorithms for MAX-SAT quikly loate sub-optimal quasi-solutions,that ontain relatively few unsatis�ed lauses. These quasi-solutions form a sub-spaethat ontains all optimal solutions, and is largely interonneted; one a point in thissub-spae is identi�ed, loal searh algorithms for MAX-SAT typially restrit searh tothis sub-spae. This observation led Singer to hypothesize that the size of this sub-spaeditates the overall searh ost, whih ould overome the inability of the number ofoptimal solutions to predit loal searh ost in problems with large bakbones.To test this hypothesis, Singer measured the mean Hamming distane (the numberof di�ering variable assignments) between the �rst quasi-solution enountered during
63

loal searh and the nearest optimal solution, whih we denote dinit�opt, and omputedthe orrelation between dinit�opt and the logarithm of loal searh ost. The resultingorrelations were extremely high (r � 0:95) for problems with small bakbones, anddegraded only slightly for problems with larger bakbones (r � 0:75). Consequently,dinit�opt, and not the number of optimal solutions, is the primary fator inuening loalsearh ost in MAX-SAT.Singer also posited a ausal explanation for the variane in dinit�opt aross di�erentMAX-SAT instanes, whih is based on the notion of bakbone robustness. A MAX-SATinstane is said to have a robust bakbone if a substantial number of lauses an bedeleted before the bakbone size is redued by half. Conversely, an instane is said tohave a fragile bakbone if the deletion of just a few lauses redues the bakbone size byhalf. Singer argues that \bakbone fragility approximately orresponds to how extensivethe quasi-solution area is" ([SGS00℄, p. 251), by noting that a fragile bakbone allows forlarge dinit�opt beause of the sudden drop in bakbone size, while dinit�opt is neessarilysmall in problem instanes with robust bakbones.To on�rm this hypothesis, Singer measured a moderate (� �0:5) negative orrela-tion between bakbone robustness and the log of loal searh ost for large-bakbonedMAX-SAT instanes. Surprisingly, this orrelation degraded as the bakbone size wasdereased, leading Singer to hypothesize that \�nding the bakbone is less of an issueand so bakbone fragility, whih hinders this, has less of an e�et" ([SGS00℄, p. 254),although this onjeture was not expliitly tested.4 Algorithms, Test Problems, and MethodologyWe now briey desribe Taillard's tabu searh algorithm for the JSP, and introdue thetest problems and methodology we use to investigate desriptive ost models for the JSP.4.1 Algorithm DesriptionThe tabu searh algorithm we onsider in our analysis was introdued by Taillard (1994).This was the �rst tabu searh algorithm for the JSP and is the basis for more advaned,state-of-the-art JSP algorithms suh as that of Nowiki and Smutniki (1996). Taillard'salgorithm uses the Van Laarhoven move operator [LAL92℄, whih is often denoted by N1 .The N1 neighborhood is generated by swapping all adjaent pairs of jobs on any ritialpath in the urrent solution. As in most tabu searh algorithms for the JSP, reentlyswapped pairs of jobs are prevented from being re-established for a partiular duration,alled the tabu tenure; the tabu tenure is dynamially updated to avoid yling behav-ior. All runs are initiated from randomly generated \ative" solutions [GT60℄. In eahiteration of Taillard's algorithm, all N1 neighbors are generated, and the best non-tabumove is taken. The only long-term memory mehanism is a simple aspiration riterion,whih over-rides the tabu status of any move that results in a solution that is better thanany enountered in the urrent run. As Taillard indiates ([EDT94℄, p. 110), frequeny-based long-term memory is only neessary for problems that require a very large (> 1M)number of iterations, whih is not the ase for the test problems introdued later in thissetion.
64

The ost required to solve a given problem instane using Taillard's algorithm is natu-rally de�ned as the number of iterations required to loate an optimal solution. However,the number of iterations is stohasti (with an approximately exponential distribution[EDT94℄), due to both the randomly generated initial solution and random tie-breakingwhen more than one 'best' move is available. Consequently, we de�ne the loal searh ostfor a problem instane as the median number of iterations required to loate an optimalsolution over 1000 independent runs; with 1000 samples, the estimate of the distributionmedian is somewhat stable [Hoo98℄ [SGS00℄.For analysis purposes, the most important feature of Taillard's algorithm is the N1move operator. More advaned ritial path move operators for the JSP, suh as that usedin Nowiki and Smutniki's algorithm, an indue searh spaes that are disonneted,suh that it is not always possible to move between a randomly generated solution and anoptimal solution. Consequently, any algorithm using suh a move operator is not Prob-abilistially Approximately Complete (PAC) [Hoo98℄: even with in�nite run-time, thealgorithm is not guaranteed to loate an optimal solution. This severely ompliates al-gorithm analysis, as it is unlear how to de�ne the searh ost assoiated with a probleminstane. However, use of a onneted move operator does not automatially guaranteethat an algorithm is PAC [Hoo98℄. While we have no analyti proof that Taillard's algo-rithm is PAC, the empirial evidene is ompelling: in produing the results disussed inSetions 5 and 6, Taillard's algorithm never failed to loate an optimal solution.4.2 De�ning a Bakbone for JSPThe de�nition of a bakbone in any problem depends on how the solutions are repre-sented. Taillard's algorithm enodes solutions using a disjuntive graph, whih ontainsn(n � 1)=2 Boolean \order" variables for eah of the m mahines, eah of whih rep-resents a preedene relation between a distint pair of jobs on a mahine. We de�nethe bakbone of a JSP, therefore, as the set of order variables that have the same truthvalue in all optimal solutions. We de�ne the bakbone size as the fration of the possiblemn(n� 1)=2 order variables that are �xed to the same value in all optimal solutions.4.3 Test ProblemsFor a variety of reasons, we are restrited to relatively small problem sizes in our exper-iments. From a tehnial standpoint, the fators present in our desriptive ost model(e.g., bakbone size and the distane between initial and optimal solutions) are funtionsof all optimal solutions to a problem instane. Generating all optimal solutions to aproblem instane is muh more expensive than merely proving optimality (the enumer-ation is expliit, in ontrast to the impliit approah harateristi of branh-and-boundalgorithms). Further, the number of optimal solutions in even small problem instanesis measured in the millions, whih an easily exeed available memory in modern work-stations. From a pragmati standpoint, we onsider a wide range of problems in ourexperiments, ontrolling for bakbone size, workow on�guration, and problem size. Westudy over 4000 problem instanes, omputing the median searh ost over 1000 inde-pendent runs for eah. Even for the problem sizes we onsider, the overall CPU timeinvested was approximately 8 CPU months on 750 MHz Pentium III workstations.
65

In our experiments, we examine 6 � 4 and 6 � 6 problems, both with and withoutworkow partitions. Operation durations are sampled uniformly from the interval [1; 99℄.Bakbone size is an integral fator in our desriptive ost model. Unfortunately, even forthese problem sizes, it is infeasible to ontrol for a spei� bakbone size: omputation ofthe bakbone is onsiderably more expensive in the JSP than in MAX-SAT. Instead, we�lter for problems within �5% of a target bakbone sizeX , 0:0 � X � 1:0. We denote thebakbone size of the resulting set of problems by� X . For eah problem size, we generated100 general and workow JSP instanes at eah of the following bakbone sizes: � 0:1,� 0:3,� 0:5,� 0:7, and� 0:9. Finally, we used a onstraint-direted sheduling algorithmto ompute the optimal makespan, the bakbone size, and to enumerate all optimalsolutions. The spei� algorithm is doumented in Bek and Fox (2000), whih usesmin-slak variable and value ordering heuristis and edge-�nding onstraint propagators.5 A Desriptive Cost Model for the General JSPA-priori, it is unlear whether the fators present in the MAX-SAT ost models are rele-vant to loal searh in the JSP. In MAX-SAT, the searh spae is dominated by plateausof equally-�t quasi-solutions, and the main hallenge for loal searh is to either �nd anexit from a plateau to an improving quasi-solution, or to esape the plateau by aeptinga short sequene of dis-improving moves [FCS97℄. In ontrast, the JSP searh spae isdominated by loal optima with variable-sized and variable-depth attrator basins. Con-sequently, loal searh algorithms for the JSP spend muh of their time either esapingor avoiding loal optima. In this setion, we examine the MAX-SAT ost models in theontext of Taillard's algorithm for the JSP, and demonstrate that despite qualitative dif-ferenes in searh spae topologies, the MAX-SAT ost model fators do form the basisof an aurate desriptive model of loal searh in the JSP.5.1 Number of Solutions and Searh CostIn MAX-SAT, the number of optimal solutions an inuene loal searh ost, althoughthe strength of this inuene depends ritially on bakbone size: it is strong in problemswith small bakbones, and very weak in problems with large bakbones. In Table 1, wereport summary statistis for the number of optimal solutions and the loal searh ostfor our general JSPs. We see both a dramati drop in the number of optimal solutionsand a gradual inrease in loal searh ost as the bakbone size is inreased. Further,at a �xed bakbone size the di�erene in loal searh ost between the 6� 6 and 6 � 4problems is minimal, and an be attributed to the larger size of the searh spae in the6� 6 problem instanes.In the bottom third of Table 1, we report the log10-log10 orrelation between thenumber of optimal solutions and loal searh ost. The r-values indiate that both thenumber of optimal solutions and the bakbone size inuene loal searh ost in thegeneral JSP. As in MAX-SAT, the orrelation is relatively strong for small-bakbonedproblems, and drops rapidly with inreases in bakbone size. Although additional fatorsare required to fully aount for the variane in loal searh ost for large-bakbonedgeneral JSPs, these results demonstrate that the interation e�et between bakbonesize and the number of solutions is not unique to MAX-SAT.
66

Bakbone SizeProblem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9Number of Optimal Solutions6� 4 481837 � 1158660 30007 � 38072 3221 � 3742 642 � 1374 21 � 226� 6 6233821 � 8070114 1405290 � 3221150 85292 � 157617 9037 � 9037 85 � 106Loal Searh Cost6� 4 6.69 � 3.34 23.05 � 20.93 52.64 � 61.22 94.76 � 136.56 312.27 � 332.276� 6 8.34 � 4.13 32.94 � 32.58 53.43 � 58.52 83.98 � 91.80 514.70 � 1853.08log10-log10 Correlation (r) Between the # of Optimal Solutions and Loal Searh Cost6� 4 -0.7508 -0.5100 -0.4905 -0.4131 -0.26836� 6 -0.7328 -0.4865 -0.3807 -0.3227 -0.2010Table 1. The number of optimal solutions, loal searh ost, and log10-log10 orrelation (r)between the number of optimal solutions and loal searh ost for general JSPs. X � Y denotesa mean of X with a std. dev. of Y .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

Backbone Size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

Backbone SizeFig. 1. Histogram of bakbone sizes for 50 000 6� 4 (left �gure) and 6� 6 (right �gure) generalJSPs.5.2 Distribution of Bakbone SizesWhile retangular JSPs tend to be muh easier than square JSPs, this di�erene was notobserved in the loal searh osts reported in Table 1. In a straightforward experiment,we generated 100 6 � 4 and 6 � 6 general JSPs and omputed the loal searh ost foreah problem set, leaving the bakbone size unontrolled. The mean loal searh ostswere 32:91 and 498:13 for the 6 � 4 and 6 � 6 problem sets, respetively, suggesting astrong bias in the distribution of bakbone sizes for the two problem types.In MAX-SAT, the distribution of bakbone sizes depends on the ratio of the numberof lauses to the number of variables v [Par97℄. Under-onstrained problem (with smallvalues of =v) tend to have small bakbones, while over-onstrained problems (with largevalues of =v) tend to have large bakbones; the relative frequeny of large-bakbonedproblems inreases rapidly in the so-alled `ritially onstrained' region. In the JSP andmany other optimization problems, there is no known parameter analogous to =v bywhih we an ontrol for the expeted degree of onstrainedness. Consequently, we anonly observe the relative frequeny of bakbone sizes in these problems.To examine the relative frequeny of bakbone sizes in the general JSP, we generated50 000 6� 4 and 6� 6 problems, and omputed the bakbone size for eah instane. InFigure 1, we provide histograms illustrating the relative frequeny of the bakbone sizes.The most ommon bakbone sizes for the square 6 � 6 instanes are roughly 0:9, andare exeedingly rare below 0:3. In ontrast, the bakbone sizes for the retangular 6� 4instanes are more uniformly distributed, with a slight bias toward smaller bakbone
67

Problem Bakbone SizeSize � 0:1 � 0:3 � 0:5 � 0:7 � 0:9dinit�opt-log10(loal searh ost) orrelation6� 4 0.9890 0.9526 0.9070 0.8296 0.53036� 6 0.9912 0.9327 0.8911 0.8371 0.6484Bakbone robustness-log10(loal searh ost) orrelation6� 4 -0.2193 -0.3993 -0.4412 -0.5277 -0.56066� 6 -0.1621 -0.3629 -0.4507 -0.4712 -0.5134Table 2. Correlation (r) of 1) dinit�opt and 2) bakbone robustness with log10(loal searh ost)in general JSPs.sizes. We have also generated similar histograms for other small problem sizes: for ratiosof n=m > 1:5, the bias toward small bakbones beomes more pronouned, while forratios < 1, the bias toward larger bakbones is further magni�ed. Finally, we note thatthe utility of the orrelation between number of optimal solutions and loal searh ostdepends heavily on problem size; the inuene is negligible for nearly all 6 � 6 JSPs(whih generally have large bakbones), and for many 6� 4 JSPs.5.3 Distane to Global Optima and Searh CostIn MAX-SAT, the mean distane between the initial quasi-solutions enountered by loalsearh and the nearest optimal solution (dinit�opt) is strongly orrelated with loal searhost, aross all bakbone sizes. Intuitively, we would also expet the distane betweenthe �rst loal optima enountered by loal searh and the nearest optimal solution toinuene loal searh ost in the JSP; the question is then \How strong is this inuene?".For eah of our general JSPs, we generated 1000 loal optima, omputed the Hammingdistane to the nearest optimal solution for eah of the resulting optima, and reordedthe mean of the 1000 distanes (the Hamming distane between two solutions in the JSPis the number of order variables, out of the mn(n� 1)=2 possible, with di�erent assignedvalues); as with MAX-SAT, we denote this measure by dinit�opt. We generated the loaloptima by applying a next-desent algorithm from random \ative" solutions [GT60℄.Our next-desent algorithm evaluates the neighbors of the urrent solution under theN1 move operator in a random order, seleting the �rst solution that improves on themakespan of the urrent solution; the algorithm terminates when no suh improvementsare possible.In Table 2, we report the orrelations between dinit�opt and log10(loal searh ost).For bakbone sizes of � 0:1 through � 0:5, the orrelation is extremely high, and onlymoderately degrades for the two larger bakbone sizes. The r-values are uniformly andsigni�antly better than those ahieved using the number of solutions, and aount for asigni�ant proportion of the variane in loal searh ost for large-bakboned problems.Thus, we also onlude that the distane between initial and optimal solutions, and notthe number of optimal solutions, is the primary fator inuening the ost of loal searhin the general JSP, independent of bakbone size.5.4 Bakbone Robustness and Searh CostSinger et al. propose bakbone robustness a ausal fator that largely determines thesize of the quasi-solution sub-spae in MAX-SAT. Abstratly, bakbone robustness is a
68

measure of the number of problem onstraints that must be relaxed to produe a problemwith a signi�antly smaller bakbone. While in the JSP there is no analog to relaxingindividual onstraints (as is possible in MAX-SAT), there is a parameter ontrolling theglobal onstrainedness: deviation from the optimal makespan. Thus, we de�ne bakbonerobustness for the JSP as the minimum perentage above the optimal makespan at whihthe bakbone size is redued by at least half (subjet to integral makespan onstraints).In the lower half of Table 2 we report the orrelation between the bakbone robust-ness and log10(loal searh ost) for our general JSPs. The results are very similar tothose reported by Singer et al. for MAX-SAT; a moderate negative orrelation for large-bakboned instanes, and a gradual deay as bakbone size is dereased. Analogous toMAX-SAT, bakbone robustness does appear to partially ditate the size of the sub-spae ontaining loal optima in the general JSP. As we noted in Setion 3, Singer et al.provide a justi�ation for the lower orrelations for small-bakboned instanes.6 Extending the Analysis to Workow JSPsThe primary problem onstraints in the JSP are the mahine proessing orders for eahjob, while in MAX-SAT they are the individual lauses. In both ases, researhers typi-ally generate problem instanes suh that these onstraints are uniformly random. Animportant issue is then generalization: real-world problems have non-random onstraints,and it is unlear whether the desriptive ost models for MAX-SAT and general JSP areappliable to problem instanes with more strutured onstraints. To study the e�etof non-random onstraints on the auray of the desriptive ost model, we extend theanalysis of Setion 5 to JSPs with workow{whih impose a simple, spei� struture onthe mahine proessing orders for eah job.First, we onsider the inuene of the number of optimal solutions on loal searhost in workow JSPs, reported in Table 3. As with general JSPs, we see both a dramatidrop in the number of optimal solutions and a gradual inrease in loal searh ost asthe bakbone size is inreased. Workow JSPs have signi�antly fewer optimal solutionsthan general JSPs, and the loal searh ost is generally an order of magnitude higher.However, the log10-log10 orrelation between the number of optimal solutions and theloal searh ost is nearly idential with the results for general JSPs: orrelation is strongfor small-bakboned problems, but deays as bakbone size is inreased.Next, we omputed the relative frequeny of bakbone sizes for both the 6 � 4 and6� 6 workow JSPs; the resulting histograms are shown in Figure 2. Relative to generalJSPs (Figure 1), it is lear that the presene of workow partitions dramatially inreasesthe frequeny of large-bakboned problem instanes. For the retangular 6� 4 problems,workow hanges a bias toward small bakbones in the general JSP into a relativelylarge bias toward large bakbones. For the 6 � 6 problems, workow further magni�esthe already large bias toward large bakbones found in the general JSP. We note that therarity of small-bakboned workow JSPs further diminishes the utility of the number ofsolutions as a preditor of loal searh ost for these instanes.Finally, we measured the orrelation between dinit�opt and log10(loal searh ost);the results are reported in the upper portion of Table 4. Here, we see a dramati dif-ferene between general JSPs and workow JSPs: while the inuene of dinit�opt at
69

Bakbone SizeProblem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9Number of Optimal Solutions6� 4wf 27369 � 71049 81255 � 295593 2515.25 � 4704 293 � 425 18 � 166� 6wf 1147650 � 6555440 429102 � 1676350 19017 � 44556 4553 � 6898 80 � 94Loal Searh Cost6� 4wf 119.44 � 89.32 122.2 � 114.26 333.42 � 442.39 920.72 � 1515.75 2087.44 � 2973.866� 6wf 318.77 � 113.82 513.13 � 143.72 1086.33 � 1979.39 1730.53 � 2846.15 5036.53 � 5132.54log10-log10 Correlation (r) Between the # of Optimal Solutions and Loal Searh Cost6� 4wf -0.7650 -0.6663 -0.3484 -0.2613 -0.22086� 6wf -0.7345 -0.6877 -0.4316 -0.2700 -0.2561Table 3. The number of solutions,loal searh ost, and log10-log10 orrelation (r) between thenumber of solutions and loal searh ost for JSPs with workow. X � Y denotes a mean of Xwith a std. dev. of Y .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

Backbone Size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

Backbone SizeFig. 2. Histogram of bakbone sizes for 50 000 6 � 4 (left �gure) and 6 � 6 (right �gure) JSPswith workow.small bakbones is relatively large, it drops very rapidly, ultimately vanishing at � 0:9.Additionally, beause of the lesser inuene of dinit�opt on loal searh ost, we see aorresponding drop in the inuene of bakbone robustness, as shown in the bottom halfof Table 4. Given the strong bias toward large bakbones in workow JSPs, we onludeby noting that the fators present in the MAX-SAT and general JSP ost models areunable to aount for any signi�ant proportion of the variane in loal searh ost inthese problems.7 Disussion and ImpliationsOur results demonstrate that dinit�opt is a good preditor of loal searh ost in boththe general JSP and MAX-SAT, despite qualitative di�erenes in the underlying searhspaes. In both ases, dinit�opt indiretly measures the size of the searh spae exploredby the respetive loal searh algorithms. Modern loal searh algorithms for MAX-SAT(e.g., Walk-SAT [SGS00℄) basially perform a random walk over the quasi-solution sub-spae. Consequently, it is unsurprising that searh ost is an exponential funtion ofthe sub-spae size [Hoo98℄. However, this inferene also applies to Taillard's tabu searhalgorithm for the general JSP: it is e�etively performing a random walk in the spae ofloal optima. The ability of dinit�opt to predit loal searh ost also indiates that thereis no, or at most a very weak, bias in the searh spaes of both problems; if there were,distane alone would fail to aurately predit loal searh ost.
70

Problem Bakbone SizeSize � 0:1 � 0:3 � 0:5 � 0:7 � 0:9dinit�opt-log10(loal searh ost) orrelation6� 4wf 0.8727 0.7122 0.5109 0.1811 0.08626� 6wf 0.8231 0.6781 0.5264 0.1367 0.0711Bakbone robustness-log10(loal searh ost) orrelation6� 4wf -0.0029 -0.0217 -0.0372 -0.0752 -0.14236� 6wf -0.0165 -0.0348 -0.0513 -0.0941 -0.1239Table 4. Correlation (r) of 1) dinit�opt and 2) bakbone robustness with log10(loal searh ost)in workow JSPs.In ontrast, we found that dinit�opt was a very poor preditor of loal searh ost inworkow JSPs. Follow-up experiments indiate that there is a very strong bias towardpartiular sub-optimal solutions in some of these problems: there are many more 'paths'in the searh spae to sub-optimal solutions than to optimal solutions. In other problems,we have observed very distant lusters of optimal solutions, suggesting that a more om-pliated de�nition of dinit�opt may be required. Our results also raise issues regardingthe desriptive ost models for MAX-SAT, as we have shown that the fators inueningloal searh ost in random and strutured problems may in fat be quite di�erent.We view this researh as a �rst step toward understanding why loal searh algorithmsfor the JSP are so e�etive. We seleted Taillard's tabu searh algorithm preisely beauseit serves as a baseline for more advaned algorithms, suh as Nowiki and Smutniki's tabusearh algorithm, whih enhane Taillard's algorithm through either more advaned moveoperators or long-term memory. With desriptive ost models for the basi algorithm, wean begin to systematially assess the inuene of these improvements on the desriptiveost model. Finally, we note that our analysis is only diretly appliable to tabu-like searhalgorithms for the JSP. Beause desriptive ost models are tied to spei� algorithms, itseems likely that other fators are responsible for loal searh ost in algorithms suh asiterated loal searh or geneti algorithms, whih are based on priniples quite di�erentfrom tabu searh.8 ConlusionsOur results learly demonstrate that the fators inuening loal searh ost in MAX-SAT also inuene loal searh ost in the general JSP, despite qualitative di�erenesin the underlying searh spaes. Consequently, we have a relatively lear piture of loalsearh ost in the general JSP, although our model fails to aount for a moderate amountof the variane in loal searh ost of large-bakboned problem instanes. Our results alsosuggest the possibility that these same fators may be appliable in a muh wider rangeof optimization problems.We also shed more light on the observation that retangular JSPs are signi�antlyeasier than square JSPs. If we ontrol for bakbone size, retangular JSPs are not sig-ni�antly easier than square JSPs. Instead, the observed di�erene in diÆulty stemsprimarily from the relative frequeny of bakbone sizes in the two problems: large bak-bones are very ommon in square problems, while we see a bias toward smaller bakbonesin retangular problems.
71

Finally, we also demonstrate that the fators inuening searh ost in the generalJSP do not neessarily transfer to JSPs with workow, suggesting that the desriptiveost models for random and strutured problems may in fat be quite di�erent.AknowledgmentsThe authors from Colorado State University were sponsored by the Air Fore OÆe ofSienti� Researh, Air Fore Materiel Command, USAF, under grant number F49620-00-1-0144. The U.S. Government is authorized to reprodue and distribute reprints forGovernmental purposes notwithstanding any opyright notation thereon. J. ChristopherBek would also like to thank Paul Shaw (ILOG, S.A.) for disussions relating to thiswork.Referenes[BDP96℄ Jaek Bla_zewiz, Wolfgang Domshke, and Erwin Pesh. The job shop shedulingproblem: Conventional and new solution tehniques. European Journal of OperationalResearh, 93:1{33, 1996.[BF00℄ J. Christopher Bek and Mark S. Fox. Dynami problem struture analysis as abasis for onstraint-direted sheduling heuristis. Arti�ial Intelligene, 117(2):31{81, 2000.[CFG+96℄ David A. Clark, Jeremy Frank, Ian P. Gent, Ewan MaIntyre, Neven Tomov, andToby Walsh. Loal searh and the number of solutions. In Proeedings of the Se-ond International Conferene on Priniples and Praties of Constraint Programming(CP-96), pages 119{133, 1996.[EDT94℄ �Eri D. Taillard. Parallel taboo searh tehniques for the job shop sheduling problem.ORSA Journal on Computing, 6(2):108{117, 1994.[FCS97℄ Jeremy Frank, Peter Cheeseman, and John Stutz. When gravity fails: Loal searhtopology. Journal of Arti�ial Intelligene Researh, 7:249{281, 1997.[GT60℄ B. Gi�er and G. L. Thompson. Algorithms for solving prodution sheduling prob-lems. Operations Researh, 8(4):487{503, 1960.[Hoo98℄ Holger H. Hoos. Stohasti Loal Searh - Methods, Models, Appliations. PhD thesis,Darmstadt University of Tehnology, 1998.[LAL92℄ P.J.M Van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job shop sheduling by sim-ulated annealing. Operations Researh, 40:113{125, 1992.[MBK99℄ Dirk C. Mattfeld, Christian Bierwirth, and Herbert Kopfer. A searh spae analysisof the job shop sheduling problem. Annals of Operations Researh, 86:441{453, 1999.[NS96℄ E. Nowiki and C. Smutniki. A fast taboo searh algorithm for the job shop problem.Management Siene, 42(6):797{813, 1996.[Par97℄ Andrew J. Parkes. Clustering at the phase transition. In Proeedings of the FourteenthNational Conferene on Arti�ial Intelligene (AAAI-97), pages 340{345, 1997.[RS01℄ Christian M. Riedys and Peter F. Stadler. Combinatorial landsapes. TehnialReport 01-03-014, The Santa Fe Institute, 2001.[SGS00℄ Josh Singer, Ian P. Gent, and Alan Smaill. Bakbone fragility and the loal searhost peak. Journal of Arti�ial Intelligene Researh, 12:235{270, 2000.

72

Flexible Integration of Planning and InformationGatheringDavid Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo AlerUniversidad Carlos III de Madrid, Computer Siene Department, Avenida de laUniversidad no 30, CP 28911, Legan�es, Madrid, Spainfdamaho, dborrajo, molinag�ia.u3m.es, aler�inf.u3m.esAbstrat. The evolution of the eletroni soures onneted throughwide area networks like Internet has enouraged the development of newinformation gathering tehniques that go beyond traditional informationretrieval and Web searh methods. They use advaned tehniques, likeplanning or onstraint programming, to integrate and reason about het-ereogeneous information soures. In this paper we desribe MAPWeb,a multiagent framework that integrates planning agents and Web in-formation retrieval agents. The goal of this framework is to deal withproblems that require planning with information to be gathered fromtheWeb.MAPWeb deouples planning from information gathering, bysplitting a planning problem into two parts: solving an abstrat prob-lem and validating and ompleting the abstrat solutions by means ofinformation gathering. This deoupling allows also to address an impor-tant aspet of information gathering: theWeb is a dynami medium andmore and more ompanies make their information available in the Webeveryday. The MAPWeb framework an be adapted quikly to thesehanges by just modifying an abstrat planning domain and adding therequired information gathering agents. For instane, in a travel assistantdomain, if taxi ompanies begin to o�erWeb information, it would onlybe neessary to add new planning operators related to traveling by taxi,for a more omplete travel domain. This paper desribes the MAPWebplanning proess, fousing on the aforementioned exibility aspet.1 IntrodutionIn reent years there has been a lot of work in Web information gathering [1, 5{8℄.Information gathering intends to integrate a set of di�erent information soureswith the aim of querying them as if they were a single information soure [6℄.Many di�erent kinds of systems, named mediators, have been developed. Theytry to integrate information from multiple distributed and heterogeneous infor-mation soures, like database systems, knowledge bases, web servers, eletronirepositories. . . (an example is the SIMS [7℄ arhiteture). In order that thesesystems are pratial, they must be able to optimize the query proess by se-leting the most appropriate Web soures and ordering the queries. For thispurpose, di�erent algorithms and paradigms have been developed. For instane,Planning by Rewriting (PbR) [1℄ builds queries by using planning tehniques.
73

2 David Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo AlerOther examples of information gathering systems are Ariadne [7℄, Herales [8℄,WebPlan [5℄.Some of the previous approahes use planning tehniques to selet the appro-priate Web soures and order the queries to answer generi user queries. Thatis, they use planning as a tool for seleting and sequening the queries. In thispaper we desribe MAPWeb, an information gathering system that also usesplanning, but with a di�erent purpose (some preliminary work an be foundin [2, 3℄).MAPWeb uses planning for both determining the appropriate generisoures to query and solving atual planning problems. For instane, in this pa-per, the MAPWeb framework is applied to a travel planning assistant domain(e-tourism),1 where the user needs to �nd a plan to travel among several plaes.Eah plan not only determines what steps the user must perform, but whihinformation soures should be aessed. For instane, if a step is to go from A toB by plane, the system provides the user the information of what airplane om-panies should be onsulted for further information. This domain is similar to thetravel planning assistant built using the Herales framework. However, Heralesonstrained network, whih is a kind of plan shema, needs to be reprogrammedeverytime the planning domain hanges. MAPWeb tries to be more exible byusing planning tehniques to reate the plans. For instane, if it is desired toadd a new information soure to the system, it is only neessary to hange theplanning domain instead of reprogramming the plan shema by hand. For in-stane, if taxi fares were made suddenly available in theWeb, it would only beneessary to add a move-by-taxi operator along with the assoiated WebAgent.2Atually, MAPWeb an handle planning operators whih are not assoiated toany information soure (beause, for instane, the information on a given topiis not yet available). In that ase, plans will ontain steps with no detailed in-formation. This is useful, beause even if no spei� information is supplied, atleast the user is told that he an ful�ll that step by any means.The paper is strutured as follows. Setion 2 desribes MAPWeb arhi-teture. Setion 3 explains in detail the abstrat planning proess. Setion 4evaluates empirially the system. Finally, Setion 5 summarizes the onlusionsand future lines of work.2 MAPWeb System ArhitetureMAPWeb is strutured into several logi layers whose purpose is to isolatethe user from the details of problem solving andWeb aess. More spei�ally,we onsidered four layers between users and the Web: the physial world (theusers), the reasoning layer (that inludes user agents, planning agents, and on-trol agents), the aess information layer (that ontains WebAgents to retrievethe desired information), and the information world (whih represents the avail-able information). This four-layer arhiteture an be seen in Figure 1.1 This domain is a modi�ed version of the Logistis domain.2 A WebAgent is an information agent speialized in onsulting a partiular informa-tion soure.
74

Flexible Integration of Planning and Information Gathering 3
Agent

User

Agent

User

Agent
Planner

Agent
Planner

Problem

Solutions

Problem

Solutions

WebAgent

WebAgent

WebAgent

WebAgent

Control
Agents

I
N
T
E
R
N
E
T

PHYSICAL
WORLD

REASONING
LAYER

WEB
LAYER

INFORMATION
WORLDFig. 1. MAPWeb three-layer arhiteture.MAPWeb deploys this arhiteture using a set of heterogeneous agents.Next, eah of these types of agents will be desribed:{ UserAgents: They pay attention to user queries and display to users the so-lution(s) found by the system. When an UserAgent reeives problem queriesfrom the users, it sends them to the PlannerAgents and when they answerbak with the plans, the UserAgent provides the solutions to the user.{ ControlAgents: They handle several ontrol funtions like the insertionand deletion of agents in the system and ommuniation management.{ PlannerAgents: They reeive an user query, build an abstrat representa-tion of it, and solve it by means of planning. Then, the PlannerAgents �ll inthe information details by querying the WebAgents. The planner that hasbeen used by the PlannerAgents is prodigy4.0 [9℄.{ WebAgents: Their main goal is to �ll in the details of the abstrat plans ob-tained by the PlannerAgents. They obtain that information from the Web.The way these agents ooperate is as follows. First, the user interats withthe UserAgent to input his/her query. The query aptures information like thedeparture and return dates and ities, one way or return trip, maximum numberof transfers, and some preferene riteria. This information is sent to the Plan-nerAgent, whih transforms it into a planning problem. This planning problemretains only those parts that are essential for the planning proess, whih isnamed the abstrat representation of the user query. Prodigy4.0 generates sev-eral abstrat solutions for the user query. The planning operators in the abstratsolutions require to be ompleted and validated with atual information whihis retrieved from the Web. To aomplish this, the PlannerAgent sends infor-mation queries to speialized WebAgents, that return several reords for everyinformation query. Then, the PlannerAgent integrates and validates the solu-tions and returns the data to the UserAgent, whih in turn displays it to theuser. MAPWeb agents use a subset of the kqml speeh ats [4℄. The wholeproess will be desribed in full detail in the next setion.

75

4 David Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo Aler3 The Planning ProessAs mentioned before, inMAPWeb, the information gathering proess is arriedout by a set of WebAgents, but this proess is guided by the PlannerAgent thatreasons about the requested problem and the di�erent information soures thatare available.The planning proess is divided into two parts: solving an abstrat prob-lem, and ompleting it with information gathered from the Web. Planning isdeoupled this way beause of two reasons:{ The abstrat planning problem is easier to solve by lassial planners. Thisis beause if all the information about all the available ights, all possibletrains, et. was inluded in the planning proess, planning would be unfea-sible.{ It is not neessary to aess the Web during the planning proess. Queriesto the WebAgents are arried out only when abstrat plans are ready. Thisallows to redue the number of queries, beause only those queries that arerequired by the solution are ever made.Planning works as follows. First, the PlannerAgent reeives a query fromUserAgent. This query is analyzed and translated into an abstrat planningproblem. Seond, the PlannerAgent uses its own skills and knowledge about theproblem and tries to solve it. If the solving proess is suessful, the PlannerA-gent generates a set of abstrat solutions. These solutions are too general andonly have the essential information for the planning proess, so they need spe-i� information to be ompleted and validated. The PlannerAgent builds a setof information queries (queries to other agents in the system to request spei�information). It is important to try to optimize the number of queries due to thehigh number of possible instantiations. When the queries have been built, thePlannerAgent selets the set of WebAgents that will be asked. Finally, when theWebAgents answer with the information found in the Web (if WebAgents aresuessful) the PlannerAgent integrates all the spei� information with the ab-strat solutions to generate the �nal solutions that will be sent to the UserAgent.In Figure 2 the modular desription of the planning proess is shown.The next subsetions explain this proess in detail by fousing in the datastrutures used by eah of the relevant agents: the user query generated by theUserAgent, the abstrat problem, the abstrat solutions, the spei� knowledgeused by the PlannerAgent, and �nally the spei� information reords retrievedby the WebAgents.3.1 The User QueryThe planning proess starts when the user supplies a problem to be solved. Auser query is a sequene of stages. Eah stage is a template that represents aleg of the trip, and ontains several �elds to be �lled by the user. Table 1 showsan instane of a possible user query. It will be used to illustrate the rest of the
76

Flexible Integration of Planning and Information Gathering 5
Queries
Partially
Instantiated

Information
Queries

Records
Retrieved

Complete
/ Validate
Solutions

Abstract
Problem PRODIGY4.0

e−Tourism
Domain

Abstract
Solution1

Abstract
Solution2

Abstract
SolutionN

.....

PLANNER−AGENT

U
se

rA
ge

nt

WebAgents

User Query

Plans

Heuristics

Hierarchy
Agents

Fig. 2. Planning Proess developed by the PlannerAgent. The user query istransformed into an abstrat planning problem, whih is subsequently solved byProdigy4.0. Eah solution is partially instantiated by means of domain dependentheuristis. Every operator in a solution generates several Web queries, whih are sentto the appropriate WebAgents by using the agent hierarhy. The agents return severalreords, that are used to omplete and validate the abstrat solutions.artile. This query is then sent to the PlannerAgent. Besides the informationshown in Table 1, the user an speify the loations inside the ity where s/hewants to start or end the trip (like an airport, a train station, or a bus station).This is done by means of the user interfae provided by the UserAgent.Table 1. A user problem to go from Turin to Toledo by airplane or train.Leg Stage Date Restritions No Transfers1 Turin ! Madrid Sep. 11th Plane or train 0 or 12 3 nights stay Sep. 11th < 15.000 pts -3 Madrid ! Toledo Sep. 14th Plane or train 0 or 14 Toledo ! Turin Sep. 14th Plane or train 0 or 13.2 The planning domain and the abstrat solutionsThe PlannerAgent transforms the user query into an abstrat problem. This isdone as follows. First, it de�nes an abstrat ity. This ity inludes all possibleloal transports, but only the long range transport terminals that the user wishesto use are inluded. Then, this abstrat ity is opied as many times as themaximum number of transfers supplied by the user. It is important to remarkthat the ities are abstrat ities (i.e. they have no attahed names, so they arepresent in the abstrat plan to represent the initial, intermediate, and �nal travelpoints). The rest of details provided by the user are ignored at this stage. Theabstrat problem represents the initial state and the goals of the problem thatare the inputs to Prodigy4.0.In order to solve abstrat problems, Prodigy4.0 requires a domain wherethe planning operators are desribed. Using planning at this stage (instead ofusing pre-programmed plans) provides two main advantages:
77

6 David Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo Aler1. Flexibility: the system an be adapted to many di�erent versions of travel do-mains and problems by just hanging the domain desription or the abstratproblem generation method, respetively.2. Easy integration of new Web soures. TheWeb is a dynami medium: moreand more ompanies make their information available in the Web everyday.If a new information soure (like taxi fares) is made available,MAPWeb anbe adapted quikly by just adding a new planning operator and establishinga relation with a WebAgent speialized in gathering the information fromthe Web.The abstrat problem obtained from Table 1 would be given to the Plan-nerAgent planner (Prodigy4.0) whih would obtain several possible abstratsolutions. In this ase, the planner would reply with the plans shown in Figures 3(solutions with 0 transfers) and 4 (1 transfer solutions).Problem: 0-TransfersSolution 1:<travel-by-airplane user1 plane0 airport0 airport2><move-by-loal-transport user1 lbus2 bustop20 trainstat21 ity2>Solution 2:<move-by-loal-transport user1 lbus0 bustop00 trainstat01 ity0><travel-by-train user1 train0 trainstat0 trainstat2>Fig. 3. Abstrat solutions generated by Prodigy4.0 for Leg 1 with 0-Transfer.Problem: 1-TransfersSolution 1:<travel-by-airplane user1 plane0 airport0 airport1><move-by-loal-transport lbus1 bustop10 trainstat11 ity1><travel-by-train user1 train1 trainstat1 trainstat2>Solution 2:<travel-by-airplane user1 plane0 airport0 airport1><travel-by-airplane user1 plane1 airport1 airport2><move-by-loal-transport lbus2 bustop20 trainstat20 ity2>..............Fig. 4. Abstrat solutions generated by Prodigy4.0 for Leg 1 with 1-Transfers.This is a set of abstrat plans that ontain no atual details. Some of the plansteps might not even be possible beause, for instane, there are no ompanieslinking two ities. Therefore, those plans need to be validated and ompleted.The PlannerAgent aomplishes this task in the following way:1. The abstrat steps in the solution ontain unbound variables that relate totransfer ities. They need to be bound before the WebAgents are queried.
78

Flexible Integration of Planning and Information Gathering 7The PlannerAgent restrits the number of bindings by applying a geographiheuristi. This is ahieved as follows:{ If the origin and arrival ities belong to the same ountry, only the itiesin that ountry are onsidered as possible transfer ities.{ Else, if the origin and arrival ities belong to the same ontinent, onlythe ities of that ontinent are onsidered.{ Otherwise, all ities are onsidered.In the ase of the �rst leg of the trip, as Turin and Madrid belong to Europe,we extrat the ities that belong to this ontinent (urrently, about 30).Table 2 displays the queries that would be generated in this ase.Table 2. Queries partially instantiated.Query send to the WebAgents No Transfers(travel-by-airplane user1 plane0? Turin Toledo) 0(travel-by-train user1 train0? Turin Toledo) 0(travel-by-airplane user1 plane0? Madrid Turin) 0(travel-by-train user1 train0? Madrid Toledo) 0(travel-by-airplane user1 plane0? Turin Aliante) 1(travel-by-airplane user1 plane0? Turin Barelona) 1(travel-by-airplane user1 plane0? Turin Paris) 1(travel-by-train user1 train0? Turin Madrid) 1.2. Planning operators of the abstrat solutions andWeb soures are related bymeans of a WebAgent hierarhy. This hierarhy is used by the PlannerAgentto selet the relevant WebAgents that will be used to obtain the information.This hierarhy allows the PlannerAgent to know whih WebAgents knowhow to retrieve the required information. In Figure 5 a desription of thishierarhy is shown.Agent|___UserAgent0|---ReasonerAgent|___PlannerAgent0|___WebAgents|___Travel|___Fly: WebAgent-Iberia,WebAgent-Amadeus-Flight|___Train: WebAgent-Renfe,WebAgent-RailEurope|___Bus|___Hotel: WebAgent-Amadeus-Hotel|___Car|___ControlAgents|___ManagerAgent0|___CoahAgent0Fig. 5. Agents Hierarhy. It desribes all the available agents in MAPWeb and theirinformation gathering skills.

79

8 David Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo Aler3. Finally the PlannerAgent uses the previous information to build a set ofqueries that will sent to the seleted WebAgents. If a planning operator isrepeated in di�erent abstrat solutions, it is only onsidered one, to avoidrepeating queries. For instane, in the solutions for 1-Transfer problems theoperator (<travel-by-airplane user1 plane0 airport0 airport1>) wouldbe translated as shown in Table 3:Table 3. Queries partially instantiated to the appropriate WebAgents.Query send to the WebAgents WebAgent(travel-by-airplane user1 plane0? Turin Toledo) Iberia, Amadeus-Flights(travel-by-train user1 train0? Turin Toledo) Renfe, RailEurope(travel-by-airplane user1 plane0? Turin Aliante) Iberia, Amadeus-Flights(travel-by-airplane user1 plane0? Turin Barelona) Iberia, Amadeus-Flights(travel-by-airplane user1 plane0? Turin Paris) Iberia, Amadeus-Flights(travel-by-train user1 train0? Turin Madrid) Renfe, RailEurope.Those queries (and all the additional information given by the UserAgent)are sent to several WebAgents that know about airplane travel, so that variableplane0? is instantiated as well.3.3 Filling the Abstrat SolutionsThe information queries are sent to the seleted WebAgents with the spei�data (departure and arrival times, travel ost, et. . .) and the query that thePlannerAgent needs. With this information the WebAgents automatially buildthe spei� Web query that will be sent to the Web information soures theagent is speialized in. For every query, eah WebAgent will return to the Plan-nerAgent a list of reords by �lling a template whose struture is shared byall the agents (there are di�erent templates depending on the kind of informa-tion required). In Table 4 some of the retrieved ight-reords and train-reordsprovided by di�erent WebAgents are shown for the Leg 1 in the example.Finally, those reords are reeived by the PlannerAgent that will use themto omplete the abstrat solutions. If the WebAgents return no reords for astep of the abstrat solution, that partiular solution is rejeted. However, it isimportant to remark that if it is known in advane that there are noWeb souresto omplete a partiular step (for instane, <MOVE-BY-LOCAL-TRANSPORT taxi...>), then the user is told that s/he has to arry out that step, even though nospei� information about that step is attahed. The set of ompleted solutionsare �nally sent to the UserAgent that requested the information.4 Experimental EvaluationThe aim of this setion is to arry out several experiments with MAPWeb toevaluate its performane. First, the example-trip we have used to illustrate the
80

Flexible Integration of Planning and Information Gathering 9Table 4. Retrieved reords by the WebAgents.Inf-FLIGHTS reord1 reord2 reord3 Inf-TRAINS reord1 reord2 reord3WebAgent Iberia Amadeus Amadeus WebAgent Renfe Renfe Renfeair-ompany Iberia Iberia Portugalia train-ompany RENFE RENFE RENFEhttp-address w3.iberia.es null null http-address w3.renfe.es w3.renfe.es w3.renfe.esight-id IB8797 IB8819 NI711 train-id 07054 07056 07058tiket-fare 70641 null null tiket-fare 780 780 780urreny ESP ESP ESP urreny ESP ESP ESPight-duration 3h45min 2h00min 2h10min departure-ity MAD MAD MADairp-depart-ity TRN TRN TRN departure-date 11-09-01 11-09-01 11-09-01departure-date 11-09-01 11-09-01 11-09-01 departure-time 6:30 8:30 10:14airp-arrival-ity MAD MAD MAD arrival-ity TOL TOL TOLreturn-date null null null arrival-date 11-09-01 11-09-01 11-09-01lass Tourist null null arrival-time 7:53 9:47 11:30no passengers 1 1 1 lass Tourist Tourist Touristround-trip one-way one-way one-wayprevious setions will be tested. Seond, a set of problems given by the user willbe evaluated to analyze the average behaviour of the system.Table 5 summarizes the example-trip (Turin to Toledo and bak). To solvethis problem, a team of nine agents was used. It inludes all the agents dis-played in the agents-hierarhy of Figure 5. In partiular, airplane, train, andhotel WebAgents have been used. The next parameters have been measured:{ Validated abstrat solutions/abstrat solutions ratio (val.sols/abs.sols). Thisvalue measures how many abstrat solutions provided through the plannerwere validated by the information provided by the information gatheringagents.{ Number of instantiated solutions. It shows all the possible solutions to theuser problem. The solutions are omputed using the gathered reords. ThePlannerAgent uses the k validated abstrat solutions that ontain li abstratoperators. If there are bij retrieved reords for the j-th operator of the i-thsolution, then the number of possible instantiated solutions is:Number of solutions = kXi=1 liYj=1 bij{ Number of Web Queries. This represent all the queries made by the Web-Agents to retrieve the spei� information.{ Number of gathered reords (dupliated reords are removed).{ Time. It inludes planning time andWeb gathering time. It is elapsed time(i.e. the time spent by the WebAgents ating in parallel is not aumulated).Everyone of the previous parameters is measured for both 0 and 1 transfers(0-T and 1-T). In this example, there are no solutions for the 0 transfers beauseit is impossible to omplete the fourth leg of the trip (there is no way to go fromToledo to Turin diretly). On the other hand, there are thousands of possibleombinations when 1 transfer is allowed. It is important to remark that eventhough when 1 transfer is used, it takes several thousand seonds to �nd thesolutions, only 1 seond per leg is spent for atual planning.
81

10 David Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo AlerTable 5. MAPWeb request for the example-trip, with 0 and 1 transfers.Leg Stage Val. sols Number of Number of Number of Timeper abs. sols solutions queries reords (seonds)0-T 1-T 0-T 1-T 0-T 1-T 0-T 1-T 0-T 1-T1 Turin ! Madrid 0.5 0.667 2 1829 4 43 20 135 112.465 962.9382 3 nights stay 1 1 6 6 1 1 20 20 62.384 62.3843 Madrid ! Toledo 0.5 0.333 12 797 4 43 22 92 75.030 1692.8394 Toledo ! Turin 0 0.333 0 432 4 43 0 67 76.236 3874.948We have also tested a set of 38 problems with di�erent on�gurations ofMAPWeb. The problems inlude 15 trips within Spain, 15 within Europe, and8 Interontinental ones. Eah problem has been tried with 0 and 1 transfers.The results are shown in Table 6. This experiment shows in pratie the exi-bility of MAPWeb when it is neessary to add new information soures. Theon�gurations that have been used are as follows:{ N0: only one WebAgent speialized in retrieving information from a parti-ular Airplane Company (Iberia Airlines3) was onsidered.{ N1: di�erent WebAgents speialized in gathering information of the samekind (ight information) were used: WebAgent-Iberia, WebAgent-Aviana,WebAgent-Amadeus-Flights, WebAgent-4Airlines-Flights. The two last onesare meta-searhers.{ N2: only two WebAgents speialized in gathering information of the sametype (train information) were used: WebAgent-Renfe, WebAgent-RailEurope.{ N3: integrates all the previous WebAgents, that is, agents for retrieving bothight and train information (N3=N1+N2).Table 6. Summary of the results for 38 user problems, with 0 and 1 transfers (0-Tand 1-T). Con�g. Number of Solved Number of Timesolutions problems queries (seonds)0-T 1-T 0-T 1-T 0-T 1-T 0-T 1-TN0 7.1 999.3 65.7% 74.3% 1 26.9 65.6 1485.7� = 6.7 1480.5 � = 10.2 1319.2N1 10.9 1338.1 94.2% 97.1% 4 91.2 162.4 2243.6� = 8.0 1725.8 � = 200.5 1321.8N2 3.7 3.7 25.7% 40.0% 2 51.4 70.1 1314.4� = 7.9 7.9 � = 23.0 1124.3N3 12.5 1340.2 94.3% 97.1% 6 143.9 165.3 2666.6� = 8.8 1724.4 � = 199.6 1298.8In Table 6, we observe the following:{ With respet to N0, as it ould be expeted, many more solutions are foundwhen 1 transfer legs are allowed (999.3 vs. 7.1). It an also be observed that3 www.iberia.om/iberia es/home.jsp
82

Flexible Integration of Planning and Information Gathering 11MAPWeb annot �nd a solution for some problems, although the numberof problems solved inreases for the 1-T option (74.3% vs. 65.7%). However,the number of queries and the time required to ful�ll them also inreasesquikly. It is also notieable that standard deviations are rather large. Thisis beause user problems an be very di�erent; some of them an be solvedquikly beause there are few retrieved reords, whereas other problems anhave many possible solutions.{ N1 enlarges N0 by inluding more airplane ompanies. MAPWeb does not�nd many more solutions per problem, beause most of the user problemsare within Europe, where Iberia (the only agent in N0) o�ers many ights.However, many more problems are solved (94.2% vs. 65.7% with 0 transfers,and 97.1% vs. 65.7% for 1 transfer). Although the number of queries ismultiplied by 4 in N1, the time required to ful�ll them has been only doubled(162.4 vs. 65.6 for 0-T and 2243.6 vs. 1485.7 for 1-T). Time is doubledbeause even though the four WebAgents work in parallel, all the retrievedreords must be analyzed by a single PlannerAgent.{ N2 displays the results when only train travels are allowed. Only a few prob-lems an be solved: 25.7% with 0-T and 40.0% with 1-T, and very few solu-tions per problem are found (3.7). This is learly due to the smaller numberof possibilities of full�lling travels using only trains vs. using airplanes.{ N3 integrates both airplane and train ompanies. Compared to N1, almostthe same number of user problems are solved (94.3% vs. 94.2% and 97.1%vs. 97.1%), although some more solutions per problem are found (12.5 vs.10.9 and 1340.2 vs. 1338.1).5 ConlusionsThe Web is a dynami medium: more and more ompanies make their infor-mation available in the web everyday.Web information gathering systems needto be exible to adapt to these rapid hanges. In this paper we have desribedMAPWeb, a multiagent framework that ombines lassial planning tehniquesand Web information retrieval agents. MAPWeb deouples planning from in-formation gathering, by splitting a planning problem into two parts: solving anabstrat problem and validating and ompleting the abstrat solutions by meansof information gathering. Flexible information gathering is ahieved by meansof planning. In order to add a new information soure to the system, only theplanning domain has to be modi�ed, besides adding the relatedWeb agent.In this paper MAPWeb has been applied to the e-tourism domain, but webelieve it ould be also used in other domains where planning an be separatedfrom Web information gathering. For instane, urrently many ompanies arethinking on moving to the Web and most organization proess models willbe implemented in suh a way that they use information stored in the Web(either information internal to the organization or external). These proessesan be automatially generated on-the-y by planners, and they will need theinformation stored in the Web to deide on the steps to be performed. For
83

12 David Camaho, Daniel Borrajo, Jos�e M. Molina, and Riardo Alerinstane, one might de�ne what information to publish (and how) in the Webdepending on the ompetene pries. This publishing proess ould be generatedautomatially by a planner.In the future, several new skills will be developed for di�erent agents inMAPWeb. These skills will try to improve the performane of the global sys-tem in two ways: by inreasing the number and quality of solutions found bythe agents, and by minimizing the time and omputational resoures used byMAPWeb to solve problems.AknowledgementsThe researh reported here was arried out as part of the researh projet fundedby CICYT TAP-99-0535-C02.Referenes1. Ambite, J.L., Knoblok, C.A.: Planning by rewriting: EÆiently generating high-quality plans. In proeedings of the Fourteenth National Conferene on Arti�ialIntelligene (1997).2. Camaho, D., Molina, J.M., Borrajo, D.: A Multiagent Approah for EletroniTravel Planning. Proeedings of the Seond International Bi-Conferene Workshopon Agent-Oriented Information Systems (AOIS-2000). AAAI. July (2000). Austin,TX (USA).3. Camaho, D., Molina, J.M., Borrajo, D., Aler, R.: MAPWEB: Cooperation betweenPlanning Agents and Web Agents. Information&Seurity: An International Journal.Speial issue on Multi-agent Tehnologies. Volume 7 (2001).4. Finin, T., Fritzson, R., Makay, D., MEntire, R.: KQML as an Agent Communia-tion Language. In Proeedings of the Third International Conferene on Informationand Knowledge Management (CIKM94), pages 456{463. New York: Assoiation ofComputing Mahinery (1994).5. H�ullen, J., Bergmann, R., Weberskirh, F: WebPlan - Dynami planning for domain-spei� searh in the Internet. In J. K�ohler (Hrsg.) 13. Workshop \Planen undKon�gurieren". (PuK-99) (1999).6. Lambreht, E., Kambhampati, S.: Planning for Information Gathering: A tutorialSurvey. ASU CSE Tehinal Report 96-017. May (1997).7. Knoblok, C.A., Minton, S., Ambite, J.L., Ashish, N.: Modeling Web Soures forInformation Integration. Proeedings of the Fifteenth National Conferene on Arti-�ial Intelligene, 1998.8. Knoblok, C.A., Minton, S., Ambite, J.L., Muslea, M., Oh, J., Frank, M.: Mixed-Initiative, Multi-soure Information Assistants. The Tenth International WorldWide Web Conferene (WWW10). ACM Press. May 1-5. (2001).9. Veloso, M., Carbonell, J., Perez, A. Borrajo, D., Fink, E., Blythe, J.: Integratingplanning and learning: The Prodigy arhiteture. Journal of Experimental and The-oretial AI. Volume 7 (1995) 81{120.

84

Supply restoration in power distribution systems

– a benchmark for planning under uncertainty

Sylvie Thiébaux1 and Marie-Odile Cordier2

1 Computer Sciences Laboratory
The Australian National University

Canberra, ACT 0200, Australia
Sylvie.Thiebaux@anu.edu.au

2 IRISA
Campus de Beaulieu

35042 Rennes Cedex, France
Marie-Odile.Cordier@irisa.fr

Abstract. This paper proposes the problem of supply restoration in
faulty power distribution systems as a benchmark for planning under
uncertainty. This benchmark, which is derived from a significant real-
world case, is both simple to understand and easily scalable. The goal
is to reconfigure the distribution network to resupply a maximum of
consumers affected by the faults. Due to sensor and actuator uncertainty,
the location of the faulty areas and the current network configuration are
only partially observable. This makes the problem very challenging.

1 Motivation

The use of poor benchmarks for planning under uncertainty has often been
pointed out as detrimental to the impact of the field on the wider community.
Except for a few testbeds in robot navigation, see e.g. [6], we are still confined
to purely artificial problems ranging from escaping the tiger behind the door to
making an omelette. While well-understood toy problems are definitely useful
in explaining performance differences, it is commonly acknowledged that the
danger of such experimentation alone is that it “entices us into solving problems
that we understand rather than ones that are interesting” [9].

It is rather paradoxical that the literature on planning under uncertainty
features so few benchmarks derived from significant real world cases. After all,
the main point of the research line was to better address the necessities of ap-
plications, and indeed a lot of realistic problems are modelled quite naturally
as partially observable Markov decision processes. If this state of affairs is para-
doxical, it is also excusable: planning under uncertainty and in particular partial
observability has so far resisted our attempts at building algorithms that scale
up, leaving no alternative but experimentation “in the tiny”.

Fortunately, the latest advances in using compact symbolic representations
for planning under uncertainty, e.g. [5, 7, 10, 13], hold promise of the situation
being about to change. It is likely that the present decade will see fairly generic

85

planners dealing with problems involving uncertainty on a scale that was far out
of reach until now. It is therefore a timely moment to offer concrete challenges
to the field by introducing benchmarks that are of practical significance.

This paper describes the problem of restoring supply in a faulty power distri-
bution system, a problem which is of major concern for electricity distributors.
It consists in localizing the faulty lines on the distribution network and recon-
figuring the network so as to isolate these lines and resupply most consumers.
This has to be done within minutes. When reconfiguring, a few parameters such
as breakdown costs should ideally be optimised, without violating capacity con-
straints and overloading parts of the network. More importantly for our purpose,
the sensors used to locate the faults and report the current configuration, as well
as the actuators used to change configuration, are not always reliable. This leads
to missing information about the current state of the network.

In virtue of this accumulation of realistic features, the problem is an ideal
testbed for systems claiming to address the necessities of the real-world. One
of its advantages compared to other realistic ones is that it is relatively simple
to understand. Only a few straightforward classes of components and actions
are involved. Further, the topology of power distribution systems makes it easy
to scale the problem up or down in order to assess the efficiency of algorithms.
However, despite this simplicity, the size of real distribution systems makes them
very challenging for methods developed not only in the planning community, but
also in related areas, such as model-based diagnosis, repair and reconfiguration.

The paper is organised as follows. Section 2 describes physical character-
istics of power distribution systems. Section 3 explains the problem of supply
restoration and details the features that makes this problem a challenging and
representative testbed. Section 4 gives an overview of the scope of the problem
with respect to existing work in the literature, and Section 5 lists the material
that will be made available on the benchmark’s webpage. Our description of
power distribution systems and of the supply restoration problem is based on
work done in 1994-1996 in the framework of a contract between IRISA and the
French electricity utility Electricité de France (EDF).1

2 Power Distribution Systems

2.1 Topology

A power distribution system, as in Figure 1, can be viewed as a network of
electric lines connected via switching devices (SDs), represented by small squares
in the figure, and fed via circuit-breakers (CBs), represented by large squares.
Switching devices and circuit-breakers are connected to at most two lines. They
have two possible positions: either open or closed. White devices in the figure are
open, see e.g. SD61, and the others are closed, see e.g. SD60. A circuit-breaker
supplies power iff it is closed, and a switching device stops the power propagation

1 We thank our collaborators at EDF, in particular Isabelle Delouis-Jacob, Olivier
Jehl and Jean-Paul Krivine.

86

CB1

CB5

CB2

CB3

CB4

CB6

CB7

SD20 SD21

SD60

SD30 SD71

SD40

SD70

SD50

switching device

open
closed

circuit−breaker

feeder

SD10

SD11 SD12 SD13

SD61

SD62

SD72

SD31

SD32

SD33

SD34

SD41

SD42 SD43 SD44

SD52

SD53

SD51

Fig. 1. Power Distribution System (part)

iff it is open. Consumers may be located on any line, and are then only supplied
when their line is supplied.

Distribution networks have a meshable structure exploited radially: the posi-
tions of the devices are set so that the paths taken by the power of each circuit-
breaker form a tree called a feeder. The root of a feeder is a circuit-breaker, and
its leaves are whatever switching devices downstream happen to be open at the
time. In most cases, each line belongs to one feeder at a time.2 For illustration,
the boxed area in the figure shows one of the feeders, and adjacent feeders are
distinguished using alternately black or grey.

2.2 Faults

Power distribution systems are often subject to permanent3 faults (short circuits)
occurring on one or even several lines. Since these short circuits are mainly due
to bad weather conditions and lightning, multiple faults are not rare. Upon
occurrence of a fault, the circuit-breaker feeding the faulty line opens in order
to protect the rest of its feeder from damaging overloads. For instance, if a fault
occurs on the line between SD12 and SD13, CB1 will open. As a result, all
consumers located on that feeder are left without power. Simply reclosing the
circuit-breaker will not help. Since the fault is permanent, the circuit-breaker will
still be feeding it and will open again. Instead, using the sensors and actuators
described below, the faulty lines must be located and the network reconfigured
so as to isolate them and restore the supply to the non-faulty lines. This has to
be done within a few minutes.

2 In certain circumstances, it is possible for a line to be fed by multiple circuit-breakers,
i.e., to be belong to more than one feeder. In that case, these circuit-breakers are
leaves of each other’s feeder.

3 Technically, a permanent fault is one that cannot be eliminated by automatic pro-
tection devices such as shunts and reclosers.

87

PD

ACFD
switching

device

− open
− closed

2 positions:

3 modes:
− correct
− out of order
− liar

(permanent, observable)
(permanent)

− out of order

2 modes:
− correct (observable)

(observable)

3 modes:
− correct
− out of order
− liar

line
2 modes:
− correct
− faulty (permanent)

(permanent)
(permanent, observable)

Fig. 2. Possible states and modes of the network components

2.3 Sensors and actuators

As shown in figure 2, switching devices are equipped with a remote-controlled
actuator (AC) used to change their position, a position detector (PD) sensing
this position, and a fault detector (FD) sensing the presence of faults. Circuit-
breakers are only equipped with the former two.

In normal operation, fault detectors work as follows. As long as a switching
device is fed, its fault detector constantly indicates whether or not it has “seen a
fault pass” i.e., whether or not a fault is downstream of the device on the feeder.4

If the device is not fed, its fault detector retains the status it had when last fed.
For instance, if the line between SD12 and SD13 is faulty, SD11 and SD12 should
indicate a fault while the other devices on this feeder should not. Then CB1
should open and the fault detectors’ information should remain the same until
they are fed again. So, normally, a fault is located on the line between a sequence
of switching devices whose fault detectors indicate that it is downstream and a
sequence of switching devices whose fault detectors indicate that it is not.

Note that in the case of multiple faults on the same feeder, only the most
downstream faults will be detected. A more significant problem is that fault
detectors are not always correct and can be in one of the following two permanent
abnormal modes. In “out of order” mode, they do not provide any information.
Obviously, this mode is observable. In “liar” mode, they always lie, i.e. indicate
the negation of the correct reading. That mode cannot be directly observed. Due
to these abnormalities, the fault location cannot be identified with certainty on
the sole basis of the information returned by the fault detectors.

The primary role of actuators is to open switching devices so as to isolate
suspected lines and close others to direct the power from other feeders towards
the non-faulty lines. In fact, opening and closing devices are the only available
actions in our problem. In normal mode, an actuator executes the requested
switching operation and returns a positive notification. Actuators are not always

4 In the rare event when a switching device belongs to multiple feeders, it indicates a
fault if there is one downstream with respect to at least one of the feeders.

88

reliable and can be in one of the following permanent abnormal modes: “out of
order”, i.e. the actuator fails to execute the operation and sends a negative
notification, or “liar”, i.e. it fails to execute the operation but sends a positive
notification. The former mode is observable while the latter is generally not.

The continuous information provided by the position detectors often removes
uncertainty about the success of switching operations positively notified by actu-
ators. However, position detectors too can be “out of order”. In that mode, they
do not return any information for an indeterminate time, during which, even
though the mode is observable, the network configuration remains uncertain.
Figure 2 summarizes the various modes of the network components.

2.4 Size

Like many European power distribution systems, EDF networks are composed
of some hundreds of feeders (typically from 100 to 300), each of which contains
a few remote-controlled switching devices (the objective is to equip each feeder
with 2-3 of them). A feeder has only a very few neighbours (typically from 1 to
4), and as will be seen below, essentially only those will play a role in supply
restoration. Hence reasoning is very local, and the network in figure 1 is a good
representative of the complexity of the real problem. The problem can trivially
be scaled up or down by modifying the number of switching devices per feeder
and the number of neighbours of feeders. For experimentation purposes, it should
be easy to generate random variations of existing networks.

3 The problem

3.1 Supply restoration

The problem of supply restoration is that of reconfiguring the network in order
to resupply the consumers following the loss of one or more feeders. It amounts
to building a restoration plan consisting of opening/closing operations. This
plan should isolate the faulty lines by prescribing to open the switching devices
surrounding them. It should also restore supply to the non-faulty areas of the lost
feeders by prescribing to operate devices so as to direct the power towards these
areas. Note that although we use the term restoration plan, there is no constraint
on the nature of the plan (linear, conditional, etc ...) nor a requirement to commit
in advance to more than the next action to execute.

The following capacity constraint determines which restoration plans are ad-
missible: at any time, circuit-breakers and lines can only support a certain max-
imal power. This might prevent directing the power through certain paths and
resupplying all the non-faulty areas. In this paper, we will add another con-
straint which is not present in the original problem but will considerably reduce
the search space: we only consider plans which extend existing feeders. That is,
the plan should not transfer any of the load that a healthy feeder had at the
time of the incident to another feeder. Other types of plans are very rarely used
in practice because they require a complex protocol with the dispatching center.

89

CB1

SD10

SD11 SD12 SD13liar

CB1

SD10

SD11 SD12 SD13

liar

(A)

(B)

CB1

SD10

SD11 SD12 SD13
(C)

fault indicates fault indicates no fault

Fig. 3. Three likely hypotheses

A good plan will optimize certain parameters under these constraints. Natu-
rally, breakdown costs should be minimised, i.e., as much load as possible should
be resupplied as fast as possible, with priority being given to critical consumers
like hospitals. Ideally the number of switching operations should also be opti-
mised, so as to stay close to the configuration in which the network is normally ex-
ploited (called the normal configuration), and power margins of circuit-breakers
should be balanced in anticipation of the next load peak.

Obviously, the identification of the faulty lines is crucial to the success of
the restoration. However, as explained above, this cannot be done on the ba-
sis of the information provided by the fault detectors alone. Even in the single
fault case, several hypotheses of fault location exist, each of which corresponds
to an hypothesis concerning the behaviour mode (“correct”, “liar”) of the fault
detectors. There exist preferences between hypotheses: the probability of mul-
tiple faults is much smaller than that of a fault detector lying, and this latter
probability is higher when the fault detector indicates a fault downstream than
when it does not because fault detectors do not detect all types of faults. But in
fact, only reconfiguration actions may enable us to gather enough information
to discriminate, as illustrated in the example below.

3.2 Example

Taking our example network, suppose that CB1 opens, leaving the bottom-most
feeder on the figure unsupplied. Suppose further that the fault detectors of SD10
and SD11 indicate a fault downstream, while the other fault detectors do not.
Among the most probable diagnoses are those shown in Figure 3: (A) the fault
detector of SD10 lies and there is only one fault, located between SD11 and SD12,
(B) the fault detector of SD11 lies and there is only one fault, downstream of
SD10, and (C) none of the fault detectors lie and there are two faults.

Assuming that we consider (A) to be the most likely, a promising restoration
plan goes as follows: isolate the line between SD11 and SD12 by opening these
devices, resupply the lines upstream of the fault by reclosing CB1, and have CB5
resupply the downstream lines by closing SD53.

90

Suppose the execution of the plan proceeds correctly up to the point where
CB1 reopens when we attempt to close it. Either this is due to a wrong fault
location hypothesis (e.g., (B) or (C) was the case), or to a fault which could
not be detected (here, a fault between CB1 and SD11), or to a failure of an
operation meant to isolate the fault (the actuator of SD11 could be lying, and
if its position detector is out of order, this cannot be directly detected). Since
faults can in principle occur at anytime, it could even be the case that a new
fault has appeared while we were attempting to restore the supply. However, to
keep this benchmark manageable, we will assume that no new fault can occur
during power restoration.

We let the reader elaborate on what are good choices for the next action to
perform. If we choose to open SD10 and reclose CB1 and it works, this tends
to favour hypothesis (B). In any case, this eliminates the possibility of a fault
between CB1 and SD11, as well as the possibility of the actuator of SD11 lying
in the context of hypotheses (A) or (C). If on the other hand CB1 opens again,
we have to look further. Alternatively, we could also choose to test hypothesis
(B) by closing SD62 and see whether CB6 opens, but this could be costly as
this could lead to the temporary loss of a new feeder. Or perhaps we should
close SD53 as in the original plan . . . Complete examples will be found in the
benchmark’s website.

3.3 Main features of the problem

Three main features make this problem particularly interesting for state of the
art planners. Firstly, partial observability is a crucial issue. Executing reconfig-
uration actions is necessary not only to change the state of the system, but also
to gain vital information. Conversely, a good knowledge of the system’s state
is necessary to chose purposeful actions and avoid increasing breakdown costs.
Unlike certain other problems involving partial observability, this one does not
even offer the possibility of gaining information without taking intrusive actions
and confronting the resulting observations with the expected ones. In sum, the
problem is very representative of the need to trade off the gain of information
which results from sensing and acting, the expected reward/penalty resulting
from performing the right/wrong actions, and the cost of failing to act quickly.
This is an optimisation problem, rather than one of merely reaching a desired
state.

Secondly, the size of the state space and the structure of the problem make
complete state enumeration – and a fortiori the incremental construction of
a universal plan – absolutely impractical. At the same time, if plan utility is
something to worry about, care should be exercised in pruning unlikely states
in a belief state, as getting rid of an unlikely but potentially very costly state
will spoil utility evaluation. Therefore, algorithms working with compact domain
representations or using very effective domain control knowledge are necessary.
Concerning designing appropriate control knowledge, a challenging aspect of the
benchmark is that it is still an open problem: functions estimating the utility of
network configurations exist, but the optimal solutions or rules of thumb for the

91

selection of actions with high utility are unknown. In fact, even discovering of
how best to order given switching operations would be useful.

Finally, as in other planning benchmarks derived from real-world applica-
tions, see e.g., [11], actions have effects which are quite complex to model. For
instance, closing a device increases the load of a circuit-breaker which should
have the capacity to produce the additional resource. Closing a device may also
lead to a fault being fed by the circuit-breaker, which will then open, leaving the
lines on its feeder unsupplied. All this requires formalisms and planners which
can handle domain constraints, infer ramifications and reason about resources,
or at least enable the specification of elaborate context-dependent effects in the
action descriptions.

4 Position of the problem in the literature

Supply restoration is not only very representative of issues that need to be
addressed when dealing with real-world applications, but also of current research
trends in planning and related areas. We now position the problem with respect
to the literature, identify approaches which look likely to lead to advances in
this domain, and describe existing work on this problem.

4.1 Planning and related areas

Progressive planners, such as TLplan [1] and TALplanner [12], appear as promis-
ing candidates to get somewhere with this benchmark in the very near fu-
ture. PTLplan [10] is an extension of TLplan to deal with partial observabil-
ity, stochastic actions, and probabilistic planning. Two features make progres-
sive planners particularly interesting for the problem: the expressiveness of the
planning language, and the extensive use of domain-control knowledge. After
research effort is invested in understanding additional requirements placed by
planning under uncertainty when it comes to the specification of domain control
knowledge, these generic planners should be able to mimic strategies used by
the domain specific supply restoration systems described below.

This said, progressive planners do not seem very-well equipped to deal with
the full scope of the problem, and in particular with discovering plans with high
utility. Firstly, there is no built-in capabilities for optimisation in TLplan yet.
Secondly, because they perform explicit state enumeration, these planners are
better suited to produce plans according to a domain-specific strategy, than to
perform extensive search for optimal plans.

Recent planners working with much more compact domain representations
include very expressive ones like Zander [13], which is based on stochastic sat-
isfiability, and MBP [7], which is based on model-checking. At present, MBP
generates plans that are guaranteed to achieve the goal despite sensor and actu-
ator uncertainty. This is impractical for our benchmark where uncertainty just
creates too many cases to be handled, and where gaining information up to the

92

point of being 100% sure to have reached a desired state often incurs unaccept-
able breakdown costs. Extensions to MBP which would relax this requirement
would have a strong potential for excellent results on our problem.

In the longer term, the answer to the question of the production of high
quality plans may well come from planners based on decision-theoretic regres-
sion [4]. First-order decision-theoretic regression is the key to symbolic dynamic
programming, and does not require state or even action enumeration. It has
been integrated with the situation calculus, leading to a very powerful problem-
solving framework [5]. At present, this framework only deals with fully observable
Markov decision processes, but once extensions to the partially observable case
are available, our benchmark should be near-perfect to evaluate their benefits.

Another worthwhile direction would be to investigate the appropriateness for
our problem of the general-purpose POMDP heuristics given in [6, 3].

Supply restoration is also typical of problems of interests in other areas such
as model-based diagnosis, repair, reconfiguration, and execution, see e.g. [8, 15,
18]. The approaches in this area are often rely on a two level architecture featur-
ing a diagnostic reasoner and a quasi-classical planner. If systems based on these
approaches have so far been the most effective in dealing with similar application
contexts, they still have some limits when confronted with our problem: they as-
sume that all relevant information can be reliably acquired when needed, and
that actions are reliable and sometimes elementary (a typical case is component
replacements). Moreover, they are often applied to problems with belief states
small enough for their content to be easily enumerated. These limits are largely
due to the use of now obsolete planners which are unable to operate under uncer-
tainty or to model actions with complex effects. Recent work on planning under
uncertainty could be used in the framework of these approaches to remedy some
of their current drawbacks.

A further line of research worth mentioning here is the modelling of diag-
nostic problem solving, including observations, actions, exogenous events, and
diagnosis/repair/reconfiguration plans, in languages close to those used in plan-
ning, e.g. the situation calculus [14] or narratives [2]. It would be of interest to
encode our example in these languages and experiment with the related planning
technology [5, 12].

4.2 Existing work on the problem and related ones

Other works of interest are those concerned with similar AI applications to power
systems. Space precludes more than the mention a few of them here.

SyDRe [16] is a simple decision-theoretic prototype for supply restoration on
power distribution systems. It operates successfully in presence of an arbitrary
number of faults, sensor and actuator uncertainties. However it does not reason
on how to gain information: it generates a sequence of actions for the most
probable state hypothesis, starts its execution, and revises this plan whenever the
history of actions/observations shows that another hypothesis is more probable.

Diagnosis and supply restoration in power transmission systems has been
studied e.g. in [8]. A crucial difference with our proposed testbed is that ob-

93

servations and actions are assumed to be reliable, which is reasonable when
considering transmission systems. Sensor and actuator uncertainty make power
distribution systems much more challenging.

The model-based reactive planner Burton has been applied to spacecraft en-
gine reconfiguration [18]. Although this reconfiguration problem seems easier to
handle – in particular observations and actions are reliable – it shares many
aspects with the present benchmark. Indeed power distribution systems are an-
other representative of the sensor rich, embedded, reconfigurable systems, which
Williams and Nayak have dubbed immobots [17]. A number of choices made in
Burton and SyDRe are similar. For instance the “upstream progression heuris-
tic” is used in both, and they both sacrifice optimality for the sake of efficiency,
by generating a sequence of actions for the most probable hypothesis and revising
the plan if necessary.

The above systems can be used as a reference to measure the performance
in time and solution quality of today’s generic uncertainty planners. Ideally, we
would like to see generic planners achieving comparable time performance by
using extensive domain-control knowledge, as well as planners producing plans
of much higher quality by reasoning on how to gain information.

5 Web site for this benchmark

We plan to make the items listed below available by early 2002 on the bench-
mark’s web site http://csl.anu.edu.au/∼thiebaux/benchmarks/pds/.

Formal description of the problem. For various reasons, the choice made in this
paper is to provide a textual description of the problem rather than a for-
mal one. We believe that this description is precise enough to be effectively
usable. However, the web site will provide an extended version of the paper
including a formal description in a TLplan-like language.

Network data and problem generator. Confidentiality issues prevent us to release
data concerning existing EDF power distribution systems. However, we will
make artificial data used in SyDRe’s test suite available, including sample
problems and suboptimal solutions produced by SyDRe. We also plan to
provide a random network/problem generator for systematic experiments.

Simulator and supply restoration system. The Standard ML implementation of
SyDRe will be downloadable from the web site. It includes a network sim-
ulator which can be used as a predictive model and a supply restoration
component which can serve as a reference basis for comparative tests. How-
ever, since SyDRe employs a very miopic strategy which does not reason
about how to reduce uncertainty, the ultimate goal is to obtain better qual-
ity plans than those produced by SyDRe.

6 Conclusion

This paper proposes the use of supply restoration in power distribution systems
as a benchmark for planning under uncertainty. The time has come to mea-

94

sure planning systems against such realistic examples to complement the deeper
analyses obtained with well-understood artificial problems. We have identified
approaches which are likely candidates for progress with this benchmark, as well
as their current limits. We hope that this paper will motivate the planning com-
munity to tackle the problem, and that the present decade will see success with
at least a scaled down version of the above network example.

References

1. F. Bacchus and F. Kabanza. Using temporal logic to express search control knowl-
edge for planning. Artificial Intelligence, 116(1-2), 2000.

2. C. Baral, S. McIlraith, and T. Son. Formulating diagnostic problem solving using
an action language with narratives and sensing. In Proc. KR, 2000.

3. B. Bonet and H. Geffner. Planning with incomplete information as heuristic search
in belief space. In Proc. AIPS, pages 52–61, 2000.

4. C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1-2):49–107, 2000.

5. C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-
order MDPs. In Proc. IJCAI, 2001.

6. A.R. Cassandra, L. Kaelbling, and J.A Kurien. Acting under Uncertainty: Discrete
Bayesian Models for Mobile-Robot Navigation. In Proc. IROS-96, 1996.

7. A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeterministic domains
under partial observability. In Proc. IJCAI, 2001.

8. G. Friedrich and W. Nejdl. Choosing observations and actions in model-based
diagnosis-repair systems. In Proc. KR, pages 489–498, 1992.

9. S. Hanks, M.E. Pollack, and P.R. Cohen. Benchmarks, testbeds, controlled ex-
perimentation, and the design of agent architectures. AI Magazine, 4(14):17–42,
1993.

10. L. Karlsson. Conditional progressive planning under uncertainty. In Proc. IJCAI,
2001.

11. J. Koehler and K. Schuster. Elevator control as a planning problem. In Proc.

AIPS, pages 331–338, 2000.
12. J. Kvarnström, P. Doherty, and P. Haslum. Extending TALplanner with concur-

rency and ressources. In Proc. ECAI, pages 501–505, 2000.
13. S.M. Majercik and M.L. Littman. Contingent planning under uncertainty via

stochastic satisfiability. In Proc. AAAI, pages 549–556, 1999.
14. S. McIlraith. Explanatory diagnosis: conjecturing actions to explain observations.

In Proc. KR, pages 167–177, 1998.
15. Y. Sun and D. Weld. Beyond simple observation: Planning to diagnose. In Proc.

AAAI, pages 182–187, 1993.
16. S. Thiébaux, M.-O. Cordier, O. Jehl, and J.-P. Krivine. Supply restoration in

power distribution systems — a case study in integrating model-based diagnosis
and repair planning. In Proc. UAI, pages 525–532, 1996.

17. B. Williams and P. Nayak. Immobile robots – AI in the new millennium. AI

Magazine, 17(3), 1996.
18. B. Williams and P. Nayak. A reactive planner for a model-based executive. In

Proc. IJCAI, pages 1178–1185, 1997.

95

96

The DATA-CHASER and Citizen Explorer
Benchmark Problem Sets

Barbara Engelhardt
1
, Steve Chien

1
, Anthony Barrett

1
,

Jason Willis
2
, Colette Wilklow

2

1
Jet Propulsion Laboratory, California Institute of Technology

{firstname.lastname}@jpl.nasa.gov

2
Previously at Space Grant Consortium, University of Colorado, currently at (1)

Abstract. This paper introduces two benchmark problem sets based on actual space

mission operations. Each benchmark problem set includes problem generators,

declarative specification of the problem(s), and one or more simulations. The first

mission is the DATA-CHASER shuttle payload that flew onboard space shuttle

Discovery flight STS-85 in 1997, and demonstrated the ability of automated mission

planning to both reduce commanding effort and improve science return. The second

mission is the Citizen Explorer Mission (CX-1), which is a small, earth orbiting

satellite currently being prepared for launch. We include three problem classes of

increasing complexity (and realism) for each mission scenario: planning and scheduling

with states and resources (PSSR), PSSR with functional dependencies, and PSSR with

functional dependencies and plan quality. The actual implementations are available

for download from web sites at the University of Colorado, which designed and

operated these spacecraft and missions.

1 Introduction

Historically, the research and applications communities in the area of automated

planning and scheduling have not had significant amounts of interaction. As a

consequence, there has not been significant transfer of information between the

communities in either direction. Specifically, the cross-fertilization of communities is

limited to a small number of research systems deployed in an ongoing operational

context, and similarly only a few real-world planning and scheduling problems have

breached the research community.

There are many reasons for this situation. It takes an incredible investment of time

and energy for a researcher to learn the intricacies of an application domain. The

research community and research institutions generally have not rewarded this

investment of effort. Likewise, the community solving actual planning and scheduling

problems did not have adequate incentive to work with the research community. With

many difficult problems to solve in building functional systems, many of the central

research areas are of lower priority. And in the commercial arena, there is significant

negative incentive to distribute lessons painfully learned, which represent a n important

competitive advantage after all.

Fortunately, this situation appears to be changing. Within the research community,

there is an increasing understanding of the importance of being relevant to the real

world. With the appearance of startup companies and venture capital, the financial

incentive to develop mature algorithms has grown considerably. Furthermore, with the

97

maturation of the field (and technology), the incentive for applied organizations to

engage the research community has become more urgent.

This paper represents an effort to leverage the research community in developing

techniques for integrated planning and scheduling problems that occur commonly for

space mission operations. The remainder of this paper is organized as follows. First,

we describe the basic elements that we provide for each testbed domain: a domain

description, a declarative model, problem generators, and a simulation. For each such

domain, we provide three versions of increasing complexity. A basic version of each

domain includes planning and scheduling with resources. A more complex version

adds functional dependencies. And the most complex version includes both functional

dependencies and plan quality. Next, we describe each of the domains described in

this paper: DATA -CHASER shuttle payload operations and Citizen Explorer (CX-1)

satellite mission operations. For each domain we describe the background for the

mission and mission goals. We then provide more details about the planning and

scheduling problems. Next we describe the provided problem generators and

simulators. Finally, we compare the problem domains presented with previously

published domains in both the planning and scheduling and the operations research

communities.

2 The Elements of a Testbed Domain

The first element of each domain is a textual description. This description gives the

context of the model, problem generators, and simulation. It explains the mission being

modeled and the overall problem context. It also references previous work in

automated planning and scheduling solutions to the problem.

The second element of each domain is a model. This model is provided in the

ASPEN Modeling Language (AML) [Sherwood et al. 1998]. AML is a mature

representation language that has been used to represent planetary rover operations

constraints [Sherwood et al. 2000] as well as space mission operations constraints for

actual deployments [Smith et al. 2001, Wilkins&desJardins 2001]. While ideally these

domain models could be provided in a more generic language, this format was chosen

for two reasons. First, using AML facilitates timely release of the domain models by

minimizing release effort. Given that it is desirable to release as many domain models in

a timely fashion, it is hoped that others in the community will translate these models

into a generic format. Second, certain aspects of the domain model would be difficult

to represent in current generic domain description languages. The hope is that release

of these models will spur extension of domain description languages. A description of

the modeling language used for the original models is available for download from

http://aspen.jpl.nasa.gov.

The third element of each problem domain is a problem generator. This is an

executable (in these cases, Perl scripts) that can be used to generate a large number of

initial states and goals for a planner to solve. In most cases the problem generator is

parameterized to enable generating problems of varying size and diffic ulty.

The final element of each problem domain is a simulator. Once a planner has

specified a plan, an execution simulation can be used to stochastically evaluate the

effectiveness and the robustness of the plan for simulated missions operations.

Effectiveness determines how well the planner satisfied the spacecraft goals, and can

be measured by assessing the operational results, such as the science return, resource

consumption, or state changes. Robustness, on the other hand, measures the ability of

the planner to enable a successful mission in spite of significant run-time variations

and anomalies, such as an action finishing early, consuming excessive resources, or

98

simply not executing correctly. Robustness can be measured by determining the

number of inappropriate actions that are sent to the simulator, which in turn violate the

constraints of the domain or put the spacecraft in an unsafe state.

The simulator itself has three parts: The database which stores the current state at

time t, a set of specifications and constraints, and an executive, which receives action

commands from the planner, attempts to execute them using the specification and

constraint set, and updates the current state. The simulator is scalable so that there

can be large or small simulations. The modeling of the simulator depends on how the

planning language is defined, which determines whether activities are time-stamped,

connected by constraints, or have conditional activities, or whether the planner can

update its plan based on simulation feedback during the simulation.

For our domains, batch planners and continuous planners both use the same

simulator. The planner is required to submit activities some number of seconds in

advance of their scheduled execution, which is described as the commit window. The

commit window must be greater than or equal to one second, and the planner must

register the commit window length with the simulator when execution starts. The

commit window size can change during execution, but the planner cannot modify

activities once they have entered the commit window. The planner can receive updates

from the simulator regarding activity parameter changes (such as start time or

duration), state and resource updates, and current time. The simulator can warp so that

the plans can run much faster than real time, relative to the commit window described

by the particular planner. Batch planners can control the simulator either by setting the

commit window to the duration of the plan (in which case the simulator can quickly

warp through the entire simulation), or by passing parameterized activities at the

appropriate times, but not replanning during the simulation. An important point to

note here is that the domain information does not pose any restrictions on the use of

planning technology to solve the problems. The planners could use constraint-based

methods, committed search methods, or any other methods. Indeed, there is no

restriction that a planner must be used, a smart executive or even arbitrary C code

could be used to command the simulator. This opens the competition to truly test if

planning technology is useful.

The stochastic model, or run-time variations, are stored as part of the

specifications, which specify distributions instead of single values for certain variable

features. Three different aspects of the mission can be impacted at run time: activity

failure, resource consumption, and time and duration of state changes. Each domain

has a stochastic and a non-stochastic simulator included in the release.

3 The DATA CHASER Mission

The DATA-CHASER was a Hitchhiker payload that flew onboard the Space Shuttle

Discovery flight STS-85 in August 1997. (Figure 1) It had 3 co-aligned instruments

that take data in the far and extreme ultraviolet wavelengths: far and extreme ultra-violet

spectrometer (FARUS), soft x-ray and extreme ultraviolet experiment (SXEE), and a

Lyman-Alpha solar imaging telescope (LASIT). In the actual DATA-CHASER mission,

mission operations were automated using the DCAPS (DATA -CHASER Automated

Planner and Scheduler) planning system [Chien et al. 1999]. The DATA -CHASER

Fig. 1. DATA-CHASER payload integrated into the STS-85 Shuttle Bay, STS-85 launching,

and Payload Operator Jason Willis using DCAPS to command DATA-CHASER.

99

domain as modeled for the actual mission uses 67 resources and 58 activity types.

Examples of resources include onboard power, a 4 MB memory buffer, and a 2 GB

digital tape drive. Most of the systems have at least one state variable, which

represents whether or not they are activated. Shuttle orientation is also modeled as a

state variable. There are many concurrency resource constraints, for instance a

downlink or uplink can only occur during contact with a TDRSS satellite. The activities

include taking a picture with LASIT, changers for each state variable (such as

opening/closing instrument doors), and descriptions of exogenous events like the

shuttle passing to/from the Earth’s shadow. Unfortunately, software integration

difficulties before launch disabled part of the hardware during the mission. Our

problems are based on the mission as originally designed.

DATA -CHASER problems involve trying to take observations within specified time

windows given a number of exogenous events that change at different times. For

instance, one consequence of flying on the shuttle system is that shuttle resources are

shared and, hence, limited, with availability subject to change every 12 hours (the

frequency at which NASA changes shuttle flight plans). These resources include

access to uplink and downlink channels, and time that the payload is allowed to

operate. Moreover, scientis ts would like to perform dynamic rescheduling during the

mission. For instance, a solar flare can occur at random and drive a scientist’s desire to

rapidly alter the DATA-CHASER’s activity schedule to reflect new requirements and

goals, such as altered instrument priorities or longer integration times.

DATA -CHASER requires data and power management while gathering science. An

automated scheduler searches for an optimal “data taking” schedule, while adhering to

the constraints and resource restrictions. In its basic formulation, DATA -CHASER is a

straightforward resource and state constrained scheduling problem that serves as a

good introduction to the types of operations constraints common in spacecraft

operations. A more complicated formulation requires representation of a number of

functional dependencies including thermal and power constraints. In the full-blown

formulation, DATA-CHASER represents a complex scheduling problem involving

deadlines, observation windows, science preferences, linked observations, and

engineering optimization criteria such as minimizing tape starts and stops as well as

instrument door operations. There is no substantive planning (e.g. subgoaling) in the

DATA-CHASER domain.

3.1 The DATA-CHASER Models and Problem Generators

The simplest DATA-CHASER model has over 46 activity types that are defined in

terms of their effects on 19 resources and 9 states, which collectively represent the

DATA-CHASER’s external environment and subsystems. Such resources and states

include the memory buffer, available power, communications availability periods,

subsystem modes, and shuttle orientation. Most activities are possible commands to

payload subsystems like performing an observation, moving data to a DAT recorder, or

downlinking data. A smaller set of activities is for representing uncontrollable

exogenous events like a shuttle orientation shift or entering a communications

availability period. The five types of exogenous events to schedule around include:

• Shuttle orientation: The shuttle can point its cargo bay in one of four directions:

Earth, Sun, Moon, and Deep Space. Given that the DATA -CHASER is a low

priority Hitchhiker payload, it has no control over the orientation.

• Shuttle contamination: Occasionally the shuttle needs to fire its maneuvering

rockets for orbit maintenance. In addition to accelerating the shuttle, this activity

100

contaminates local space for a short time. The DATA-CHASER has to close its

main canister door during this time to keep its optics clean.

• Low data rate communications windows : During most of the mission the shuttle can

provide a 1200 byte/sec downlink through the TDRSS satellite network, but a one to

ten minute window exists in each orbit when no TDRSS satellite is in view.

• Medium data rate communications windows : Occasionally the mission will have a

25000 byte/sec downlink to a ground station, but availability depends on ground

station visibility and the needs of other more important missions.

• Eclipse events: Once every orbit the shuttle travels through the Earth’s shadow,

and no solar observations are possible.

DCAPS-RES is our simplest DATA-CHASER planning model and illustrates

planning with resources. The objective is to perform observations when the shuttle is

not in the Earth’s shadow, the cargo bay is facing the sun, and the shuttle has not

recently contaminated the space around it. FARUS, SXEE and LASIT respectively take

72, 181, and 52 seconds and generate 5120 bytes, 48 bytes, and 2 megabytes per

observation, and whole system generates a kilobyte of engineering telemetry per hour.

Given that the memory buffer only has 4 MB, it is the most constrained resource. Since

data can be rapidly transferred to the 2GB DAT recorder, there are naïve approaches to

scheduling the observations by simply transferring the data as soon as it collected, but

data on the DAT cannot be downlinked for rapid analysis during the mission. Rapid

analysis is desired to let scientists alter the priorities of different observations to

improve data quality. Thus some goals have explicit downlink requirements, making

the scheduling problem slightly more difficult.

While our first model had fairly simple actions that took constant amounts of time

and had static effects, our second model (called DCAPS-PARM) is slightly more

complex in that it uses parameter dependency functions capture the context dependent

thermal management problem. Since DATA-CHASER was mounted on a poorly

conducting trellis in the vacuum of space, the only way to dissipate heat was through

radiation. This means that the payload warmed when the sun beat down on it, and

cooled during eclipses and when it pointed at deep space. We model this in terms of

the temperature of the payload changing at rates determined by the shuttle’s

orientation, whether or not the canister door is open, and the power requirements of

current activities. Given our model of heat, a schedule has a conflict due to calibration

loss whenever the temperature falls outside of an 18° to 22° Celsius range.

Given DCAPS-PARM, we define DCAPS-OPT as an even harder third model to

optimize science collection during a 12 hour period where different observations have

context dependent payoffs depending on varying solar activity – an exogenous event.

The problem generators create random start states with subsequent 12-hour

exogenous event scenarios and either a requested collection of observations or an

observation payoff metric for the DCAPS-OPT model. We describe the exogenous

events either in terms of cycles that start at a random point or markov models where

time to take a transition is uniformly distributed between an upper and lower bound.

For instance, the shuttle will be at some random point in its orbit and the day/night

transition is a cycle starting at that point. Shuttle orientation provides an example of a

markov model where scheduling to satisfy other payload needs results in changing the

shuttle’s orientation in random ways. In order to inject some realism into our markov-

model-based exogenous events, we built our markov models from the 12-hour shuttle

event sequences used during actual DATA -CHASER operations.

101

3.2 The DATA-CHASER Simulator

We evaluate solution plans for a problem by simulating them. The simulator takes

exogenous events and grounded activities and determines what happens to the

payload. For instance, having the contamination event with the CHASER door open

may result in the instruments failing due to dirty optics. To evaluate solutions in each

of the three models, the simulator has a flag to control the temperature component. For

the simplest model, the simulator holds the temperature constant, and for the other

models the simulator lets the temperature vary.

To make the problem more realistic, the simulator has a second flag to control a

stochastic element. While actions in planning domains have explicit durations and

effects, actions in reality have results that vary stochastically. For instance, a model

might pessimistically state that it takes two minutes to transfer a LASIT image to the

DAT recorder, but the actual time might vary from 100 to 120 seconds. In addition to

time four other effects can vary around nominal operations:

• Datatakes : Datatakes will fail randomly 9% of the time. Actual power usage will

differ from predicted power usage based on a normal distribution with a small

variance. Failure rates and variances increase as the instruments’ temperature

approach the 18° and 22° Celsius bounds due to calibration problems.

• DAT Transfers : Transferring data to the DAT fails 2% of the time with data loss.

• Communications: Communications windows can drift slightly due to small variances

between the Shuttle’s orbit and the TDRSS satellite network.

• Thermal: The payload’s rate of temperature change can vary by up to 5%.

Once given a problem description, the simulator takes grounded activities some set

time in advance of executing them and giving sensory feedback in the form of failure

notifications and the actual changes to the payload, which can stochastically different

from the modeled expectations. This approach facilitates being able to test both batch

planning approaches as well as incremental approaches. Upon completing the plan the

simulator returns the plan’s resulting score based on multiple criteria:

• The number of violated operational conflicts

• The number of successfully downlinked observations by observation type

• The number of observations stored on the DAT by observation type

• The number of times that the CHASER door opens and closes

• The number of activity failures by activity

• The total amount of power used while performing the observations

• An observation time based utility function for DCAPS-OPT problems.

4 The Citizen Explorer 1 (CX-1) Mission

The CX-1 spacecraft is a student designed and built spacecraft (Figure 2), developed

by the Colorado Space Grant Consortium [Willis et.al. 1999]. The CX-1 satellite has a

gravity gradient boom to keep it pointed to the Earth and uses two instruments to make

atmospheric observations: a photometer to measure visible light intensity near the

365nm wavelength and a spectrophotometer to measure light intensities at different

wavelengths between 280 and 350nm. These instruments will be used to perform

atmospheric and climatological science coordinated with ground-based ozone and

aerosol measurement. CX-1 was originally scheduled to launch on No vember 17, 2000.

However, due to software and hardware difficulties with the communications

subsystem, this launch has been delayed. Future launch possibilities are currently

being negotiated. When launched, CX-1 will be in a sun-synchronous orbit around the

102

Earth at an altitude of 705 kilometers. The main ground tracking station will be in

Colorado, and will downlink stored satellite data, provide real time health and status

data, and uplink commands and control directives. CX-1 will also broadcast science

and engineering data at UHF frequencies to schools at locations in the US.

CX-1 mission planning scenarios focus on the problem of acquiring the appropriate

atmospheric measurements, downlinking the data to the correct schools during the

upcoming pass, uplinking real-time activity requests from the University of Colorado,

and monitoring spacecraft health and orbit patterns. Multiple constraints make this

problem difficult. First, small data buffer sizes make CX-1 planning a highly resource

constrained scheduling problem. Second, the time windows when CX-1 can downlink

to a ground station are extremely limited by the limited onboard power and the small

size of K-12 school ground stations (due to cost constraints),. Third, a large amount of

data will be requested from the spacecraft so that it is important to optimize use of

available downlink. Fourth, measurements made by CX-1 are categorized and driven by

sun levels , hence the operations will vary based on near real-time feedback. While CX-

1 operations does involve a small amount of planning (subgoaling), it is primarily a

scheduling problem.

4.1 The CX-1 Models and Problem Generators

The model for CX-1 has approximately thirty-two activities, including data-takes, data

downlinks, data uplinks, and engineering activities. These activities are defined in

terms of their effects on thirteen resources and eight states, which collectively

represent the CX-1’s subsystems and external environment. These resources and

states include the flash memory buffer, communications link, available battery power,

solar array power, a sun sensor, ground station in-view periods, climate modes, and

transmitter modes. Activities are either commands to satellite subsystems or

exogenous events affecting the satellite’s states or resources, such as entering/exiting

the view of a ground station or entering/exiting direct sunlight.

The model also has mission and operations constraints, which can impact activities

(temporal constraints), resources, or states. Temporal constraints include requirements

that a series of critical housekeeping operations must be performed at the transitions

between light and dark. Resource constraints include requirements that the flash

memory buffer cannot exceed its capacities and that the battery power cannot go below

half of its maximum capacity. State constraints include requirements that uplinks and

downlinks only occur when the Colorado station in in -view and that the transmitter is

in transmit mode. Also, school downlinks (which do not move any memory off of the

flash memory buffer) can only occur when the schools are in-view and the transmitter

is in broadcast mode, engineering activities must take place when the sun is not

directly visible, and data takes must occur while the sun is in-view.

CX-1 problems involve obtaining and downlinking the maximum amount of

atmospheric data while staying inside power and memory resource guidelines. The in-

view duration for the Colorado ground station varies depending on the orbit of the

satellite and outages in the ground station. Removing data from the flash memory

buffer before it fills requires downlinking as much as possible during each visibility

window, and this requires dynamic rescheduling as viewing periods change. Also,

Fig. 2. The CX-1 Spacecraft, undergoing integration and test, and an artist’s

depiction of the CX-1 Spacecraft deployed and in flight

103

changes in power consumption by certain activities affects the power profile and can

drain excessive power from the satellite. Here dynamic rescheduling facilitates

discarding activities to stay within power guidelines.

There are three different CX-1 models with increasing complexity. In CX1-RES,

activities have constant durations and have constant resource and state needs. This

model represents a straightforward space mission operation domain for planning and

scheduling with constrained states and resources. The CX1-PARM model adds a

number of parameter dependencies. For some activities, power usage is a function on

activity duration and lighting state, and takes as much power as possible from the solar

power source before relying on battery power. Battery usage is a function of current

levels of battery charge and the duration of the activity. Downlinking bandwidth is a

function of the modes of the satellite. Finally, the CX1-OPT model further increases

the complexity by including optimality criteria. These criteria are based on the total

amount of data downlinked to the ground stations (preferring more data), the largest

amount of data contained in the memory buffer at any one time (with a preference for

less), the amount of data acquired while in non-tropical climates (preferring more), the

number of mode switches in the transmitter, and the smallest charge on the available

power (preferring a higher minimum charge).

With these models the CX-1 problem generators create six different files containing

activity instantiations for a user specified number of orbits. Some of these activities

are changers for exogenous events and they cannot be deleted, removed, or modified

in the schedule. Others are requests for downlinking, engineering events, and

datatakes, and can be modified, added to, or removed in the final schedule.

• Initialization Activities: In the start state, there is a random amount of power in the

battery and a random amount of data currently stored in the flash memory.

• Engineering Data Requests: Engineering scans are requested approximately every

280 seconds while the spacecraft is in both in -view of the sun and in darkness.

• Datatake Requests: These requests occur approximately every 170 seconds when

the spacecraft is in-view of the sun.

• Sun In-View Periods: These periods are generated randomly based on an estimate

of a CX-1 proposed orbit and a somewhat random start position. The spacecraft

always begins the simulator in darkness. The climate (tropical or non-tropical)

transitions are generated relative to the sun in-view periods.

• Power Activities: Solar power activities add a random amount of power to the

available power resource, and occur approximately every 300 seconds while the

spacecraft is in-view of the sun.

• Downlink Station In-View Periods: Downlink windows to both the Colorado ground

station and participating schools are generated randomly based on viewing

windows for an estimated orbit and sun in-view periods. Each window’s duration is

based on both satellite position and the strength of the receiving station.

4.2 CX-1 Simulation

We can describe the mission operations of the CX-1 model, as described above, in

terms of the stochastic element of the planning simulation in order to illustrate how the

simulation can differ from predicted (or nominal) operations. For instance, many

activities have actual power usages that are normally distributed with a small variance

around their predicted power usages.

• Engineering Scans: Engineering scans fail randomly 7% of the time.

• Datatakes : Datatakes will fail randomly 9% of the time.

104

• Solar Power Functions: The actual amount of solar power is normally distributed

around the model’s predicted solar power with a small variance.

• Light/Dark Cycle: The sunlight/darkness cycle may be shifted based on a cyclic

model of satellite drift. The shift also impacts entering and exiting tropical zones.

• Downlinking: Satellite drift impacts all downlink opportunity windows. The start

time may be moved (i.e., delayed lock up) and the duration may be shortened (i.e.,

signal cut off) based on a cyclic model of satellite drift.

• Bandwidth: The bandwidth to downlink both spacecraft data and science data is a

uniformly distributed number, owing to possible downlink problems.

These stochastic parameters can remain ungrounded until run-time where they

impact the planner’s effectiveness. Many runs can be performed on the simulator to

estimate the expected performance of the planner. For testing purposes, we also

include a “happy simulator” which runs nominal operations with zero variance.

The CX-1 simulator receives parameterized activities from the planner and simulates

operations for the entire duration of the plan. Throughout the the plan’s execution, the

simulator calculates the score based on the following criteria:

• Number of violated operational conflicts (e.g., dual usage of atomic resources,

overflowing the memory buffer, or downlinks to nonexistent ground stations)

• Total amount of data downlinked to the Colorado ground station

• Flash memory usage (preferring a lower mean usage and smaller variance)

• Available power (preferring a higher mean and smaller variance)

• Total amount of data downlinked to the school ground stations

• Total amount of data acquired while in a non-tropical zone

• Total number of transmitter mode switches

5 Accessing the Problem Set Information

The problem set information is downloadable from the University of Colorado Space

Grant Web Site (www-sgc.colorado.edu). While the release sets are preliminary and are

still undergoing slight revisions (and testing), they are very close to the final sets.

This site will also be the focal point for future updates and releases. While the

domains are being made available to the public, specific terms are listed on the web site

– including acknowledgement of the source in the event of any usage of the material,

prohibitions on commercial use, etc.

6 Discusion: Future Work, Related Work, Conclusions

We hope that these domains will be the first in a series of space mission operations

domains released for use by the automated planning and scheduling community. As

we have less mature collaboration efforts with three other University Nanosatellite

projects, we hope that eventually we will be able to release similar problem sets relating

to these. An important aspect of this work in volves determining standards for

releasing domains – i.e. a formalization of the domain, problem generator, and simulator

specifications. Developing a sufficiently expressive domain representation standard

would facilitate use of the problem sets by other research groups.

While there has been a historical disconnect between the research and applications

oriented planning communities, a number of planning-oriented domains and testbeds

have been made available. These testbeds have originated in the research community

by experimenters as they either improve an existing planner’s performance or define

105

algorithms that plan with ever more expressive action representations. For instance,

the classical PRODIGY and UCPOP planners had multiple test domains included in their

releases. The sensory GRAPHplan package [Graphplan] has accompanying domains

as well. Our testbeds differ from this work due to our underlying focus on real world

problems instead of planner test cases.

On the planner comparison side, many planner optimization papers report planner

performance on a number of benchmark problems, and the most realistic of these is a

logistics problem to move packages around an artificial map. Additionally, the AIPS 98

[McDermott 2000] and 2000 [Bacchus] planning competitions had problems defined in

a standard modeling language called PDDL, and test domains with problem generators

and plan simulators were used. Our domains are different than these previously

released testbeds in that they are derived from actual space mission operations

problems and address integrated planning and scheduling with metric time, resources,

functional dependencies, and optimization (although a number of AIPS 2000 domains

had some of these elements).

The part -machining domain [Gil 1991] and the elevator control domain [Koehler &

Schuster 2000] were motivated by real problems. The part machining was an attempt to

extract domain knowledge about how to turn a mass of metal into a machined part and

encode it into a PRODIGY domain. Similarly, the elevator control domain involved

taking a set of services and constraints and encoding them in PDDL to be solved by

planners such as those participating in the AIPS competitions. One of the results from

these efforts involved determining where the established modeling language cannot

represent a desired feature of the real world problem. For instance, the elevator control

problem has a capacity constraint that PDDL could not represent. Our work differs

from this research in two places. We do not avoid time and other metric constraints,

and we altered our simulators to facilitate experimenting with interleaved planning and

execution.

A number of additional pure scheduling benchmarks exist [Fox & Ringer] as well as

makespan benchmarks. These are designed to be more manufacturing and enhanced

job-shop scheduling problems. In contrast, our work emphasizes the integrated

planning and scheduling inherent in space mission operations.

Other research on interleaved planning and execution has resulted in shared

testbeds like tileworld, truckworld, and the phoenix testbeds [Hanks et al. 1993]. These

worlds were generated as benchmark cases for agent design within a multi-agent

context. While tileworld and truckworld were relatively simplistic testbeds fo r testing

agent systems, the phoenix testbed focused on a forest firefighting domain. Each of

these testbeds offered defining problems with varying complexity, but only the phoenix

testbed had an underlying operations scenario like our testbeds. The Robocup rescue

project [Kitano et al 2001] also focuses on providing testbeds with an underlying

operations scenario. It targets distribution of a complex multi-agent simulation

environment. This environment has the potential to provide an extremely rich planning

and scheduling testbed.

This paper introduced two benchmark problem sets based on actual space mission

operations. Each benchmark problem set includes problem generators, declarative

specification of the problem(s), and one or more simulations. The first mission is the

DATA-CHASER, which demonstrated the ability of automated mission planning to

both reduce commanding effort and improve science return [Chien et al. 1999]. The

second mission is the Citizen Explorer Mission (CX-1), which is currently being

rescheduled for launch. We include three problem classes of increasing complexity

(and realism): planning and scheduling with states and resources (PSSR), PSSR with

functional dependencies, and PSSR with functional dependencies and plan quality.

106

The domain descriptions, problem generators, and simulators are available for

download from a web site at the University of Colorado, which designed and built

these spacecraft and missions (and operated DATA-CHASER). It is our hope that

release of this information will help to focus the planning and scheduling research

community on key issues in planning and scheduling including: domain model

expressiveness, representing functional dependencies, and plan optimization.

7 References

1. Sherwood, R., et al. “Using ASPEN to Automate EO -1 Activity Planning,” Proceedings

1998 IEEE Aerospace Conference, Aspen, Colorado, March, 1998.

2. Sherwood, R., Estlin, T., Chien, S., Rabideau, F., Engelhardt, B., Mishkin, A., and Cooper,

B., “An Automated Rover Command Generation Prototype for the Mars 2001 Marie Curie

Rover,” SpaceOps 2000, Toulouse, France, June 2000.

3. Smith, B.D., Engelhardt, B.E., Mutz, D., “Automated Mission Planning for the Modified

Antarctic Mapping Mission,” Proceedings 2001 IEEE Aerospace Conference, Big Sky,

Colorado, March, 2001.

4. Wilkins, D. and desJardins, M., “A Call for Knowledge -based Planning,” AI Magazine,

11(1): 99-115, 2001.

5. Chien, S., Rabideau, G., Willis, J., and Mann, T., "Automating Planning and Scheduling of

Shuttle Payload Operations," Artificial Intelligence Journal 114 (1999) 239-255.

6. Willis, J., Rabideau, G., Wilklow, C., "The Citizen Explorer Scheduling System,"

Proceedings of the IEEE Aerospace Conference, Aspen, CO, March 1999.

7. Sensory GraphPlan home page, http://www.cs.washington.edu/ai/sgp .html

8. McDermott, D. The 1998 AI Planning Systems Comp. AI Mag 21(2), 2000.

9. Bacchus, F. The AIPS-00 Planning Competition. http://www.cs.toronto.edu/aips2000

10. Gil, Y., “ A Specification of Manufacturing Processes for Planning,” CMU-CS-91-179.

11. Koehler, J. and Schuster, K., “Elevator Control as a Planning Problem,” Proc 5th Intl Conf

on Art Intelligence Planning Systems, Breckenridge, CO. April, 2000.

12. B. Fox and M. Ringer, Resource Constrained Scheduling Problem Home Page,

http://www.neosoft.com/~benchmrx/

13. S. Hanks, M. E. Pollack, and P.Cohen, “Benchmarks, Testbeds, Controlled

Experimentation, and the Design of Agent Architectures, AI Magazine, 14(4):17-42, 1993.

(also see http://www.cs.pitt.edu/~pollack/distrib/tileworld.html)

14. H. Kitano and S. Tadakoro, “RoboCup Rescue: A Grand Challenge for Multiagent and

Intelligent Systems,” AI Magazine, 11(1): 39-52, 2001. (also see http://www.r.cs.kobe-

u.ac.jp/robocup -rescue/)

107

108

September 13

Sapa: A Domain-Independent
Heuristic Metric Temporal Planner

Minh B. Do & Subbarao Kambhampati�
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406fbinhminh,raog@asu.edu

http://rakaposhi.eas.asu.edu/sapa.html

Abstract

Many real world planning problems require goals with deadlines and durative actions that consume resources. In
this paper, we presentSapa, a domain-independent heuristic forward chaining plannerthat can handle durative actions,
metric resource constraints, and deadline goals. The main innovation ofSapais the set of distance based heuristics
it employs to control its search. We consider both optimizing and satisficing search. For the former, we identify
admissible heuristics for objective functions based on makespan and slack. For satisficing search, our heuristics are
aimed at scalability with reasonable plan quality. Our heuristics are derived from the “relaxed temporal planning
graph” structure, which is a generalization of planning graphs to temporal domains. We also provide techniques for
adjusting the heuristic values to account for resource constraints. Our experimental results indicate thatSapareturns
good quality solutions for complex planning problems in reasonable time.

1 Introduction

For most real world planning problems, the STRIPS model of classical planning with instantaneous actions is inad-
equate. We normally need plans with durative actions that execute concurrently. Moreover, actions may consume
resources and the plans may need to achieve goals within given deadlines. While there have been efforts aimed at
building metric temporal planners that can handle different types of constraints beyond the classical planning spec-
ifications [14, 9, 11], most such planners either scale up poorly or need hand-coded domain control knowledge to
guide their search. The biggest problem faced by existing temporal planners is thus the control of search (c.f. [17]).
Accordingly, in this paper, we address the issues of domain independent heuristic control for metric temporal planners.

At first blush search control for metric temporal planners would seem to bea very simple matter of adapting the
work in heuristic planners in classical planning [3, 12, 7]. The adaptation however does pose several challenges. To
begin with, metric temporal planners tend to have significantly larger search spaces than classical planners. After all,
the problem of planning in the presence of durative actions and metric resources subsumes both the classical planning
and scheduling problems. Secondly, the objective of planning may not belimited to simple goal satisfaction, and
may also include optimization of the associated schedule (such as maximum lateness, weighted tardiness, weighted
completion time, resource consumption etc. [15]). Finally, the presenceof metric and temporal constraints, in addition
to subgoal interactions, opens up many more potential avenues for extracting heuristics (based on problem relaxation).
Thus, the question of which relaxations provide best heuristics has tobe carefully investigated.

In this paper, we presentSapa, a heuristic metric temporal planner that we are currently developing.Sapais a
forward chaining metric temporal planner, whose basic search routines are adapted from Bacchus and Ady’s[1] recent
work on temporal TLPlan. We consider a forward chaining planner because of the advantages offered by the complete
state information in handling metric resources [17]. Unlike temporalTLPlan, which relies on hand-coded control
knowledge to guide the planner, the primary focus of our work is on developing distance based heuristics to guide
the search. InSapa, we estimate the heuristic values by doing a phased relaxation: we first derived heuristics from
a relaxation that ignores the delete effects and metric resource constraints,and then adjust these heuristics to better
account for resource constraints. In the first phase, we use a generalizationof the planning graphs [2], called relaxed
temporal planning graphs (RTPG), as the basis for deriving the heuristics. Our use of planning graphs is inspired
by (and can be seen as an adaptation of) the recent work onAltAlt [12] and FF [7]. We consider both optimizing
and satisficing search scenarios. For the former, we develop admissible heuristics for objective functions based on
makespan or slack. For the latter, we develop very effective heuristics that use the characteristics of a “relaxed” plan�We thank David E. Smith, Terry Zimmerman and three anonymousreviewers for useful comments on the earlier drafts of this paper. This
research is supported in part by the NSF grant IRI-9801676, and the NASA grants NAG2-1461 and NCC-1225.

109

Refuel(Airplane,B)

Fast-flight(B,C)

A C
1000

Airplane

Init Goals Deadline

t0 t1 t2 t3 t4 t5 tg

B

Sample Problem Description

1200 At(Person2,C)
Goals: At(Person1,C)

Person2

Person1

Board(P1) Slow-flight(A,B) Board(P2) Deplane(P1)

Deplane(P2)

t6

Solution for the Sample Problem

Figure 1: Sample problem description and its solution

derived from the planning graphs. Finally, we present a way of improving the informedness of our heuristics by
accounting for the resource constraints (which are ignored in constructing the relaxed planning graphs).

Sapais implemented in Java. Our empirical studies indicate thatSapacan solve planning problems with complex
temporal and resource constraints quite efficiently.Sapaalso returns good quality solutions with short makespans and
very few ir relevant actions. This is particularly encouraging given that temporal TLPlan, the leading contender of
Sapathat uses hand-coded control knowledge, tends to output many irrelevant actions.

The rest of this paper describes the development and evaluation ofSapa. We start in Section 2 with a discussion
of action representation and the general search algorithm used inSapa. In Section 3, we present the relaxed planning
graph structure and discuss different heuristics extracted from it. We also describe how to adjust the heuristic values
based on the metric resource constraints. We present empirical results in Section 4 and conclude the paper with a
discussion of related work and future work in Sections 5 and 6.

2 Handling concurrent actions in a forward state space planner

Sapaaddresses planning problems that involve durative actions, metric resources, and deadline goals. In this sec-
tion, we describe how such planning problems are represented and solved inSapa. We will first describe the action
representation, and will then present the forward chaining state search algorithm used bySapa.

To illustrate the representation and the search algorithm used inSapa, we will use a small example from the
flying domain discussed in [14]. In this domain, which we callzeno-flying, airplanes move passengers between cities.
An airplane can choose between “slow flying” and “fast flying” actions. “Slow flying” travels at 400 miles/hr and
consumes 1 gallon of fuel for every 3 miles. “Fast flying” travels at 600 miles/hr and consumes 1 gallon of fuel every
2 miles. Passengers can beboardedin 30 minutes anddeplanedin 20 minutes. The fuel capacity of the airplane is
750 gallons and it takes 60 minutes torefuel it. Figure 1 shows a simple problem from this domain that we will use as
a running example throughout the paper. In this problem, Person1 and the Airplane are at cityA, Person2 is at cityB
and the plane has 500 gallons of fuel in the initial state. The goals are toget both Person1 and Person2 to cityC in 6.5
hours. One solution for this problem, shown in the lower half of Figure 1, involves firstboardingPerson1 at cityA,
and thenslow-flyingto cityB. WhileboardingPerson2 at cityB, we canrefuel the plane concurrently. After finishing
refueling, the plane will have enough fuel tofast-flyto cityC anddeplanethe two passengers.

2.1 Action representation

Planning is the problem of finding a set of actions and their respective execution times to satisfy all causal, metric,
and resource constraints. Therefore, action representation has influences on the representation of the plans and on
the planning algorithm. In this section, we will discuss the action representation used inSapa. Our representation is
influenced by the PDDL+ language proposal[4] and the representations usedin Zeno[14] and LPSAT[19] planners.

Unlike actions in classical planning, in planning problems with temporal and resource constraints, actions are not
instantaneous but have durations. Their preconditions may either be instantaneous or durative and their effects may
occur at any time point during their execution. Each actionA has a durationDA, starting timeSA, and end timeEA
(= SA + DA). The value ofDA can be statically defined for a domain, statically defined for a particular planning
problem, or can be dynamically decided at the time of execution.1 Action A have preconditionsPre(A) that may

1For example, in the zeno-flying domain discussed earlier, wecan decide that boarding a passenger always takes 10 minutesfor all problems
in this domain. Duration of the action of flying an airplane between two cities will depend on the distance between these two cities. Because the
distance between two cities will not change over time, the duration of a particular flying action will be totally specifiedonce we parse the planning

110

(:action BOARD
:parameters
(?person - person ?airplane - plane ?city - city)
:duration (st, + st 30)
:precondition
(and (at ?person ?city) - (st,st)

(in-city ?airplane ?city) - (st,et))
:effect
(and (not (at ?person ?city)) - st

(in ?person ?airplane) - et))

(:action SLOW-FLYING
:parameters
(?airplane - plane ?city1 - city ?city2 - city)
:duration
(st, + st (/ (distance ?city1 ?city2)

(slow-speed ?airplane)))
:precondition
(and (in-city ?airplane ?city1) - (st,st)

(> (fuel ?airplane) 0) - (st,et))
:effect
(and (not (in-city ?airplane ?city1)) - st

(in-city ?airplane ?city2) - et
(-= (fuel ?airplane)

(* #t (sf-fuel-cons-rate ?airplane))) - #t))

Figure 2: Examples of action descriptions inSapa

be required either to be instantaneously true at the time pointSA, or required to be true starting atSA and remain
true for some durationd � DA. The logical effectsEff(A) of A will be divided into three setsEs(A), Ee(A), andEm(A; d) containing respectively instantaneous effects at time pointsSA, EA andSA + d (0 < d < DA). Figure 2
illustrates the actual representations used inSapafor actionsboardingandslow-flyingin the zeno-flying domain. Here,
st andet denote the starting and ending time points of an action, while#t represents a time instant betweenst andet.
While the actionboarding(person; airplane; city) requires a person to be at the locationcity only at its starting
time pointst, it requires an airplane to stay there the duration of its execution. This action causes an instant effect(not(at(?person; ?city))) at the starting time pointst and the delayed effectin(?person; ?airplane) at the ending
time pointet.

Actions can also consume or produce metric resources and their preconditions may also well depend on the value
of the corresponding resource. For resource related preconditions, we allow several types of equality or inequality
checking including ==,<, >, <=,>=. For resource-related effects, we allow the following types of change (update):
assignment(=), increment(+=), decrement(-=), multiplication(*=), and division(/=). In Figure 2, the actionslow-flying
requires the fuel level to be greater than zero over the entire duration of execution and consumes the fuel at a constant
rate while executing.

Currently we only model and test domains in which effects occur at the start or end time points, and preconditions
are required to be true at the starting point or should hold true throughout the duration of that action. Nevertheless,
the search algorithm and the domain representation schema used inSapaare general enough to represent and handle
actions with effects occurring at any time point during their durations and preconditions that are required to hold true
for any arbitrary duration between the start and end time points of an action. In the near future, we intend to test our
planner in domains that have more flexible temporal constraints on thepreconditions and effects of actions.

2.2 A forward chaining search algorithm

Even though variations of the action representation scheme described in theprevious section have been used in the
partial order temporal planners such as IxTeT[9] and Zeno[14] before, Bacchus and Ady [1] are the first to propose
a forward chaining algorithm capable of using this type of action representation and allow concurrent execution of
actions in the plan. We adapt their search algorithm inSapa.

Before going into the details of the search algorithm, we need to describesome major data structures that are used.
Sapa’s search is conducted through the space of time stamped states. We define a time stamped stateS as a tupleS = (P;M;�; Q; t) consisting of the following structure:� P = (hpi; tii j ti < t) is a set of predicatespi that are true att and the last time instantti at which they are

achieved.2� M is a set of values of all functions representing all the metric-resources in the planning problem. Because the
continuous values of resource levels may change over the course of planning, we usefunctionsto represent the
resource values.� � is a set of persistent conditions, such as action preconditions, that need to be protected during a period of
time.� Q is an event queue containing a set of updates each scheduled to occur at a specified time in the future. An
evente can do one of three things: (1) change the True/False value of some predicate, (2) update the value of
some function representing a metric-resource, or (3) end the persistence of some condition.

problem. However,refueling an airplane may have a duration that depends on the current fuel level of that airplane. We may only be able to
calculate the duration of a givenrefuelingaction according to the fuel level at the exact time instant when we execute that action.

2For example, at time instantt1 in Figure 1,P = fhAt(airplane;A); t0i; hAt(Person2; B); t0i; hIn(Person1; t1)ig
111

� t is the time stamp ofS
In this paper, unless noted otherwise, when we say “state” we mean a time stamped state. It should be obvious that

time stamped states do not just describe world states (or snap shots of the world at a given point of time) as done in
classical progression planners, but rather describe both the state of theworld and the state of the planner’s search.

The initial stateSinit is stamped at time 0 and has an empty event queue and empty set of persistent conditions.
However, it is completely specified in terms of function and predicate values.In contrast, the goals do not have to be
totally specified. The goals are represented by a set ofn 2-tuplesG = (hp1; t1i:::hpn; tni) wherepi is theith goal andti is the time instant by whichpi needs to be achieved.
Goal Satisfaction:The stateS = (P;M;�; Q; t) subsumes(entails) the goalG if for eachhpi; tii 2 G either:

1. 9hpi; tji 2 P , tj < ti and there is no event inQ that deletespi.
2. There is an evente 2 Q that addspi at time instantte < ti.

Action Application: An action A isapplicablein stateS = (P;M;�; Q; t) if:

1. All instantaneous preconditions ofA are satisfied byP andM.

2. A’s effects do not interfere with any persistent condition in� and any event inQ.

3. No event inQ interferes with persistent preconditions ofA.

When we apply an actionA to a stateS = (P;M;�; Q; t), all instantaneous effects ofA will be immediately
used to update the predicate listP and metric resources databaseM of S. A’s persistent preconditions and delayed
effects will be put into the persistent condition set� and event queueQ of S. For example, if we apply action
Board(P1,airplane)to the initial state of our running example in Figure 1, then the components of resulting state
Swill becomeP = fhAt(airplane;A); t0i; hIn(P1; airplane); t0i; hAt(P2; B); t0ig, M = fFuel(airplane)=500g,� = fhAt(airplane;A); t1ig, andQ = fhIn(P1; airplane); t1ig.

Besides the normal actions, we will have one special action calledadvance-time3 which we use to advance the
time stamp ofSto the time instantte of the earliest evente in the event queueQ of S. The advance-time action will be
applicable in any stateS that has a non-empty event queue. Upon applying this action, we update stateSaccording to
all the events in the event queue that are scheduled to occur atte.

Notice that we do not consider actionA to be applicable if it causes some evente that interferes with an evente0 in the event queue, even ife ande0 occur at different time points. We believe that even though an event has
instant effect, there should be some underlying process that leads to thateffect.4 Therefore, we feel that if two actions
cause instant events that are contradicting with each other, then even if the events occur at different time points, the
underlying processes supporting these two events may contradict each other. Thus, these two actions are not allowed
to execute concurrently. Our approach can be considered as having aholdprocess [5] extending from the starting point
of an action to the time point at which an event occurs. The hold process protects that predicate from violations by
conflicting events from other actions. This also means that even though an effect of a given actionA appears to change
the value of a predicate at a single time pointt, we implicitly need a duration from the starting pointst of A to t for it
to happen. We are currently investigating approaches to represent constraints to protect a predicate or resource more
explicitly and flexibly. Additionally, in handling metric resourceinteractions between two actions,Sapafollows an
approach similar to the ones used by Zeno[14] and RIPP[8]: it does not allow two actions that access the same metric
resource to overlap with each other. By not allowing two actions affecting the same resource to overlap, we can safely
change the resource condition that needs to be preserved during an action to be an instantaneous condition or an update
at the start or end point of that action. For example, the condition that the fuel level of an airplane should be higher
than 0 while flying between two cities, can be changed to a check to see if the levelof fuel it has at the beginning of the
action is higher than the amount that will be consumed during the courseof that action. This helps in simplifying the
search algorithm. In future, we intend to investigate other ways to relax this type of resource interaction constraints.
Search algorithm: The basic algorithm for searching in the space of time stamped states is shown in Figure 3. We
proceed by applying all applicable actions to the current state and put the result states into the sorted queue using
theEnqueue() function. TheDequeue() function is used to take out the first state from the state queue. Currently,
Sapaemploys the A* search. Thus, the state queue is sorted according to some heuristic function that measures the
difficulty of reaching the goals from the current state. The rest of the paper discusses the design of heuristic functions.

3 Heuristic control

For any type of planner to work well, it needs to be armed with good heuristics to guide the search in the right direction
and to prune the bad branches early. Compared with heuristic forward chaining planners in classical planning,Sapa
has many more branching possibilities. Thus, it is even more critical for Sapato have good heuristic guidance.

3Advance-timeis calledunqueue-eventin [1]
4For example, theboardingaction will cause the event of the passenger being inside theplane at the end of that action. However, there is an

underlying process of taking the passenger from the gate to inside the plane that we are not mentioning about.
112

State Queue:SQ=fSinitg
while SQ6=fg

S:= Dequeue(SQ)
Nondeterministically selectA

applicable inS
S’ := Apply(A,S)
if S’j= G then

PrintSolution
elseEnqueue(S’,SQ)

end while;

Figure 3: Main search algorithm

Heuristic Objective Function Basis Adm. Use res-infor
Max-span minimize makespan RTPG Yes No
Min-slack maximize minimum slack RTPG Yes No
Max-slack maximize maximum slack RTPG Yes No
Sum-slack maximize sum-slack RTPG Yes No
Sum-action minimize number of actions relaxed plan No No

Sum-duration minimize sum of action durations relaxed plan No No
Adj. sum-act. minimize number of actions relaxed plan No Yes
Adj. sum-dur. minimize sum of action durations relaxed plan No Yes

Table 1: Different heuristics investigated inSapa. Columns titled “objective function”, “basis”, “adm” and “use res-
infor” show respectively the objective function addressed by each heuristic, the basis to derive the heuristic values,
the admissibility of the heuristic, and whether or not resource-related information is used in calculating the heuristic
values.

Normally, the design of the heuristics depends on the objective function that we want to optimize; some heuristics
may work well for a specific objective function but not others. In a classical planning scenario, where actions are
instantaneous and do not consume resources, the quality metrics are limited to a mere count of actions or the parallel
execution time of the plan. When we extend the classical planning framework to handle durative actions that may
consume resources, the objective functions need to take into account other quality metrics such as the makespan, the
amount of slack in the plan and the amount of resource consumption. Heuristics that focus on these richer objective
functions will in effect be guiding both planning and scheduling aspects. Specifically, they need to control both action
selection and the action execution time.5

In this paper, we consider both satisficing and optimizing search scenarios.In the former, our focus is on efficiently
finding a reasonable quality plan. In the later, we are interested in the optimization of objective functions based on
makespan, or slack values. We will develop heuristics for guiding both types of search. Table 1 provides a high level
characterization of the different heuristics investigated in this paper, in terms of the objective functions that they are
aimed at, and the knowledge used in deriving them.

For any type of objective function, heuristics are generally derived fromrelaxed problems, with the understanding
that the more constraints we relax, the less informed the heuristic becomes [13]. Exploiting this insight to control a
metric temporal planner brings up the question of what constraints to relax. In classical planning, the “relaxation”
essentially involves ignoring precondition/effect interactions between actions [3, 7]. In metric-temporal planning, we
can not only relax the logical interactions, but also the metric resource constraints, and temporal duration constraints.

In Sapa, we estimate the heuristic values by doing a phased relaxation: we first relax the delete effects and metric
resource constraints to compute the heuristic values, and then modify these values to better account for resource
constraints. In the first phase we use a generalization of the planning graphs [2], called relaxed temporal planning
graphs (RTPG), as the basis for deriving the heuristics. Our use of planning graphs is inspired by (and can be seen
as an adaptation of) the recent work onAltAlt [12] and FF [7]. The RTPG structures are described in Section 3.1,
and Sections 3.2 and 3.3 describe the extraction of admissible and effective heuristics from the RTPG. Finally, in
Section 3.4, we discuss a technique for improving the informedness of our heuristics by adjusting the heuristic values
to account for the resource constraints (which are ignored in the RTPG).

3.1 Building the relaxed temporal planning graph

All our heuristics are based on the relaxed temporal planning graph structure (RTPG). This is a Graphplan-style[2]
bi-level planning graph generalized to temporal domains. Given a stateS = (P;M;�; Q; t), the RTPG is built from

5In [17], Smith et. al. discuss the importance of the choice ofactions as well as the ordering between them in solving complicated real world
planning problems involving temporal and resource constraints.

113

while(true)
forall A 6=advance-timeapplicable in S

S := Apply(A,S)
if S j= G then Terminatefsolutiong

S’ := Apply(advance-time,S)
if 9 hpi; tii2G such that

ti < Time(S’) and pi =2S then
Terminatefnon-solutiong

elseS := S’
end while;

Figure 4: Algorithm to build the relaxed temporal planning graph structure.S using the set of relaxed actions, which are generated from original actions byeliminating all effects which (1) delete
some fact (predicate) or (2) reduce the level of some resource. Since delete effects are ignored, RTPG will not contain
any mutex relations, which considerably reduces the cost of constructing RTPG. The algorithm to build the RTPG
structure is summarized in Figure 4. To build the RTPG, we need three main datastructures: a fact level, an action
level, and an unexecuted event queue.6 Each factf or actionA is markedin, and appears in the RTPG’s fact/action
level at time instanttf /tA if it can be achieved/executed attf /tA. In the beginning, only facts which appear inP
are markedin at t, the action level is empty, and the event queue holds all the unexecuted events inQ that add new
predicates. ActionA will be markedin if (1) A is not already markedin and (2) all ofA’s preconditions are markedin.
When actionA is in, then all ofA’s unmarked instant add effects will also be markedin at t. Any delayed effecteof A
that adds factf is put into the event queueQ if (1) f is not markedin and (2) there is no evente0 in Q that is scheduled
to happen beforeeand which also addsf. Moreover, when an evente is added toQ, we will take out fromQ any evente0 which is scheduled to occur aftereand also addsf.

When there are no more unmarked applicable actions inS, we will stop and returnno-solutionif either (1)Q is
empty or (2) there exists some unmarked goal with a deadline that is smaller than the time of the earliest event inQ. If
none of the situations above occurs, then we will applyadvance-timeaction toSand activate all events at time pointte0 of the earliest evente’ in Q. The process above will be repeated until all the goals are markedin or one of the
conditions indicatingnon-solutionoccurs. Figure 5 shows the RTPG for the stateSat time pointt1 (refer to Figure 1)
after we apply actionBoard(P1)to the initial state andadvancethe clock fromt0 to t1.

In Sapa, the RTPG is used to:� Prune the states that can not lead to any solution.� Use the time points at which goals appear in the RTPG as the lower boundson their time of achievements in the
real plans.� Build a relaxed plan that achieves the goals, which can then be used as a basis to estimate the distance fromS
to the goals.

For the first task, we will prune a state if there is some goalhpi; tii such thatpi does not appear in the RTPG before
time pointti.
Proposition 1: Pruning a state according to the relaxed temporal planning graph (RTPG) preserves the completeness
of the planning algorithm.

The proof is quite straight forward. Since we relaxed the delete effects and resource related constraints of all the
actions when building the graph structure, and applied all applicable actions to each state, the time instant at which
each predicate appears in the RTPG is alower boundon its real time of achievement. Therefore, if we can not achieve
some goal on time in the relaxed problem, then we definitely will not be able to achieve that goal with the full set of
constraints.

In the next several sections, we will discuss the second task, that of deriving different heuristic functions from the
RTPG structure.

3.2 Admissible heuristics based on action durations and deadlines

In this section, we will discuss how several admissible heuristic functions can be derived from the RTPG. First, from
the observation that all predicates appear at the earliest possible time in the relaxed plan graph, we can derive an
admissible heuristic which can be used tooptimize the makespanof the solution. The heuristic is defined as follows:
Max-span heuristic: Distance from a state to the goals is equal to the length of the duration between the time-instant
of that state and the time the last goal appears in the RTPG.

6Unlike the initial state, the event queue of the stateS from which we build the RTPG may be.
114

Deplane(P1,A)

Deplane(P1,B)

SlowFlight(A,B)
Board(P1,A)

tg

Deplane(P1,C)

Deplane(P2,C)

SlowFlight(B,C)

FastFlight(B,C)

Board(P2,B)

FastFlight(A,B)

t0 t1 t2 t3 t4 t5 t6 t7 t8

Sinit S

Relaxed Planning GraphPartial Plan

Figure 5: Sample relaxed temporal planning graph for durative actions. Shaded actions are the ones appear in the
relaxed plan.

The max-span heuristic is admissible and can be used to find the smallest makespan solution for the planning
problem. The proof of admissibility is based on the same observationmade in the proof of Proposition 1. Because
all the goals appear in the RTPG at the time instants that arelower boundson the their real time of achievements, the
time instant at which the last goal appears in the RTPG will be the lower bound on the actual time point at which we
can achieve all the goals. Thus, it is a lower bound on the makespan of the solution.

The max-span heuristic discussed so far can be thought of as a generalized version of the max-action heuristic
used in HSP [3] or max-level heuristic in AltAlt [12]. One of the assumptions in classical planning is that the goals
have no deadlines and they need only be achieved by the end of the plan. Therefore, all heuristics concentrate on
measuring how far the current state is to the point by whichall the goals are achieved. However, in temporal planning
with deadline goals, we can also measure the ‘slack’ values for the goals as another plan quality measurement (where
slack is the difference in time between when the goal was achieved in the paln, and the deadline specified for its
achievement). The slack values for a given set of goals can also be a good indication on how hard it is to achieve
those goals, and thus, how hard it is to solve a planning problem from a given state. Moreover, slack-based objective
functions are common in scheduling.

We will consider objective functions to maximize the minimum, maximum, or summation of slack values of all the
goals for the temporal planning problems. In our case, the slack value fora given goalg is estimated from the RTPG
by taking the difference between the time instant at whichg appears in the RTPG and its deadline. We now present
admissible heuristics for these three slack based objective functions.
Min-slack heuristic: Distance from a state to the goals is equal to the minimum of the slack estimates of all individual
goals.7

Max-slack heuristic: Distance from a state to the goals is equal to the maximum of slackestimates of all individual
goals.
Sum-slack heuristic: Distance from a state to the goals is equal to the summation of slack estimates for all individual
goals.

The min-slack, max-slack, and sum-slack heuristics target the objective functions of maximizing the minimum
slack, maximum slack, and the summation of all slack values. The admissibility of the three heuristics for the respec-
tive objective functions can be proven using the same argument we made for the max-span heuristic. Specifically, we
use the observation that all goals appear in the RTPG at time instants earlier than the actual time instants at which they
can be achieved, to prove that the slack estimated calculated using the RTPG forany goal will be theupper boundon
its actual slack value for the non-relaxed problem.

3.3 Heuristics for efficient satisficing search

We now focus on efficiently finding reasonable quality plans. In the last section, we discussed several admissible
heuristics which can be used to find optimal solution according to some objective functions. However, admissible
heuristics such as max-span and slack-based heuristics are only concerned about the time points at which goals are
achieved, and not the length of the eventual plan. In classical planning, heuristics that use an estimate on the length
of the plan have been shown to be more effective in controlling search [7,12]. To estimate the length of the solution,
these planners typically use a valid plan extracted from the relaxed planning graph (the relaxation typically involves
ignoring negative interactions). We can use a similar heuristic for temporal planning.
Sum-action heuristic: Distance from a state to the goals is equal to the number of actionsin the relaxed plan.

The relaxed plan can be built backward from the goals in a manner nearly identicalto the procedure used in
Graphplan algorithm[2] in classical planning. We first start with the goals and add actions that support them to the

7If all the goals have the same deadlines, then maximizing theminimum slack is equal to minimizing the makespan of the planand the two
heuristic values (max-span and min-slack) can be used interchangably.

115

solution. If we add an action to the solution, then its preconditionsare also added to the set of current goals. The
search continues until we “reach” the initial state (i.e the goals are entailedby the initial state). In our continuing
example, the shaded actions in Figure 5 are the ones that appear in the relaxed plan when we search backward.

Finally, since actions have different durations, the sum of the durations of actions in the relaxed plan is another
way to measure the difficulty in achieving the goals.
Sum-duration heuristic: Distance from a state to the goals is equal to the sum of durations of actions in the relaxed
plan.

If all actions have the same durations, then the sum of durations of allactions in the relaxed plan will be equivalent
to taking the number of actions in the plan. Thus, in this case, sum-action and sum-duration will perform exactly
the same. Neither of these heuristics are admissible; searches using the sum-action or sum-duration heuristics do
not guarantee to return the solutions with smallest number of actions,or solutions with smallest summation of action
durations. The reason is that these two heuristics have their values basedon afirst (relaxed) plan found. There is no
guarantee that that first relaxed plan will be smaller than the smallest real (non-relaxed) plan in terms of number of
actions, or summation of durations of actions in the plan.

3.4 Using metric resource constraints to adjust heuristic values

The heuristics discussed in the last two sections have used the knowledge about durations of actions and deadline
goals but not about resource consumption. By ignoring the resource related effects when building the relaxed plan,
we may miss counting actions whose only purpose is to give sufficientresource-related conditions to other actions.8

Consequently, ignoring resource constraints may reduce the quality ofheuristic estimate based on the relaxed plan.
We are thus interested in adjusting the heuristic values discussed in the last two sections to account for the resource
constraints.

In real-world problems, most actions consume resources, while there arespecial actions that increase the levels
of resources. Since checking whether the level of a resource is sufficient forallowing the execution of an action is
similar to checking the predicate preconditions, one obvious approach toadjust the relaxed plan would be to add
actions that provide that resource-related condition to the relaxed plan. For reasons discussed below, it turns out to
be too difficult to decide which actions should be added to the relaxed plan to satisfy the given resource conditions.
First, actions that consume/produce the same metric-resource may overlap over the RTPG and thus make it hard to
reason about the resource level at each time point. In such cases, the best we can do is to find the upper bound and
lower bound values on the value of some specific resource. However, the bounds may not be very informative in
reasoning about the exact value. Second, because we do not know the values of metric resources at each time point, it
is difficult to reason as to whether or not an action needs another action to support its resource-related preconditions.
For example, in Figure 5, when we add the actionfast-flying(B;C) to the relaxed plan, we know that that action
will need fuel(airplane) > 400 as its precondition. However, without the knowledge about the value(level) offuel(airplane) at that time point, we can hardly decide whether or not we need to add another action to achieve that
precondition. If we reason that the fuel level at the initial state (fuel(airplane) = 500) is sufficient for that action to
execute, then we already miss one unavoidablerefuel(airplane) action (because most of the fuel in the initial state
has been used for the other flying action,fast-flying(A;B)). A final difficulty is that because of the continuous nature
of the metric resources, it is harder to reason if an actiongivesa resource-related effect to another action and whether
or not it is logically relevant to do so. For example, suppose that we need to fly an airplane fromcityA to cityB and
we need to refuel to do so. Actionrefuel(airplane; cityC) gives the fuel that the airplane needs, but it is totally
irrelevant to the plan. Adding that action to the relaxed plan (and its preconditions to the goal set) will lead to the
addition of irrelevant actions, and thus reduce the quality of heuristic estimates it provides.

In view of the above complications, we introduce a new way of readjusting the relaxed plan to take into account
the resource constraints as follows: we first preprocess the problem specifications and find for each resourceR an
actionAR that can increase the amount ofR maximally. Let�R be the amount by whichAR increasesR, and letDur(AR) be the duration ofAR. Let Init(R) be the level of resourceR at the stateS for which we want to compute
the relaxed plan, andCon(R), Pro(R) be the total consumption and production ofRby all actions in the relaxed plan.
If Con(R) > Init(R) + Pro(R), we use the following formula to adjust the heuristic values of the sum-action and
sum-duration according to the resource consumption.

Sum-action heuristic value h:h h+XR �Con(R)� (Init(R) + Pro(R))�R �
Sum-duration heuristic value h:h h+XR Con(R)� (Init(R) + Pro(R))�R �Dur(AR)

8For example, if we want to drive a truck to some place and the fuel level is low, by totally ignoring the resource related conditions, we will not
realize that we may need torefuel the truck beforedriving it.

116

sum-act sum-act adjusted sum-dur sum-dur adjusted
prob time (s) node time (s) node time (s) node time (s) node

zeno1 0.272 14/48 0.317 14/48 0.35 20/67 0.229 9/29
zeno2 92.055 304/1951 61.66 188/1303 - - - -
zeno3 23.407 200/996 38.225 250/1221 7.72 60/289 35.757 234/1079
zeno4 - - 37.656 250/1221 7.76 60/289 35.752 234/1079
zeno5 83.122 575/3451 71.759 494/2506 - - - -
zeno6 64.286 659/3787 27.449 271/1291 - - 30.530 424/1375
zeno7 1.34 19/95 1.718 19/95 1.374 19/95 - -
zeno8 1.11 27/87 1.383 27/87 1.163 27/87 1.06 14/60
zeno9 52.82 564/3033 16.310 151/793 130.554 4331/5971 263.911 7959/10266

log p1 2.215 27/159 2.175 27/157 2.632 33/192 2.534 33/190
log p2 165.350 199/1593 164.613 199/1592 37.063 61/505 - -
log p3 - - 20.545 30/215 - - - -
log p4 13.631 21/144 12.837 21/133 - - - -
log p5 - - 28.983 37/300 - - - -
log p6 - - 37.300 47/366 - - - -
log p7 - - 115.368 62/531 - - - -
log p8 - - 470.356 76/788 - - - -
log p9 - - 220.917 91/830 - - - -

Table 2: Solution times and explored/generated search nodes forSapain the zeno-flying and temporal logistics do-
mains with sum-action and sum-duration heuristics with/without resource adjustment technique. Times are in seconds.
All experiments are run on a Sun Ultra 5 machine with 256MB RAM. “-” indicates that the problem can not be solved
in 500 seconds.

We will call the newly adjusted heuristicsadjusted sum-actionandadjusted sum-duration. The basic idea is
that even though we do not know if an individual resource-consuming action in the relaxed plan needs another action
to support its resource-related preconditions, we can still adjust the number of actions in the relaxed plan by reasoning
about the total resource consumption ofall the actions in the plan. If we know how much excess amount of a resource
R the relaxed plan consumes and what is the maximum increment ofR that is allowed by any individual action in the
domain, then we can infer the minimum number of resource-increasing actionsthat we need to add to the relaxed plan
to balance the resource consumption.

For example, in the relaxed plan for our sample problem, we realize that thetwo actionsfast-flying(A;B) and
fast-flying(B;C) consume a total of: 1000/2 + 1200/2 = 1100 units of fuel, which is higher than the initial fuel level
of 500 units. Moreover, we know that the maximum increment for the airplane’s fuel is 750 for therefuel(airplane)
action. Therefore, we can infer that we need to add at leastd(1100 � 500)=750e = 1 refueling action to make the
relaxed plan consistent with the resource consumption constraints. Theexperimental results in Section 4 show that
the metric resource related adjustments are quite important in domains which have many actions consuming different
types of resources.

The adjustment approach described above is useful for improving the sum-action and sum-duration heuristics, but
it can not be used for the max-span and slack-based heuristics without sacrificing their admissibility. In future, we
intend to investigate the resource constraint-based adjustments for those heuristics that still preserve their admissibility.

4 Experimental results

We have implementedSapain Java. To date, our implementation ofSapahas been primarily used to test the perfor-
mance of different heuristics and we have spent little effort on code optimization. We were primarily interested in
seeing how effective the heuristics were in controlling the search. In thecase of heuristics for satisficing search, we
were also interested in evaluating the quality of the solution. We evaluate the performance ofSapaon problems from
two metric temporal planning domains to see how well it performs in these complex planning problems. The first one
is the zeno-flying domain discussed in Section 2.2 [14]. The second is our version of the temporal and metric resource
version of the logistics domain. In this domain, trucks move packages between locations within one city, and planes
carry them from one city to another. Different airplanes and trucks move with different speeds, have different fuel ca-
pacities, different fuel-consumption-rates, and different fuel-fill-rates when refueling. The temporal logistics domain
is more complicated than the zeno-flying domain because it has more types of resource-consuming actions. Moreover,
therefuelaction in this domain has a dynamic duration, which is not the case for anyaction in the zeno-flying domain.
Specifically, the duration of this action depends on the fuel level of the vehicle and can only be decided at the time we
execute that action.

117

sum-act sum-act adjusted sum-dur sum-dur adjusted
prob #act duration #act duration #act duration #act duration

zeno1 5 320 5 320 5 320 5 320
zeno2 23 1020 23 950 - - - -
zeno3 22 890 13 430 13 450 17 400
zeno4 - - 13 430 13 450 17 400
zeno5 20 640 20 590 - - - -
zeno6 16 670 15 590 - - 14 440
zeno7 10 370 10 370 10 370 - -
zeno8 8 320 8 320 8 320 8 300
zeno9 14 560 13 590 13 460 13 430

log p1 16 10.0 16 10.0 16 10.0 16 10.0
log p2 22 18.875 22 18.875 22 18.875 - -
log p3 - - 12 11.75 - - - -
log p4 12 7.125 12 7.125 - - - -
log p5 - - 16 14.425 - - - -
log p6 - - 21 18.55 - - - -
log p7 - - 27 24.15 - - - -
log p8 - - 27 19.9 - - - -
log p9 - - 32 26.25 - - - -

Table 3: Number of actions and duration (makespan) of the solutions generated bySapain the zeno-flying and logistics
domains with sum-action and sum-duration heuristics with/withoutresource adjustment technique.

Table 2 and 3 summarize the results of our empirical studies. Before going into the details, we should mention
that among the different types of heuristics discussed in the Section 3, max-span and slack-value based heuristics are
admissible. However, they do not scale up to reasonable sized problems. As a matter of fact, the max-span heuristic
can not solve any problems in Table 2 in the allotted time. The sum-slack heuristic returns an optimal solution (in
terms of makespan and sum-slack values) for the problemZeno1in zeno-flying domain in 7.3 seconds, but can not
solve any other problems. However, both are able to solve smaller problems that are not listed in our result tables.
Because of this, most of our remaining discussion is directed towards sum-action and sum-duration heuristics.

Table 2 shows the running times ofSapafor thesum-actionandsum-durationheuristics with and without metric
resource constraint adjustment technique (refer to Section 3.4) in the two planning domains discussed above. We
tested with 9 problems from each domain. Most of the problems require plans of 10-30 actions, which are quite
big compared to problems solved by previous domain-independent temporal planners reported in the literature. The
results show that most of the problems are solved within a reasonable time (e.g under 500 seconds). More importantly,
the number of nodes (time-stamped states) explored, which is the main criterion used to decide how well a heuristic
does in guiding the search, is quite small compared to the size of the problems. In many cases, the number of nodes
explored by the best heuristic is only about 2-3 times the size of theplan.

In general, the sum-action heuristic performs better than the sum-duration heuristic in terms of planning time,
especially in the logistics domain. However, there are several problems in which the sum-duration heuristic returns
better solving times and smaller number of nodes. The metric resource adjustment technique greatly helps the sum-
action heuristic, especially in the logistics domain, where without itSapacan hardly solve the bigger problems. We
still do not have a clear answer as to why the resource-adjustment techniquedoes not help the sum-duration heuristic.
Plan Quality: Table 3 shows the number of actions in the solution and the duration (makespan) of the solution for
the two heuristics analyzed in Table 2. These categories can be seen as indicativeof the problem’s difficulty, and the
quality of the solutions. By closely examining the solutions returned, we found that the solutions returned bySapa
have quite good quality in the sense that they rarely have many irrelevant actions. The absence of irrelevant actions
is critical in the metric temporal planners as it will both save resource consumption and reduce execution time. It is
interesting to note here that the temporal TLPlan[1], whose search algorithm Sapaadapts, usually outputs plans with
many more irrelevant actions. Interestingly, Bacchus & Ady mention that their solutions are still better than the ones
returned by LPSAT[19], which makes our solutions that much more impressive compared to LPSAT.

The pure sum-action heuristic without resource adjustment normallyoutputs plans with slightly higher number of
actions, and longer makespans than the sum-duration heuristic. In some cases, the sum-action heuristic guides the
search into paths that lead to very high makespan values, thus violating the deadline goals. After that, the planner
has harder time getting back on the right track. Examples of this are zeno-4 and log-p3 which cannot be solved with
sum-action heuristic if the deadlines are about 2 times smaller than the optimal makespan (because the search paths
keep extending the time beyond the deadlines). The resource adjustmenttechnique not only improves the sum-action
heuristic in solution times, but also generally shortens the makespan and occasionally reduces the number of actions
in the plan as well. As mentioned earlier, the adjustment technique generallydoes not help the sum-duration heuristics

118

in solving time, but it does help reduce the makespan of the solution inmost of the cases where solutions can be
found. However, the set of actions in the plan is generally still the same, which suggests that the adjustment technique
does not change the solution, butpushesthe actions up to an earlier part of the plan. Thus, it favors the execution of
concurrent actions instead of using the special actionadvance-timeto advance the clock.

When implementing the heuristics, one of the decisions we had to make waswhether to recalculate the heuristic
value when we advance the clock, or to use the same value as that of the parent node. On the surface, this problem
looks trivial and the correct way seems to be to recalculate the heuristic values. However, in practice, keeping the
parent node’s heuristic value when we advance the clock always seems to lead to solutions with equal or slightly better
makespan. We can explain the improved makespan by the fact that recalculating theheuristic value normally favors
the advance-clockaction by outputting a smaller heuristic value for it than the parent. Using many suchadvance-
clock actions will lead to solutions with higher makespan values. The solvingtime comparison is somewhat mixed.
Keeping the parent heuristics value speeds up 6 of the 9 problems tested in the logistics domain by average of 2x and
slows down about 1.5x in the 3 zeno-flying problems. We do not have aclear answer for the solution time differences
between the two approaches. In the current implementation ofSapa, we keep the parent node’s heuristic value when
we advance the clock.

Although we wanted to compareSapato other planners, there are very few implementations of metric temporal
planners with capabilities comparable toSapathat are publicly available and even they tend to scale up poorly. For
example, although Zeno is a more expressive planner thanSapa, it can not scale up to bigger problems. The easiest
problem in the zeno-flying domain in Table 2 (Zeno1) is reported in [14] to be solved by Zeno in several minutes with
hand-coded domain control rules.9 IxTeT is another known planner that we would have like to compare to, but the
code is not available and IxTeT’s results reported in the literature have concentrated on a class of temporal problems
that use discrete, but not metric, resources. In the near future, we intend to compare our planner with TGP[16] and
TP4[6] on a simpler set of temporal planning problems that can be handled by all three of them.

5 Related work

There have been several temporal planning systems in the literature that canhandle different types of temporal and
resource constraints. Among them, planners such as temporal TLPlan[1], Zeno[14], IxTeT[9], and HSTS[11] can
solve problems that are similar to the one solved bySapa. There are also planners such as Resource-IPP[8], TP4[6],
TGP[16], and LPSAT[19] that can handle a subset of the types of problems discussed in this paper.

Closest to our work is the temporal TLPlan [1], which originates the algorithm to support concurrent actions in
the forward state space search. The critical difference between this planner andSapais that while temporal TLPlan
is controlled by hand-coded domain-specific control rules,Sapauses domain-independent heuristics. Experimental
results reported in [1] indicate that while Temporal TLPlan is very fast,but it tends to output plans with many irrelevant
actions.

There are several partial order planners that can handle various types of temporal and resource constraints. Zeno[14]
can solve problems with a wide range of constraints, as well as actions with conditional and quantified effects. How-
ever, Zeno lacks heuristic control and scales poorly. IxTeT[9] is another hierarchical partial order planner that can
handle many types of temporal and resource constraints. Most of IxTeT’s interesting innovations have been aimed
at on handling discrete resources such as robots or machines but not on metric resources. HSTS[11] is a partial or-
der planner that has been used to solve NASA temporal planning problems. Like TLPlan, HSTS uses hand-coded
domain control knowledge to guide its search. parcPlan[10] is a domain-independent temporal planner using the least-
commitment approach. parcPlan claims to be able to handle a rich set of temporalconstraints, but the experiments in
[10] do not demonstrate its expressiveness adequately.

Resource-IPP (RIPP)[8] is an extension of the IPP planner to deal with durative actions that may consume metric
resources. RIPP considers time as another type of resource and solves the temporal planning problem by assuming
that actions are still instantaneous. Like IPP, RIPP is based on Graphplan[2] algorithm. A limited empirical evaluation
of RIPP is reported in [8]. TP4[6] by Haslumn & Geffner is a recent plannerthat employs backward chaining state
space search with temporal or resource related admissible heuristics. The results of TP4 are promising in a subset of
temporal planning problems where durations are measured in unit time, andresources decrease monotonically.

There are several planners in the literature that handle either temporal or resource constraints (but not both).
TGP[16] is a temporal planner based on the Graphplan algorithm. TGP extends the notion of mutual exclusion
relations in the Graphplan algorithm to allow constraints between actionsand propositions. RTPG can be seen as
a relaxed version of the planning graph that TGP uses. While TGP might provide better bounds on slacks and times of
achievement, it is also costlier to compute. Cost of computation is especially critical asSapawould have to compute
the planning graph once for each expanded search node. It is nevertheless worth investigating the overall effectiveness
of heuristics derived from TGP’s temporal planning graph. LPSAT[19]can handle metric resource constraints by
combining SAT and linear programming. As noted in Section 4, LPSAT seemsto suffer from poor quality plans.

9We tried to run Zeno on the same machine used to testSapawithout control-knowledge for that problem, but Zeno indicated that it can not
solve and returned a partial solution.

119

6 Conclusion and future work

In this paper, we describedSapa, a domain-independent forward chaining heuristic temporal planner that canhandle
metric resource constraints, actions with continuous duration, and deadline goals. Sapadoes forward search in the
space of time-stamped states. Our main focus has been on developing effective heuristics to control the search. We
considered both satisficing and optimizing search scenarios and proposed effective heuristics for both. Our heuristics
are based on the relaxed temporal planning graph structure. For optimizingsearch, we introduced admissible heuristics
for objective functions based on the makespan and slack values. For satisficing search, we looked at heuristics such
as sum-action and sum-duration, that are based on plans derived from RTPG.These were found to be quite efficient
in terms of planning time. We also presented a novel technique to improvethe heuristic values by reasoning about the
metric resource constraints. Finally, we provided an extensive empirical evaluation demonstrating the performance of
Sapain several metric temporal planning domains.

In the near term, we intend to investigate the problem of finding better relaxed plans with regard to the resource
and temporal constraints of actions in the domain. We are interested in howto use the resource time maps discussed
in [8] in constructing the relaxed plan. Moreover, we want to use the binary mutex information,a la TGP [16] to
improve heuristics in both optimizing and satisficing searches. Our longer term plans include incorporatingSapain a
loosely-coupled architecture to integrate planning and scheduling, which will be the logical continuation of our work
with theRealplansystem[18].

References

[1] Bacchus, F. and Ady, M. 2001. Planning with Resources and Concurrency: A Forward Chaining Approach.Proc
IJCAI-2001.

[2] Blum, A. and Furst, M. 1995. Fast planning throught planning graph analysis.Proc IJCAI-95.

[3] Bonet, B., Loerincs, G., and Geffner, H. 1997. A robust and fast action selection mechanism for planning.Proc
AAAI-97

[4] Fox, M. and Long, D. 2001. PDDL+: An Extension to PDDL for Expressing Temporal Domains

[5] Ghallab, M. and Laruelle, H. 1994. Representation and control in IxTeT,a temporal planner.Proc AIPS-94

[6] Haslum, P. and Geffner, H. 2001. Heuristic Planning with Time andResourcesWorkshop on Planing with
Rersource, IJCAI-01

[7] Hoffmann, J. 2000. http://www.informatik.uni-freiburg.de/ hoffmann/ff.html

[8] Koehler, J. 1998. Planning under Resource Constraints.Proc ECAI-98

[9] Laborie, P. and Ghallab, M. 1995. Planning with sharable resource constraints.Proc IJCAI-95.

[10] Liatsos, V., and Richards, B. 1999. Scaleability in Planning.Proc ECP-99.

[11] Muscettola, N. 1994. Integrating planning and scheduling.Intelligent Scheduling.

[12] Nguyen, X., Kambhampati, S., and Nigenda, R. 2001. Planning Graphas the Basis for deriving Heuristics for
Plan Synthesis by State Space and CSP Search.To appear in Artificial Intelligence.

[13] Pearl, J. 1985. Heuristics.Addison-Wesley

[14] Penberthy, S. and Well, D. 1994. Temporal Planning with Continuous Change.Proc AAAI-94.

[15] Pinedo, M. 1995. Scheduling: Theory, Algorithms, and Systems. Prentice Hall

[16] Smith, D. and Weld, D. 1999. Temporal Planning with Mutual Exclusion Reasoning.Proc IJCAI-99

[17] Smith, D., Frank J., and Jonsson A. 2000. Bridging the gap between planning and scheduling.The Knowledge
Engineering Review, Vol. 15:1.

[18] Srivastava, B., Kambhampati, S., and Do, M. 2001. Planning the Project Management Way: Efficient Planning
by Effective Integration of Causal and Resource Reasoning in RealPlan.To appear in Artificial Intelligence.

[19] Wolfman, S. and Weld, D. 1999. Combining Linear Programming andSatisfiability Solving for Resource
Planning.Proc IJCAI-99

120

Heuristic Planning with Time and ResourcesPatrik Haslum1 and H�ector Ge�ner21 Department of Computer Science, Link�oping University, Swedenpahas@ida.liu.se2 Departamento de Computaci�on, Universidad Sim�on Bol��var, Venezuelahector@usb.veAbstract We present an algorithm for planning with time and resources, based onheuristic search. The algorithm minimizes makespan using an admissible heuristicderived automatically from the problem instance. Estimators for resource consump-tion are derived in the same way. The goals are twofold: to show the exibility ofthe heuristic search approach to planning and to develop a planner that combinesexpressivity and performance. Two main issues are the de�nition of regression in atemporal setting and the de�nition of the heuristic estimating completion time. Anumber of experiments are presented for assessing the performance of the resultingplanner.1 IntroductionRecently, heuristic state space search has been shown to be a good frame-work for developing di�erent kinds of planning algorithms. It has been mostsuccessful in non-optimal sequential planning, e.g. hsp [4] and ff [10], buthas been applied also to optimal and parallel planning with good results [8].We continue this thread of research by developing a domain-independentplanning algorithm for domains with metric time and certain kinds of re-sources. The algorithm relies on regression search guided by a heuristic thatestimates completion time and which is derived automatically from the prob-lem representation. The algorithm minimizes the overall execution time ofthe plan, commonly known as the makespan.As far as we are aware, no e�ective domain-independent planner matchesthe expressivity of our planner, though some exhibit common features. Forexample, tgp [22] handles actions with duration and optimizes makespan,while ripp [13] and grt-r [20] handle resources, and are in this respect moreexpressive than our planner.Among planners that exceed our planner in expressivity, e.g. Zeno [18],IxTeT [7] and HSTS [17], none have reported signi�cant domain-independentperformance (Jonsson et al. [11] describe the need for sophisticated engi-neering of domain dependent search control for the HSTS planner). Manyhighly expressive planners, e.g. O-Plan [24], ASPEN [5] or TALplanner [15],
121

are \knowledge intensive", relying on user-provided problem decompositions,evaluation functions or search constraints1.2 Action Model and AssumptionsThe action model we use is propositional STRIPS with extensions for timeand resources. As in graphplan [3] and many other planners, the action setis enriched with a no-op for each atom p which has p as its only preconditionand e�ect. Apart from having a variable duration, a no-op is viewed andtreated like a regular action.2.1 TimeWhen planning with time each action a has a duration, dur(a) > 0. Wetake the time domain to be R+ . In most planning domains we could use thepositive integers, but we have chosen the reals to highlight the fact that thealgorithm does not depend on the existence of a least indivisible time unit.Like Smith and Weld [22], we make the following assumptions: For an actiona executed over an interval [t; t+ dur(a)](i) the preconditions pre(a) must hold at t, and preconditions not deleted bya must hold throughout [t; t+ dur(a)] and(ii) the e�ects add(a) and del(a) take place at some point in the interior ofthe interval and can be used only at the end point t+ dur(a).Two actions, a and b, are compatible i� they can be safely executed in over-lapping time intervals. The above assumptions lead to the following conditionfor compatibility: a and b are compatible i� for each atom p 2 pre(a)[add(a),p 62 del(b) and vice versa (i.e. p 2 pre(b) [add(b) implies p 62 del(a)).2.2 ResourcesThe planner handles two types of resources: renewable and consumable. Re-newable resources are needed during the execution of an action but are notconsumed (e.g. a machine). Consumable resources, on the other hand, areconsumed or produced (e.g. fuel). All resources are treated as real valuedquantities; the division into unary, discrete and continuous is determined by1 The distinction is sometimes hard to make. For instance, parcPlan [16] domain de�nitions appearto di�er from plain STRIPS only in that negative e�ects of actions are modeled indirectly,by providing a set of constraints, instead of explicitly as \deletes". parcPlan has shown goodperformance in certain resource constrained domains, but domain de�nitions are not availablefor comparison.
122

the way the resource is used. Formally, a planning problem is extended withsets RP and CP of renewable and consumable resource names. For each re-source name r 2 RP [CP , avail(r) is the amount initially available and foreach action a, use(a; r) is the amount used or consumed by a.3 Planning with TimeWe describe �rst the algorithm for planning with time, not considering re-sources. In this case, a plan is a set of action instances with starting timessuch that no incompatible actions overlap in time, action preconditions holdover the required intervals and goals are achieved on completion. The cost ofa plan is the total execution time, or makespan. We describe each componentof the search scheme: the search space, the branching rule, the heuristic, andthe search algorithm.3.1 Search SpaceRegression in the classical setting is a search in the space of \plan tails",i.e. partial plans that achieve the goals provided that the preconditions ofthe partial plans are met. A regression state, i.e. a set of atoms, summarizesthe plan tail; if s is the state obtained by regressing the goal through theplan tail P 0 and P is a plan that achieves s from the initial state, then theconcatenation of P and P 0 is a valid plan. A similar decomposition is exploitedin the forward search for plans.In a temporal setting, a set of atoms is no longer su�cient to summarizea plan tail or plan head. For example, the set s of all atoms made true bya plan head P at time t holds no information about the actions in P thathave started but not �nished before t. Then, if a plan tail P 0 maps s toa goal state, the combination of P and P 0 is not necessarily a valid plan.To make the decomposition valid, search states have to be extended withthe actions under execution and their completion times. Thus, in a temporalsetting states become pairs s = (E; F), where E is a set of atoms and F =f(a1; �1); : : : ; (an; �n)g is a set of actions ai with time increments �i.An alternative representation for plans will be useful: instead of a set oftime-stamped action instances, a plan is represented by a sequence h(A0; �0);: : : ; (Am; �m)i of action sets Ai and positive time increments �i. Actions inA0 begin executing at time t0 = 0 and actions in Ai, i = 1 : : :m, at timeti =P06j<i �j (i.e. �i is the time to wait between the beginning of actions Aiand the beginning of actions Ai+1).
123

State Representation A search state s = (E; F) is a pair consisting ofa set of atoms E and a set of actions with corresponding time incrementsF = f(a1; �1); : : : ; (an; �n)g, 0 < �i � dur(ai). A plan P achieves s = (E; F)at time t if P makes all the atoms in E true at t and schedules the actions aiat time t � �i. The initial search state is s0 = (GP ; ;), where GP is the goalset of the planning problem. Final states are all s = (E; ;) such that E � IP .Branching Rule A successor to a state s = (E; F) is constructed by se-lecting for each atom p 2 E an establisher (i.e. a regular action or no-opa with p 2 add(a)), subject to the constraints that the selected actions arecompatible with each other and with each action b 2 F , and that at least oneselected action is not a no-op. Let SE be the set of selected establishers andlet Fnew = f(a; dur(a)) j a 2 SEg:The new state s0 = (E 0; F 0) is de�ned as the atoms E 0 that must be trueand the actions F 0 that must be executing before the last action in F [Fnewbegins. This will happen in a time increment �adv:�adv = minf� j (a; �) 2 F [Fnew and a is not a no-opgwhere no-op actions are excluded from consideration since they have variableduration (the meaning of the action no-op(p) in s is that p has persisted inthe last time slice). Setting the duration of no-ops in Fnew equal to �adv, thestate s0 = (E 0; F 0) that succeeds s = (E; F) becomesE 0 = fpre(a) j (a; �adv) 2 F [FnewgF 0 = f(a; � � �adv) j (a; �) 2 F [Fnew; � > �advgThe cost of the transition from s to s0 is c(s; s0) = �adv and the fragment ofthe plan tail that corresponds to the transition isP (s; s0) = (A; �adv) ; whereA = fa j (a; �adv) 2 F [FnewgThe accumulated cost (plan tail) along a state-path is obtained by addingup (concatenating) the transition costs (plan fragments) along the path. Theaccumulated cost of a state is the minimum cost along all the paths leadingto s. The evaluation function used in the search algorithm adds up this costand the heuristic cost de�ned below.
124

Properties The branching rule is sound in the sense that it generates onlyvalid plans, but it does not generate all valid plans. This is actually a desirablefeature2. The rule is optimality preserving in the sense that it generates someoptimal plan. This, along with soundness, is all that is needed for optimality(provided an admissible search algorithm and heuristic are used).3.2 HeuristicAs in previous work [8], we derive an admissible heuristic by introducingapproximations in the recursive formulation of the optimal cost function.For any state s = (E; F), the optimal cost is H�(s) = t i� t is the leasttime t such that there is a plan P that achieves s at t. The optimal costfunction, H�, is the solution to the Bellman equation [2]:H�(s) = �0 if s is �nalmins02R(s) c(s; s0) +H�(s0) (1)where R(s) is the regression set of s, i.e. the set of states that can be con-structed from s by the branching rule.Approximations. Since equation (1) cannot be solved in practice, we derivea lower bound on H� by considering some inequalities. First, since a plan thatachieves the state s = (E; F), for F = f(ai; �i)g, at time t must achieve thepreconditions of the actions ai at time t� �i and these must remain true untilt, we haveH�(E; F) > max(ak ;�k)2F H�([(ai;�i)2F; �i>�k pre(ai); ;) + �k (2)H�(E; F) > H�(E [[(ai ;�i)2F pre(ai); ;): (3)Second, since achieving a set of atoms E implies achieving each subset E 0 ofE we also haveH�(E; ;) > maxE0�E;jE0j6mH�(E 0; ;) (4)where m is any positive integer.2 The plans generated are such that a regular action is executing during any given time intervaland no-ops begin only at the times that some regular action starts. This is due to the waythe temporal increments �adv are de�ned. Completeness could be achieved by working on therational time line and setting �adv to the gcd of all actions durations, but as mentioned abovethis is not needed for optimality.
125

Temporal Heuristic HmT . We de�ne a lower bound HmT on the optimalfunctionH� by transforming the above inequalities into equalities. A family ofadmissible temporal heuristics HmT for arbitrary m = 1; 2; : : : is then de�nedby the equationsHmT (E; ;)= 0 if E � IP (5)HmT (E; ;)= mins02R(s=(E;;)) c(s = (E; ;); s0) +HmT (s0) if jEj 6 m (6)HmT (E; ;)= maxE0�E;jE0j6mHmT (E 0; ;) if jEj > m (7)HmT (E; F)=max[max(ak ;�k)2F HmT ([(ai ;�i)2F;�i>�k pre(ai); ;) + �k ;HmT (E [[(ai ;�i)2F pre(ai); ;)] (8)The relaxation is a result of the last two equations; the �rst two are also sat-is�ed by the optimal cost function. Unfolding the right-hand side of equation(6) using (8), the �rst two equations de�ne the function HmT (E; F) completelyfor F = ; and jEj � m. From an implementation point of view, this meansthat for a �xed m, HmT (E; ;) can be solved and precomputed for all sets ofatoms with jEj � m, and equations (7) and (8) used at run time to computethe heuristic value of arbitrary states.The precomputation is a simple varia-tion of a shortest-path problem and its complexity is a low order polynomialin jAjm, where jAj is the number of atoms.For a �xed m, equation (6) can be simpli�ed because only a limited setof states can appear in the regression set. For example, for m = 1, the states in (6) must have the form s = (fpg; ;) and the regression set R(s) containonly states s0 = (pre(a); ;) for actions a such that p 2 add(a). As a result,for m = 1, (6) becomesH1T (fpg; ;) = mina:p2add(a) dur(a) +H1T (pre(a); ;) (9)The corresponding equations for H2T are in [9].3.3 Search AlgorithmAny admissible search algorithm, e.g. a�, ida� or DFS branch-and-bound [14],can be used with the search scheme described above to �nd optimal solutions.The planner uses ida� with some standard enhancements (cycle check-ing and a transposition table) and an optimality preserving pruning rule ex-plained below. The heuristic used is H2T , precomputed for sets of at most twoatoms as described above.
126

Incremental Branching In the implementation of the branching scheme,the establishers in SE are not selected all at once. Instead, this set is con-structed incrementally, one action at a time. After each action is added to theset, the cost of the resulting \partial" state is estimated so that dead-ends(states whose cost exceeds the bound) are detected early. A similar idea isused in graphplan. In a temporal setting, things are a bit more complicatedbecause no-ops have a duration (�adv) that is not �xed until the set of estab-lishers is complete. Still, a lower bound on this duration can be derived fromthe regular actions selected so far and in the state being regressed.Selecting the Atom to Regress The order in which atoms are regressedmakes no di�erence for completeness, but does a�ect the size of the resultingsearch tree. We regress the atoms in order of decreasing \di�culty": thedi�culty of an atom p is given by the estimate H2T (fpg; ;).Right-Shift Pruning Rule In a temporal plan there are almost always someactions that can be shifted forward or backward in time without changing theplan's structure or makespan (i.e. there is some \slack"). A right-shifted planis one in which such movable actions are scheduled as late as possible.As mentioned above, it is not necessary to consider all valid plans in orderto guarantee optimality. In the implemented planner, non-right-shifted plansare excluded by the following rule: If s0 is a successor to s = (E; F), an actiona compatible with all actions in F may not be used to establish an atom in s0when all the atoms in E 0 that a adds have been obtained from s by no-ops.The reason is that a could have been used to support the same atoms in E,and thus could have been shifted to the right (delayed).4 Planning with ResourcesNext, we show how the planning algorithm deals with renewable and consum-able resources.4.1 Renewable ResourcesRenewable resources limit the set of actions that can be executed concurrentlyand therefore need to enter the planning algorithm only in the branching rule.When regressing a state s = (E; F), we must have thatX(ai;�i)2F[Fnew use(ai; r) 6 avail(r) (10)for every renewable resource r 2 RP .
127

Heuristic The HmT heuristics remain admissible in the presence of renew-able resources, but in order to get better lower bounds we exclude from theregression set any set of actions that violates a resource constraint. For unaryresources (capacity 1) the resulting heuristic is informative, but for multi-capacity resources it tends to be weak.4.2 Consumable ResourcesTo ensure that resources are not over-consumed, a state s must contain theremaining amount of each consumable resource r. For the initial state, this isrem(s0; r) = avail(r), and for a state s0 resulting from srem(s0; r) = rem(s; r)� X(ai;ti)2Fnew use(ai; r) (11)for each r 2 CP .Heuristic The heuristics HmT remain admissible in the presence of consum-able resources, but become less useful since they predict completion time butnot conicts due to overconsumption. If, however, consumable resources arerestricted to be monotonically decreasing (i.e. consumed but not produced),a state s can be pruned if the amount of any resource r needed to achieve sfrom the initial situation exceeds the amount remaining in s, rem(s; r). Theamount needed is estimated by a function needm(s; r) de�ned in a way anal-ogous to the function HmT (s) that estimates time. The planner implementsneed1(s; r).Because resource consumption is treated separately from time, this solu-tion is weak when the time and resources needed to achieve a goal interact incomplex ways. The HmT estimator considers only the fastest way of achievingthe goal regardless of resource cost, while the needm estimator considers thecheapest way to achieve the goal regardless of time (and other resources). Toovercome this problem, the estimates of time and resources would have to beintegrated, as in for example [20]. Integrated estimates could also be used tooptimize some combination of time and resources, as opposed to time alone.4.3 Maintenance ActionsIn planning, it is normally assumed that no explicit action is needed to main-tain the truth of a fact once it has been established, but in many cases thisassumption is not true. We refer to no-ops that consume resources as main-tenance actions. Incorporating maintenance actions in the branching schemeoutlined above is straightforward: For each atom p and each resource r, a
128

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Time (seconds)

P
ro

bl
em

s
so

lv
ed

 (
%

)

TP4
IPP
Blackbox
STAN

10
−1

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Time (seconds)

P
ro

bl
em

s
so

lv
ed

 (
%

)

Blocksworld

Logistics

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Runtime (seconds)

P
ro

bl
em

s
so

lv
ed

 (
%

)

TP4
TGP (normal memo)
TGP (min. memo/backjump)(a) Runtime distributions for tp4 and op-timal non-temporal parallel planners onstandard planning problems. A point hx; yion the curve indicates that y percent of theproblems were solved in x seconds or less.Note that the time axis is logarithmic. (b) Runtime distributions for tp4 and tgpon problems from the simple temporal lo-gistics domain.

Figure1.quantity use(maintain(p); r) can be provided as part of the domain de�ni-tion and is set to 0 by default. Since the duration of a no-op is variable,we interpret use(maintain(p); r) as the rate of consumption. For the rest,maintenance actions are treated as regular actions, and no other changes areneeded in the planning algorithm.35 Experimental ResultsWe have implemented the algorithm for planning with time and resourcesdescribed above, including maintenance actions but with the restriction thatconsumable resources are monotonically decreasing, in a planner called tp44.The planner uses ida� with some standard enhancements and the H2T heuris-tic. The resource consumption estimators consider only single atoms.3 This treatment of maintenance actions is not completely general. Recall that the branching ruledoes not generate all valid plans: in the presence of maintenance actions it may happen thatsome of the plans that are not generated demand less resources than the plans that are. Whenthis happens, the algorithm may produce non-optimal plans or even fail to �nd a plan when oneexists. This is a subtle issue that we will address in the future.4 tp4 is implemented in C. Planner, problems, problem generators and experiment scripts areavailable at http://www.ida.liu.se/�pahas/hsps/. Experiments were run on a Sun Ultra 10.
129

5.1 Non-Temporal PlanningFirst, we compare tp4 to three optimal parallel planners, ipp, blackboxand stan, on standard planning problems without time or resources. Thetest set comprises 60 random problems from the 3-operator blocksworld do-main, ranging in size from 10 to 12 blocks, and 40 random logistics problemswith 5��6 deliveries. Blocksworld problems were generated using Slaney &Thiebaux's bwstates program [21].Figure 1(a) presents the results in the form of runtime distributions.Clearly tp4 is not competitive with non-temporal planners, which is expectedconsidering the overhead involved in handling time. Performance in the logis-tics domain, however, is very poor (e.g. tp4 solves less than 60% of the prob-lems within 1000 seconds, while all other planners solve 90% within only 100seconds), indicating that other causes are involved (most likely the branchingrule, see below).5.2 Temporal PlanningTo test tp4 in a temporal planning domain, we make a small extension tothe logistics domain5, in which trucks are allowed to drive between cities aswell as within and actions are assigned durations as follows:Actions Duration Actions DurationLoad/Unload 1 Drive truck (between cities) 12Drive truck (within city) 2 Fly airplane 3This is a simple example of a domain where makespan-minimal plans tend tobe di�erent from minimal-step parallel plans.For comparison, we tested also the tgp planner [22]. The test set com-prised 80 random problems with 4��5 deliveries. Results are in �gure 1(b).We tested two versions of tgp, one using plain graphplan-like memoizationand the other minimal conict set memoization and \intelligent backtracking"[12]. tp4 shows a behaviour similar to the plain version of tgp, though some-what slower. As the top curve shows, the intelligent backtracking mechanismis very e�ective in this domain (this was indicated also in [12]).5.3 Planning with Time and ResourcesFinally, for a test domain involving both time and non-trivial resource con-straints we have used a scheduling problem, called multi-mode resource con-strained project scheduling (MRCPS) [23]. The problem is to schedule a set5 The goal in the logistics domain is to transport a number of packages between locations indi�erent cities. Trucks are used for transports within a city and airplanes for transports betweencities. The standard domain is available e.g. as part of the AIPS 2000 Competition set [1].
130

of tasks and to select for each task a mode of execution so as to minimizeproject makespan, subject to precedence constraints among the tasks andglobal resource constraints. For each task, each mode has di�erent durationand resource requirements. Resources include renewable and (monotonicallydecreasing) consumable. Typically, modes represent di�erent trade-o�s be-tween time and resource use, or between use of di�erent resources. This makes�nding optimal schedules very hard, even though the planning aspect of theproblem is quite simple.The test comprised sets of problems with 12, 14 and 16 tasks and approx-imately 550 instances in each (sets J12, J14 and J16 from [19]). A specializedscheduling algorithm solves all problems in the set, the hardest in just below300 seconds [23]. tp4 solves 59%, 41% and 31%, respectively, within the sametime limit.6 ConclusionsWe have developed an optimal, heuristic search planner that handles con-current actions, time and resources, and minimizes makespan. The two mainissues we have addressed are the formulation of an admissible heuristic esti-mating completion time and a branching scheme for actions with durations.In addition, the planner incorporates an admissible estimator for consumableresources that allows more of the search space to be avoided. Similar ideascan be used to optimize a combination of time and resources as opposed totime alone.The planner achieves a tradeo� between performance and expressivity.While it is not competitive with either the best parallel planners or specializedschedulers, it accommodates problems that do not �t into either class. Anapproach for improving performance that we plan to explore in the future isthe combination of the lower bounds provided by the admissible heuristicsHmT with a di�erent branching scheme. See [6] for details.AcknowledgmentsWe'd like to thank David Smith for much help with tgp. This research hasbeen supported by the Wallenberg Foundation and the ECSEL/ENSYM grad-uate study program.

131

References1. AIPS competition, 2000. http://www.cs.toronto.edu/aips2000/.2. R.E. Bellman. Dynamic Programming. Princeton University Press, 1957.3. A.L. Blum and M.L. Furst. Fast planning through graph analysis. Arti�cial Intelligence,90(1{2):281 { 300, 1997.4. B. Bonet and H. Ge�ner. Planning as heuristic search. Arti�cial Intelligence, 2001. To appear.5. A.S. Fukunaga, G. Rabideau, S. Chien, and D. Yan. ASPEN: A framework for automatedplanning and scheduling of spacecraft control and operations. In Proc. International Sympo-sium on AI, Robotics and Automation in Space, 1997.6. H. Ge�ner. Planning as branch and bound and its relation to constraint-based approches.http://www.ldc.usb.ve/�hector.7. M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal planner. InProc. 2nd International Conference on AI Planning Systems, 1994.8. P. Haslum and H. Ge�ner. Admissible heuristics for optimal planning. In Proc. 5th Interna-tional Conference on Arti�cial Intelligence Planning and Scheduling. AAAI Press, 2000.9. P. Haslum and H. Ge�ner. Heuristic planning with time and resources. In Proc. IJCAIWorkshop on Planning with Resources, 2001. http://www.ida.liu.se/�pahas/hsps/.10. J. Ho�man. A heuristic for domain independent planning and its use in an enforced hill-climbing algorithm. In Proc. 12th International Symposium on Methodologies for IntelligentSystems, 2000.11. A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and B. Smith. Planning in interplanetaryspace: Theory and practice. In Proc. 5th International Conference on Arti�cial IntelligencePlanning and Scheduling (AIPS'00), 2000.12. S. Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and other CSPsearch techniques in Graphplan. Journal of AI Research, 12:1 { 34, 2000.13. J. Koehler. Planning under resource constraints. In Proc. 13th European Conference onArti�cial Intelligence, 1998.14. R.E. Korf. Arti�cial intelligence search algorithms. In Handbook of Algorithms and Theory ofComputation, chapter 36. CRC Press, 1999.15. J. Kvarnstrom and P. Doherty. TALplanner: A temporal logic based forward chaining planner.Annals of Mathematics and Arti�cial Intelligence, 30(1):119 { 169, 2000.16. J.M. Lever and B. Richards. parcPLAN: A planning architecture with parallel actions, re-sources and constraints. In Proc. 9th International Symposium on Methodologies for IntelligentSystems, 1994.17. N. Muscettola. Integrating planning and scheduling. In M. Zweben and M. Fox, editors,Intelligent Scheduling. Morgan-Kaufmann, 1994.18. J.S. Penberthy and D.S. Weld. Temporal planning with continous change. In Proc. 12thNational Conference on Arti�cial Intelligence (AAAI'94), 1994.19. PSPLib: The project scheduling problem library. http://www.bwl.uni-kiel.de/Prod/psplib/library.html.20. I. Refanidis and I. Vlahavas. Heuristic planning with resources. In Proc. 14th EuropeanConference on Arti�cial Intelligence, 2000.21. J. Slaney and S. Theibaux. Blocks world revisited. Arti�cial Intelligence, 125, 2001. Seehttp://arp.anu.edu.au:80/�jks/bw.html.22. D.E. Smith and D.S. Weld. Temporal planning with mutual exclusion reasoning. In Proc.16th International Joint Conference on Arti�cial Intelligence, 1999.23. A. Sprecher and A. Drexl. Solving multi-mode resource-constrained project scheduling prob-lems by a simple, general and powerful sequencing algorithm. I: Theory & II: Computation.Technical Report 385 & 386, Instituten f�ur Betriebswirtschaftsrlehre der Universit�at Kiel,1996.24. A. Tate, B. Drabble, and J. Dalton. O-Plan: a knowledge-based planner and its applicationto logistics. In Advanced Planning Technology. AAAI Press, 1996.
132

Integrating Planning and Scheduling through

Adaptation of Resource Intensity Estimates

Karen L. Myers

1
, Stephen F. Smith

2
, David W. Hildum

2
, Peter A. Jarvis

1
, Raymond

de Lacaze
1

1 AI Center, SRI International, Menlo Park, CA USA

{myers,jarvis,delacaze}@ai.sri.com

2 The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA USA

{sfs,hildum}@cs.cmu.edu

Abstract. We describe an incremental and adaptive approach to integrating hierar-

chical task network planning and constraint-based scheduling. The approach is

grounded in the concept of approximating the ‘resource intensity’ of planning op-

tions. A given planning problem is decomposed into a sequence of (not necessarily

independent) subtasks, which are planned and then scheduled in turn. During plan-

ning, operators are rated according to a heuristic estimate of their expected resource

requirements. Options are selected that best match a computed ‘target intensity’ for

planning. Feedback from the scheduler is used to adapt the target intensity after com-

pletion of each subplan, thus guiding the planner toward solutions that are tuned to

resource availability. Experimental results from an air operations domain validate the

effectiveness of the approach relative to typical “waterfall” models of plan-

ner/scheduler integration.

1. Introduction

Goal-oriented activity in complex domains typically requires a combination of plan-

ning and scheduling. A manufacturing facility must develop process plans for ordered

parts that can be cost-effectively integrated with current production operations. Mili-

tary planners must select courses of actions that achieve strategic objectives, while

making the most of available assets. Space observatories must allocate viewing in-

struments to maximize scientific return under a large and diverse set of causal restric-

tions and dependencies. Though conceptually decomposable, planning and scheduling

processes in such domains can be and often are highly interdependent. Different plan-

ning options for achieving a given objective can make quite different demands on

system resources; correspondingly, current resource commitments and availability will

impact the feasibility or desirability of various planning options.

The effectiveness of goal-oriented activity is ultimately tied to an ability to keep

pace with evolving circumstances, and one recognized obstacle in practice is poor

integration of “planning” and “scheduling” processes. In manufacturing organizations,

this problem has been characterized as the “wall between engineering and manufactur-

ing”. Similar sorts of barriers can be found in other large-scale enterprises. The crux

of the problem is lack of communication. Plans are developed with no visibility of

resource availability and operational status, and likewise, schedules are developed and

managed without knowledge of objectives and dependencies. Without such informa-

133

tion exchange, planning and scheduling processes are forced to each proceed in an

uninformed and inherently inefficient manner. In the simplest case, the result is an

iterative waterfall model of integration, where planning and scheduling are performed

in sequential lockstep fashion and any problem encountered during scheduling simply

triggers the generation of a new plan.

In this paper, we present a method for improving the overall planning and sched-

uling process through a tighter integration of these constituent activities. By planning,

we refer generally to the process of deciding what to do; i.e., the process of transform-

ing strategic objectives into executable activity networks. We use the term scheduling

to refer alternatively to the process of deciding when and how; i.e., which resources to

use to execute various activities and over what time frames. Traditionally, AI research

has viewed planning and scheduling as distinct activities, and different solution tech-

niques and technologies have emerged for each. Relatively few attempts have been

made to combine respective technologies into larger integrated frameworks.

We take as our starting point previously developed technologies for hierarchical

task network (HTN) planning and constraint-based scheduling. We describe and

evaluate an approach to their integration based on the idea of approximating the re-

source requirements (called resource intensity) of different planning options, and

incrementally exchanging and exploiting information about likely resource shortfalls

and excesses to settle on options that best utilize available resources. Finally, we pre-

sent experimental results that compare an implementation of the method to an iterative

waterfall model of integration within the air operations domain. These results show

that the intensity-based approach provides plans of comparable quality for greatly

reduced computation time.

2. Technology Foundations

Planning The CPEF system provides the planning component for our work [8]. CPEF

embodies a philosophy of plans as dynamic, open-ended artifacts that evolve in re-

sponse to a continuously changing environment. CPEF provides a range of operations

required for continuous plan management, including plan generation, plan execution,

monitoring, and plan repair. Plan generation within CPEF is based on the CHIP

system – an HTN planner derived from SIPE-2 [15].

Scheduling ACS, a constraint-based scheduler, provides the base scheduling capabil-

ity. ACS is an air operations scheduler constructed using OZONE [13], a customizable

constraint-based modeling and search framework for developing incremental schedul-

ing tools. OZONE consolidates the results of application development experiences in

a range of complex domains, including one recently deployed system for day-to-day

management of airlift resources at the USAF Air Mobility Command (AMC) [1]. The

ACS scheduler adapts techniques underlying the AMC application to the air opera-

tions domain. ACS can be used to generate, incrementally extend and revise assign-

ments of aircraft and munitions to input target demands over time, taking into account

priorities, desired levels of damage, time-on-target (TOT) windows, temporal se-

quencing constraints, feasible resource alternatives, and aircraft/munitions positioning

and availability constraints.

134

3. Air Operations Domain Characteristics and Model

Applications that require integrated planning and scheduling will have individual

characteristics that dictate the relative importance of each of these capabilities. Much

of the work to date on combining AI planning and scheduling has focused on re-

source-driven domains (such as satellite observation scheduling [7]), which emphasize

optimization of resource usage in satisfying a pool of tasks. In contrast, the air opera-

tions domain has a more goal-driven flavor: while effective resource usage is impor-

tant, the key motivation is to identify and schedule actions that will ensure attainment

of stated objectives.

 Objectives within the air operations domain reduce to goals of neutralizing enemy

capabilities (e.g., antiaircraft capability, electricity production, communications) mod-

eled as hierarchical networks that ground out at the level of specific targets. We pro-

vide several strategies for attacking different network types that vary in their aggres-

siveness, and hence resource demands. These strategies range from attacking all com-

ponents in a network, to attacking a coherent subset, or an isolated node [5].

 Resources (i.e., aircraft, munitions) are assigned to support prosecution of indi-

vidual targets. A given type of target usually has several possible aircraft/munitions

configurations. However, different configurations will have different degrees of effec-

tiveness, and hence the numbers of resources that must be allocated to achieve the

desired effect can vary with each choice. Quantities (or capacities) of different types

of resources are positioned at various locations nearby or within the geographic region

of interest. The set of resources assigned to fly against a given target can vary in type

and, depending on availability, may either originate from multiple locations (converg-

ing on the target within a particular time interval) or recycle from the same base loca-

tion (making sufficient sets of consecutive strikes on the target).

 The style of planning required for this domain differs markedly from standard AI

approaches. Here, the search space is dense with solutions, making it easy to find a

plan that satisfies stated goals. The real challenge is to find ‘good’ plans rather than

settling for the first available solution. While most AI planning systems seek to mini-

mize plan size, bigger plans tend to be better in this domain since the inclusion of

additional activities can increase the likelihood of achieving stated objectives. For

example, eliminating more of an enemy’s missile sites tends to improve the quality of

a plan for neutralizing enemy attack capability. Note that maximizing plan size is not

equivalent to maximizing resource usage: the planner and scheduler must still decide

how to allocate available resources economically to support chosen activities.

 Air operations commanders generally apportion a set of resources for a given set

of high-level objectives; human planners are expected to develop solutions that maxi-

mize the likelihood of objective attainment while staying within the resource allot-

ment. Our planning model incorporates this apportionment perspective into its design.

In particular, initial plans seek to capitalize on all available resources; as resource

problems arise, strategies are adopted that decrease resource usage.

4. Technical Approach

Our integration method builds on an incremental model of planning and scheduling

that assesses resource feasibility at the level of subplans for the overall set of objec-

135

tives, using a model of intensity to approximate resource demand, and adaptation in

response to scheduler feedback.

Incremental Planning and Scheduling

Within our hierarchical domain model, high-level operator choices can have a signifi-

cant impact on resource requirements. However, actions with specific resource re-

quirements do not appear until the lowest levels of a deep hierarchy. For example, the

high-level decision of whether to employ a passive or more proactive approach to

defending assets will greatly influence resource requirements, although the actual

missions that require resources are planned at much lower levels of abstraction.

Approaches in which complete layers of a hierarchical plan are forwarded to a

scheduler for resource allocation (e.g., [16]) do not provide much value in this case,

since most of the plan would have to be completed before any scheduler feedback

could be obtained. Instead, we developed a hybrid top-down/incremental model for

planning and scheduling. The approach involves planning in standard HTN fashion

down to a specified level of detail (the decomposition layer), and then splitting into

subplans that are elaborated separately. The decomposition layer, defined implicitly in

terms of specific goals, separates the higher-level strategic decisions that define over-

all plan structure from the planning of (mostly independent) lower-level objectives.

 After completion of each subplan, the scheduler incrementally allocates resources

to the new actions introduced by the subplan, taking into account the resource assign-

ments already made for previous subplans. In the event that the scheduler is unable to

produce a satisfactory resource assignment, the planner will modify one or more com-

pleted subplans to reduce resource demand, and then forward the revisions to the

scheduler for appropriate adjustments to the current schedule. Once all outstanding

resource problems have been resolved, the planner continues with generation of re-

maining subplans until completion of a full plan and schedule. With this incremental

approach, the integrated plan and schedule is built in piecewise, incremental fashion,

with adjustments made in response to detected resource problems

This incremental approach would be ineffective for domains in which extensive

strategic dependencies link objectives. However, in our models for the air operations

domain, most dependencies occur at the level of resource allocation, thus enabling the

separation of the planning for individual objectives.

Intensity Models of Resource Demand

To make informed decisions about its choices, a planner requires some model of the

resource impact of its decisions. Previous work on incorporating resource feasibility

reasoning into hierarchical planning (e.g., [2]) has assumed the ability to determine a

priori minimum and maximum resource requirements for individual operators at all

levels of abstraction, and has used this information as decision-making guidance.

Two problems arise with approaches of this type. First, computing bounds on re-

source usage can be prohibitively expensive in complex domains, given the need to

consider all possible goal expansions and resource allocation options. Second, for the

air operations domain, the bounds obtained are likely to be weak and uninformative.

This latter problem stems from two factors: the heterogeneity of the resources that

might be assigned to a given subplan, and the fact that resources are physically dis-

136

tributed and must travel variable amounts to perform different tasks. Depending on the

type of resource assigned, different numbers of resources (or different amounts of

resource capacity) will be required to accomplish a particular task. The location and

operating characteristics of assigned resources will dictate the overall length of time

that resources must be allocated. Since in both cases, the potential variance across

resource types is quite high, simple minimum (or maximum) bounds will provide

overly optimistic (or pessimistic) estimates of resource demand.

Given these problems, our approach to linking planning and scheduling instead

builds on a heuristic characterization of expected resource usage by a planning opera-

tor, which we refer to as an operator’s intensity. Our work to date has explored two

models for intensity, which vary both the dimensionality (single vs. multi) and the

precision (qualitative vs. quantitative).

Single-dimensional Qualitative Intensity Model In this model, an operator’s inten-

sity represents a qualitative assessment of the operator’s expected resource usage

relative to alternatives for the same task. The air operations domain, for example,

contains multiple operators for neutralizing an enemy’s communication capability,

ranging from taking out a single site, to destroying some select subset of communica-

tion devices, to eliminating all communication nodes. For an intensity scale of [0 10],

the first operator might be ranked a 2, the second a 5, and the third a 10 to reflect their

relative levels of expected resource consumption.

Multidimensional Quantitative Intensity Model This model captures expected

resource usage at a finer level of granularity. Resources are grouped into functional

categories intended to capture similarities in resource applicability. These groupings

provide an aggregation over individual resource classes, thus simplifying the resource

models inherent to the scheduler; however, the aggregation has greater detail than the

single-dimensional intensity model and so would be expected to provide improved

predictive value for resource usage estimation.

Within our air operations domain, for example, aircraft and munitions can be

grouped according to the different types of missions in which they can be used (which

is a function of target type). Our multidimensional intensity model for this domain

groups 5 types of aircraft and 7 types of munitions into 4 resource dimensions. Be-

cause aircraft and munitions can be used for different types of missions, these dimen-

sions are not mutually exclusive. This connectivity introduces additional complexity

into the multidimensional intensity adaptation process, since decisions related to one

dimension can impact results for others.

The multidimensional quantitative model also improves on the single-dimensional

qualitative approach by employing a situation-dependent characterization of operator

intensity. In particular, operator intensities are defined by a heuristic function that

estimates resource demand based on the number and type of targets that an operator is

expected to introduce.

The single-dimensional model has the virtue of requiring little effort to define the

qualitative rankings within the underlying planning models: such rankings could be

readily determinable by the knowledge engineer who develops the planning operators.

In contrast, the multidimensional quantitative model requires the identification and

modeling of resource abstractions. Such abstractions fall out naturally in the air opera-

tions domain but may be more problematic to define in others.

137

The weakness of the single-dimensional approach lies in its lack of granularity.

Consider a situation with relatively low overall resource demand but where the class

of resources required for a key type of action has been almost exhausted. The single-

dimensional approach would not adjust strategy selection to adapt to the shortage

because of the overall abundance of resources. In contrast, the multidimensional

model can represent a lack of capacity for specialized groups of resources, thus ena-

bling an adjustment in strategy selection to prefer approaches that minimize demand

for the oversubscribed resource.

5. Intensity-based Adaptation

The incorporation of intensity information to guide planning occurs at the level of

subplans. For a given subplan, the planner calculates a target intensity, denoted by I
T
.

This value represents the expected ‘ideal’ level of resource usage for a particular sub-

plan, relative to availability and expected demand for remaining subplans. When

faced with a choice among multiple applicable operators Oi for a subgoal, the intensity

I
Oi

 for each is computed. Each operator is assigned a rating Rating(Oi) based on how

closely its intensity matches the subplan’s target intensity, with the planner selecting

the most highly rated operator for application. The specific definitions for the target

intensity, operator intensity, and operator rating used in our work are presented below.

 Adjustment of the target intensity across subplans enables the planner to adapt its

strategy to match changing resource availability. The planner is provided with updates

on resource availability after every interaction with the scheduler. Suppose that upon

successful allocation of resources to a subplan, the scheduler’s assessment of remain-

ing resource availability indicates a shortage (excess) of remaining resources relative

to the subplans yet to be generated and scheduled. By reducing (increasing) the target

intensity for the next subplan to reflect this shortage (excess), the planner will be bi-

ased toward selecting operators with lower (higher) intensity values that will decrease

(increase) resource consumption levels. In this way, the planner dynamically adjusts

its decision-making in response to scheduler feedback.

 Within this adaptive framework, different control strategies can be defined for

selecting the subplan to be revised in response to scheduling problems. The experi-

ments in this paper adopt a chronological backoff strategy: when the scheduler en-

counters a problem with a subplan, the planner reduces the target intensity for that

subplan in accord with a target intensity reduction policy and then generates an alter-

native plan. This process continues until either a resource feasible subplan is found, or

there is no more room for intensity reduction. In the latter case, the algorithm removes

the unsuccessful subplan from the plan; if the target intensity of the previous subplan

can be reduced, then planning and scheduling are tried at that lower level; otherwise,

the planner continues to remove subplans until it encounters a subplan that is not yet at

the minimal intensity value. From that point, it tries to plan with the lower target in-

tensity and then restarts the generation process in the forward direction.

 Below, we provide the basic definitions for target intensity, operator intensity,

operator rating scheme and target intensity reduction policy for the multidimensional

case, followed by their definitions for the simpler single-dimensional case.

Target Intensity I
T
 The target intensity for a given intensity dimension is defined in

terms of the ratio of the resources available per remaining subplan to the resources

138

allotted originally to each subplan (assuming uniform apportionment to each); this

ratio is then normalized relative to the interval of intensity values in use (namely,

[0,TopIntensity]). More formally, let Capacity(Ij) be the overall capacity for re-

sources in dimension j and let Rj
i
 be the remaining capacity for dimension j after the

first i of n subplans have been created and scheduled. The following equation defines

the target intensity I
T
 for the i+1

st
 subplan:

tyTopIntensi

Capacity
n

inwhere

I

R
I

I

I
I

j

i

jT

j
T

m

T

T
×

×

×
−

=

�
�
�

�

�

�
�
�

�

�

=

)(
1

1
1

�

Provided that resource usage remains below allotment levels, the value Ij
T
 will exceed

TopIntensity. Values below TopIntensity indicate that planning choices should de-

crease demand for resources within that dimension below the original allotment level.

Operator Intensity I
Oi

 The intensity I
Oi

of a planning operator Oi is defined by the

equation:

tyTopIntensi

Capacity
n

mandExpectedDe
Owhere

O

O

O

I

IO
I

I

I
I

j

ji

j

m

i

i

i

i ×

×

=

�
�
�
�

�

�

�
�
�
�

�

�

=

)(
1

),(1

�

The intensity for each dimension is defined to be the ratio of the expected resource

demands introduced by the operator to the original allotment of resources for that

subplan and dimension (assuming uniform allotment). For the air operations domain,

the resource demands of an operator are measured in terms of the expected munitions

and aircraft required to prosecute the targets associated with the operator. These esti-

mates are calculated by summing the expected number of targets of a given type mul-

tiplied by a capacity estimate for the type.

Operator Ranking Our scheme for ranking operators according to their proximity to

the target intensity values is defined by the following equations. The ranking method

builds on the intensity difference vector D
Oi

= I
T

-I
Oi

, which gives the difference be-

tween the target intensity and operator intensity vectors.

)()(�
∈

=

Dd

PenaltyRating
O i

j

dO j

i

0

0

)(
)(

<

≥

��

�
�
�

×

×
=

−

+

d

d

for

for

dABS

d
dPenalty

P
P

The operator rating, denoted by Rating(O
i
), is defined to be the sum of the magnitudes

in the intensity difference vector, adjusted by a penalty factor. In cases where the

difference value dj is positive (i.e., the operator requires fewer resources than indi-

cated by the target intensity), the penalty is defined by P
+
; in cases where dj<0 (i.e.,

the operator is expected to use more resources than indicated by the target intensity),

the penalty is defined by P
-
. Through appropriate settings of the ratio of these penalty

factors, different strategies can be defined that penalize resource overutiliza-

tion/underutilization to different degrees. With this rating scheme, the preferred opera-

tor will be that with the lowest rating.

Target Intensity Reduction Policy In situations where the scheduler is unsuccessful

in an attempt to allocate resources for a given subplan, it provides feedback to the

139

planner in the form of the list of problematic resources whose limited capacity have

contributed to the failure. The intensity reduction policy used to adjust the target

intensity for that subplan incorporates this information. In particular, each intensity

dimension that includes resources from the problematic set is decreased by an amount

∆. For the experiments presented in this paper, ∆= .25 x TopIntensity.

Single-Dimensional Case For the single-dimensional case, the target intensity I
T

re-

duces to

The operator intensity is simply the qualitative annotation defined for the operator,

while the rating is the difference between the target and operator intensities. The target

intensity reduction policy consists of decreasing the current target intensity by ∆.

6. Experimental Evaluation

We conducted a series of experiments to evaluate the effectiveness of our intensity

adaptation methods. Our test problem yields plans with eight subplans and 50 to 724

actions, depending upon the aggressiveness of the planning strategies applied. Ex-

periments involved running the test problem with different resource profiles, as shown

in Figure 2. The 100% profile provides just sufficient resources for the maximum

plan; the profiles then decay gradually until there are insufficient resources to support

the minimal plan. Additionally, the experiments employ a profile labeled BIG that

contains a large amount of resources relative to the maximal plan.

Figure 1: Experiment Resource Profiles

 Generation time constitutes one important criterion for evaluating plan-

ner/scheduler behavior. Some measure of plan quality must also be considered. Oth-

erwise, the best strategy is simply to generate the smallest plan that satisfies stated

objectives: because it contains fewer activities, it will require fewer resources and so

should be easier to schedule. Plan quality can be difficult to assess as it involves mul-

tiple dimensions and can be highly subjective [3]. As discussed above, air operations

plans can generally be made more effective by adding more actions to them. For this

reason, we use plan size as a rough indicator of plan quality.

 For a baseline, we adopted a loosely coupled iterative waterfall integration of the

planner and scheduler in which the planner generates complete plans and then passes

TopIntensity

Capacity
n

in R
I

i

T
×

×

×
−

=
1

1

140

them to the scheduler for resource allocation and time-on-target assignments. If the

scheduler fails to produce a feasible schedule, the process repeats with the planner

performing chronological backtracking to generate alternative plans. To draw fair

comparisons with the intensity-based approaches, the waterfall method considers op-

erators in decreasing order of intensity. This strategy generally yields a plan that is

close to the largest supportable for the available resources but is not necessarily opti-

mal (i.e., chronological backtracking stops at the first solution, even though undoing

an earlier operator choice might enable more aggressive subsequent choices).

Our evaluation consists of two experiments. Experiment A compares the single-

dimensional and multidimensional approaches (with P
+
=P

-
=1) to the iterative water-

fall. Experiment B assesses the sensitivity of the multidimensional method to the pen-

alty factors P
+
 and P

-
. For each, we consider three performance factors: generation

time, plan size, and number of planner/scheduler interactions.

Experiment A: Intensity Adaptation Evaluation

 Figure 2 shows the results for Experiment A. The upper-left graph displays generation

time for the three methods. As can be seen, the waterfall method requires substantially

more time when resources become constrained, while the intensity-based methods

perform much better. The multidimensional approach outperforms the single-

dimensional approach, with the advantage increasing as resource availability drops.

The upper-right graph displays the number of interactions between the planner and

scheduler required to find a solution. As with generation time, these results show that

the multidimensional method outperforms the single-dimensional method, and that

they both are far superior to the waterfall method as resource availability decreases.

Experiment A used a scaled-down version of our air operations domain in which

goals that do not involve intensity decisions are limited to a single applicable operator.

This restriction was introduced to ensure that the waterfall backtracking was limited to

0

2000

4000

6000

8000

10000

Big 100% 75% 50% 25% 15% 10%

G
e

n
e

ra
ti
o

n
 T

im
e

0

50

100

150

200

Big 100% 75% 50% 25% 15% 10%

In
te

ra
ti
o

n
s

0

100

200

300

400

500

600

700

800

Big 100% 75% 50% 25% 15% 10%

P
la

n
 S

iz
e

Waterfall Single Multi

Figure 2: Comparison: Waterfall, Single-dimensional, Multidimensional

Methods

141

precisely the same choices as the intensity adaptation methods, in essence providing

the best possible comparative analysis conditions for the waterfall model. An addi-

tional experiment was run where non-intensity goals had two applicable operators.

Runtimes for the intensity methods were virtually identical to those in Figure 2, since

the intensity method backtracks at the level of intensity values rather than operators

(hence, it is not impacted by the additional operators). In contrast, the waterfall

method was unable to find a solution below the 100% resource profile after 239 trials

and almost 30 hours of runtime. The waterfall method fails so badly in this larger

problem because many planning decisions must be backtracked over to reach one that

impacts resource usage significantly.

The waterfall approach produces slightly larger plans than the intensity-based

methods for the 100% through 50% profiles; as resource availability decreases further

though, it produces smaller (i.e., less aggressive) plans. In comparing runtimes, it is

clear that the small increases in plan size come at the cost of an increase of several

orders of magnitude in planning/scheduling time. While there is some variation be-

tween the single-dimensional and multidimensional methods, the difference is rela-

tively small. Overall, these results show that the performance benefits realized by the

multidimensional approach do not adversely impact solution quality.

Experiment B: Sensitivity to P
-
/P

+

As noted above, the ratio of P
+

and P
-
 in the operating ranking scheme for the multi-

dimensional approach can be adjusted to vary the penalty for overutiliza-

tion/underutilization of resources relative to the established target intensity. To assess

sensitivity to these values, we ran test cases with P
+

=1 and P
-
 ranging from 0.5 to 4.

Figure 4 displays the results. For P
-
=4 (and to some extent, P

-
=3), there is a no-

ticeable drop in plan size for the 100% through 50% profiles. For P
-
=.5, generation

times and the number of planner/scheduler interactions are appreciably higher over

that same range. Such results are to be expected: when resource overutilization is

0

50

100

150

200

250

300

350

Big 100% 75% 50% 25% 15% 10%

G
e

n
e

ra
ti
o

n
 T

im
e

0

5

10

15

20

Big 100% 75% 50% 25% 15% 10%

In
te

ra
c
ti
o

n
s

0

100

200

300

400

500

600

700

800

Big 100% 75% 50% 25% 15% 10%

P
la

n
 S

iz
e

P-=4

P-=3

P-=2

P-=1 .5

P-=1

P-=0 .5

Figure 3: Sensitivity of the Multidimensional Approach to P

-
/P

+

142

penalized relative to underutilization (i.e., P
-
/P

+
 > 1), the intensity adaptation process

will be more cautious, resulting in a tendency toward smaller plans. In contrast, when

resource overutilization is favored relative to underutilization (i.e., P
-
/ P

+
 < 1), the

intensity adaptation process will be more aggressive in its strategy selection, possibly

resulting in the need for more backtracking due to overly aggressive strategy choices.

We had expected to see more dramatic variation as P
-
 changed but the adaptive

nature of the intensity method appears to compensate for overly aggressive or weak

decisions induced by large/small penalty ratios. This robustness makes the intensity

adaptation approach strongly insensitive to reasonable values for parameters P
-
 and

P
+
.

7. Related Work

As mentioned earlier, much of the previous work in integrated planning/scheduling

systems has been motivated by resource-driven applications. The early Hubble Space

Telescope scheduling application of the HSTS system [7] provides a representative

example, where a set of independent (or loosely-coupled) requests for telescope view-

ing time, each requiring a complex set of spacecraft actions for setup, observation, and

cleanup, must be selected and sequenced for execution. Here, the overriding concern

is efficient allocation of system resources, with planning decisions localized to imple-

mentation of individual tasks. The Remote Agent Planner/Scheduler [4] and the

ASPEN mission planner [10] also fall into this category, as does IP3S [11], a system

that integrates process planning and production scheduling in the manufacturing do-

main.

The REALPLAN system [14] places greater emphasis on strategic planning. Like

our approach, REALPLAN partitions a problem into separate planning and scheduling

components rather than solving the entire problem in a single integrated search space

(see [12] for a survey of integrated search approaches). We similarly believe that such

partitioning provides essential computational leverage. REALPLAN employs an itera-

tive waterfall control model, with feedback of failure information in the most sophisti-

cated variant. As shown in this paper, such an approach can be intractable in nontrivial

domains.

The CIRCA-based planning and scheduling system described in [6] builds on an

iterative waterfall model of interaction, but incorporates feedback from the scheduler

to planner that is similar in spirit to our intensity adaptation approach. Based on a

probabilistic state model, the planner generates control plans designed to prevent

runtime transition to failure states. Planning relies on a specified probability threshold

on states, with higher thresholds leading to consideration of fewer eventualities and

simpler plans. When the scheduler is unable to meet the stated deadlines of all actions

in a generated plan, it recommends a higher probability threshold to the planner for the

next iteration. Similarly, when schedules underutilize resources, the scheduler suggests

a lower probability threshold to enable the incorporation of additional activities.

8. Conclusions

The two intensity-based methods presented in this paper provide complementary

methods for supporting effective planner/scheduler integration in domains that require

143

significant strategic planning. The single-dimensional qualitative approach provides a

simple, easily implemented method that shows significant performance gains over

waterfall-style methods. The multidimensional quantitative approach provides even

better results but requires somewhat more modeling effort to operationalize.

This work represents one thrust of a larger effort to develop an integrated plan-

ning and scheduling system for management and control of large-scale enterprises [9].

Beyond the work on plan and schedule generation described here, we are developing

intensity-based methods to support efficient plan and schedule repair in response to

the addition or revision of objectives and changes to resource availability.

References

1. Becker, M. and S.F. Smith, “Mixed-Initiative Resource Management: The AMC Barrel

Allocator”, Proc. 5th Intl. Conf. on AI Planning and Scheduling, 2000.

2. Drabble, B. and A. Tate, “The Use of Optimistic and Pessimistic Resource Profiles to

Inform Search in an Activity Based Planner”, Proc. 2rd Intl. Conf. on AI Planning and

Scheduling, 1994.

3. Gil, Y., “On Evaluating Plans”, Technical Report, USC/ISI. 1998.

4. Jonsson, A., P. Morris, N. Muscettola, K. Rajan and B. Smith, “Planning in Interplanetary

Space: Theory and practice”, Proc. 5th Intl. Conf. on AI Planning and Scheduling, 2000.

5. Lee, T., “The Air Campaign Planning Knowledge Base”, SRI International Technical

Report, 1998.

6. McVey, C.B., E.M. Atkins, E.H. Durfee and K.G. Shin, “Development of Iterative Real-

Time Scheduler to Planner Feedback”, Proc. 16th Intl. Joint Conf. on AI, 1997.

7. Muscettola, N., S.F. Smith, A. Cesta and D. D’Aloisi, “Coordinating Space Telescope

Operations in an Integrated Planning and Scheduling Framework”, IEEE Control Systems,

12(1), 1992.

8. Myers, K.L., “CPEF: A Continuous Planning and Execution Framework”, AI Magazine,

20(4), 1999.

9. Myers, K.L. and S.F. Smith, “Issues in the Integration of Planning and Scheduling for

Enterprise Control”, Proc. DARPA Symposium on Advances in Enterprise Control, 1999.

10. Rabideau, G., R. Knight, S. Chien, A. Fukunaga, and A. Govindjee. “Iterative Repair

Planning for Spacecraft Operations using the ASPEN System”, Proc. Intl. Symp. Of Artifi-

cial Intelligence, Robotics and Automation for Space, 1999.

11. Sadeh, N., D.W. Hildum, T.J. LaLiberty, J. McAnulty, D. Kjenstad and A. Tseng. “A

Blackboard Architecture for Integrating Process Planning and Production Scheduling,

Concurrent Engineering: Research & Applications, 6(2), 1998.

12. Smith, D.E., J. Frank and A.K. Jonsson, “Bridging the Gap Between Planning and Sched-

uling”, Knowledge Engineering Review, 15 (1) 2000.

13. Smith, S.F., O. Lassila and M. Becker, “Configurable Systems for Mixed-Initiative Plan-

ning and Scheduling”, in Advanced Planning Technology (ed. A. Tate), AAAI Press,

1996.

14. Srivastava, B., S. Kambhampati and B.D. Minh, “Planning the Project Management Way:

Efficient Planning by Effective Integration of Causal and Resource Reasoning in

RealPlan”, Artificial Intelligence, to appear, 2001.

15. Wilkins, D.E., Practical Planning: Extending the Classical (AI) Planning Paradigm,

Morgan Kaufmann, 1988.

16. Wilkins, D.E. and K.L. Myers, “A Multiagent Planning Architecture”, Proc. 4th Intl. Conf.

on AI Planning Systems, 1998.

144

Using Abstraction in Planning and Scheduling

Bradley J. Clement1, Anthony C. Barrett1, Gregg R. Rabideau1, and
Edmund H. Durfee21 Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109-8099 USAfbclement, barrett, rabideaug@aig.jpl.nasa.gov2 Artificial Intelligence Laboratory, University of Michigan
1101 Beal Avenue, Ann Arbor, MI 48109-2110 USA

durfee@umich.edu

Abstract. We present an algorithm for summarizing the metric resourcerequire-
ments of an abstract task based on the resource usages of its potential refinements.
We use this summary information within the ASPEN planner/scheduler to coor-
dinate a team of rovers that conflict over shared resources. We find analytically
and experimentally that an iterative repair planner can experience an exponen-
tial speedup when reasoning with summary information aboutresource usages and
state constraints, but there are some cases where the extra overhead involved can
degrade performance.

1 Introduction

Hierarchical Task Network (HTN) planners [4] represent abstract actions that decom-
pose into choices of action sequences that may also be abstract, and HTN planning prob-
lems are requests to perform a set of abstract actions given an initial state. The planner
subsequently refines the abstract tasks into less abstract subtasks to ultimately generate
a schedule of primitive actions that is executable from the initial state. This differs from
STRIPS planning where a planner can find any sequence of actions whose execution can
achieve a set of goals. HTN planners only find sequences that perform abstract tasks and
a domain expert can intuitively define hierarchies of abstract tasks to make the planner
rapidly generate all sequences of interest.

Previous research [10, 9] has shown that, under certain restrictions, hierarchical re-
finement search reduces the search space by an exponential factor. Subsequent research
has shown that these restrictions can be dropped by reasoning during refinement about
the conditions embodied by abstract actions [3, 2]. Thesesummarized conditionsrepre-
sent the internal and external requirements and effects of an abstract action and those
of any possible primitive actions that it can decompose into. Using this information, a
planner can detect and resolve conflicts between abstract actions and sometimes can find
abstract solutions or determine that particular decomposition choices are inconsistent.
In this paper, we apply these abstract reasoning techniquesto tasks that use metric re-
sources. We present an algorithm that processes a task hierarchy description offline to
summarize abstract plan operators’ metric resource requirements.

This work was performed at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under contract with the National Aeronautics and Space Administration. This
work was also supported in part by DARAP(F30602-98-2-0142).

145

B

A D

C

F

E

Fig. 1. Example map of established paths between points in a rover domain, where thinner edges
are harder to traverse, and labeled points have associated observation goals

While planning and scheduling efficiency is a major focus of our research, another
is the support of flexible plan execution systems such as PRS [6], UMPRS [11], RAPS
[5], JAM [7], etc., that exploit hierarchical plan spaces while interleaving task decompo-
sition with execution. By postponing task decomposition, such systems gain flexibility to
choose decompositions that best match current circumstances. However, this means that
refinement decisions are made and acted upon before all abstract actions are decomposed
to the most detailed level. If such refinements at abstract levels introduce unresolvable
conflicts at more detailed levels, the system will get stuck part way through executing the
tasks to perform the requested abstract tasks. By using summary information, a system
that interleaves planning and execution can detect and resolve conflicts at abstract levels
to avoid getting stuck and to provide some ability to recoverfrom failure.

In the next section this paper uses a traveling rover exampleto describe how we rep-
resent abstract actions and summary information. Given these representations, the subse-
quent section presents an algorithm for summarizing an abstract task’s potential resource
usage based on its possible refinements. Next we analytically show how summary in-
formation can accelerate an iterative repair planner/scheduler and make some empirical
measurements in a multi-rover planning domain.

2 Representations

To illustrate our approach, we will focus on managing a collection of rovers as they
explore the environment around a lander on Mars. This exploration takes the form of
visiting different locations and making observations. Each traversal between locations
follows established paths to minimize effort and risk. These paths combine to form a net-
work like the one mapped out in Figure 1, where vertices denote distinguished locations,
and edges denote allowed paths. While some paths are over hard ground, others are over
loose sand where traversal is harder since a rover can slip.

2.1 Resources and Tasks

More formally, we represent each rover’s status in terms of state and resource variables.
The values in state variables record the status of key rover subsystems. For instance, a
rover’spositionstate variable can take on the label of any vertex in the location network.
Given this representation of state information, tasks havepreconditions/effects that we
represent as equality constraints/assignments. In our rover example traveling on the arc
from pointA to pointB is done with ago(A,B) task. This task has the precondition(position=A) and the effect(position=B).

146

high path

go(A,3) go(3,B)
use 4w use 6w
15 min 25 min

go(A,B)

50 min
use 4w

move(A,B)

take low pathsoak rays soak rays soak rays
use -4w
20 min

use -5w use -6w
20 min 20 min

go(2,B)
use 3w use 3w use 6w
10 min 10 min 20 min

go(A,1) go(1,2)

morning activities

middle path

Fig. 2. AND/OR tree defining abstract tasks and how they decompose for a morning drive from
point A to point B along one of the three shortest paths in our example map

In addition to interacting with state variables, tasks use resources. While some re-
sources are only used during a task, using others persists after a task finishes. The first
type of resource isnondepletable, with examples like solar power which immediately
becomes available after some task stops using it. On the other hand, battery energy is
a depletableresource because its consumption persists until a later task recharges the
battery. We model a task’s resource consumption by subtracting the usage amount from
the resource variable when the task starts and for nondepletable resources adding it back
upon completion. While this approach is simplistic, it can conservatively approximate
any resource consumption profile by breaking a task into smaller subtasks.

Primitive tasks affect state and resource variables, and anabstract task is a non-leaf
node in an AND/OR tree of tasks.1 An AND task is executed by executing all of its sub-
tasks according to a some set of specified temporal constraints. An OR task is executed
by executing one of its subtasks. Figure 2 gives an example ofsuch an abstract task.
Imagine a rover that wants to make an early morning trip from pointA to pointB on our
example map. During this trip the sun slowly rises above the horizon giving the rover the
ability to progressively usesoak raystasks to provide more solar power to motors in the
wheels. In addition to collecting photons, the morning traverse moves the rover, and the
resultantgo tasks require path dependent amounts of power. While a rovertraveling from
pointA to pointB can take any number of paths, the shortest three involve following one,
two, or three steps.

2.2 Summary Information

An abstract task’s state variable summary information includes elements for pre-, in-,
and postconditions. Summary preconditions are conditionsthat must be met by the initial
state or previous external tasks in order for a task to decompose and execute successfully,
and a task’s summary postconditions are the effects of its decomposition’s execution
that are not undone internally. We use summary inconditionsfor those conditions that
are required or asserted in the task’s decomposition duringthe interval of execution.
All summary conditions are used to reason about how state variables are affected while
performing an abstract task, and they have two orthogonal types of modalities:

– must or may indicates that a condition holds in all or some decompositions of the abstract
task respectively and

– first, last, sometimes, or always indicates when a condition holds in the task’s execution
interval.

1 It is trivial to extend the algorithms in this paper to handlestate and resource constraints specified
for abstract tasks.

147

For instance, themove(A;B) task in our example has amust; first(position=A)
summary precondition and amust; last(position=B) postcondition because all decom-
positions move the rover fromA to B. Since themove(A;B) task decomposes into one
of several paths, it has summary inconditions of the formmay, sometimes(position=i),
wherei is 1, 2 or 3. State summary conditions are formalized in [2].

Extending summary information to include metric resourcesinvolves defining a new
representation and algorithm for summarization. Asummarized resource usageconsists
of ranges of potential resource usage amounts during and after performing an abstract
task, and we represent this summary information using the structurehloal min range; loal max range; persist rangei;
where the resource’s local usage occurs within the task’s execution, and the persistent

usage represents the usage that lasts after the task terminates for depletable resources.
The usage ranges capture the multiple possible usage profiles of an task with multiple

decomposition choices and timing choices among loosely constrained subtasks. For ex-
ample, thehigh pathtask has ah[4; 4℄; [6; 6℄; [0; 0℄i summary power use over a 40 minute
interval. In this case the ranges are single points due to no uncertainty – the task simply
uses 4 watts for 15 minutes followed by 6 watts for 25 minutes.Themove(A;B) pro-
vides a slightly more complex example due to its decompositional uncertainty. This task
has ah[0; 4℄; [4; 6℄; [0; 0℄i summary power use over a 50 minute interval. In both cases thepersist range is [0; 0℄ because power is a nondepletable resource.

While a summary resource usage structure has only one range for persistent usage
of a resource, it has ranges for both the minimum and maximum local usage because
resources can have minimum as well as maximum usage limits, and we want to detect
whether a conflict occurs from violating either of these limits. As an example of reason-
ing with resource usage summaries, suppose that only 3 wattsof power were available
during amove(A;B) task. Given the[4; 6℄ loal max range, we know that there is
an unresolvable problem without decomposing further. Raising the available power to 4
watts makes the task executable depending on how it gets decomposed and scheduled,
and raising to 6 or more watts makes the task executable for all possible decompositions.

3 Resource Summarization Algorithm

The state summarization algorithm [2] recursively propagates summary conditions up-
wards from an AND/OR tree’s leaves, and the algorithm for resource summarization
takes the same approach. Starting at the leaves, we find primitive tasks that use constant
amounts of a resource. The resource summary of a task usingx units of a resource ish[x,x℄,[x,x℄,[0,0℄i or h[x,x℄,[x,x℄,[x,x℄i over the task’s duration for nondepletable or de-
pletable resources respectively.

Moving up the AND/OR tree we either come to an AND or an OR branch. For an
OR branch the combined summary usage comes from the OR computationh[min2hildren(lb(loal min range()));max2hildren(ub(loal min range()))℄;[min2hildren(lb(loal max range()));max2hildren(ub(loal max range()))℄;[min2hildren(lb(persist range()));max2hildren(ub(persist range()))℄i;
wherelb() andub() extract the lower bound and upper bound of a range respectively. Thehildren denote the branch’s children with their durations extendedto the length of the

148

longest child. This duration extension alters a child’s resource summary information be-
cause the child’s usage profile has a 0 resource usage during the extension. For instance,
when we determine the resource usage formove(A;B) we combine two 40 minute tasks
with a 50 minute task. The resulting summary information is for a 50 minute abstract
task whose profile might have a zero watt power usage for 10 minutes. This extension
is why move(A;B) has a[0; 4℄ for a loal min range instead of[3; 4℄. Planners that
reason about variable durations could use[3; 4℄ for a duration ranging from 40 to 50.

Computing an AND branch’s summary information is a bit more complicated due to
timing choices among loosely constrained subtasks. Ourtakex pathexamples illustrate
the simplest subcase, where subtasks are tightly constrained to execute serially. Here
profiles are appended together, and the resulting summary usage information comes form
the SERIAL-AND computationh[min2hildren(lb(loal min range()) +�prelb ());min2hildren(ub(loal min range()) +�preub ())℄;[max2hildren(lb(loal max range()) +�prelb ());max2hildren(ub(loal max range()) +�preub ())℄;[�2hildren(lb(persist range()));�2hildren(ub(persist range()))℄i;
where�prelb () and�preub () are the respective lower and upper bounds on the cumulative
persistent usages of children that execute before. These computations have the same
form as the� computations for the finalpersist range.

The case where all subtasks execute in parallel and have identical durations is slightly
simpler. Here the usage profiles add together, and the branch’s resultant summary usage
comes from the PARALLEL-AND computationh[�2hildren(lb(loal min range()));max2hildren(ub(loal min range()) +�nonub ())℄;[min2hildren(lb(loal max range()) +�nonlb ());�2hildren(ub(loal max range()))℄;[�2hildren(lb(persist range()));�2hildren(ub(persist range()))℄i;
where�nonub () and�nonlb () are the respective sums ofloal max range upper bounds
andloal min range lower bounds for all children except.

To handle AND tasks with loose temporal constraints, we consider all legal orderings
of child task endpoints. For example, in our rover’s early morning tasks, there are three
serial solar energy collection subtasks running in parallel with a subtask to drive to loca-
tionB. Figure 3 shows one possible ordering of the subtask endpoints, which breaks themove(A;B) into three pieces, and two of thesoak rayschildren in half. Given an order-
ing, we can (1) use the endpoints of the children to determinesubintervals, (2) compute
summary information for each child task/subinterval combination, (3) combine the par-
allel subinterval summaries using the PARALLEL-AND computation, and then (4) chain
the subintervals together using the SERIAL-AND computation. Finally, the AND task’s
summary is computed by combining the summaries for all possible orderings using an
OR computation.

Here we describe how step (2) generates different summary resource usages for the
subintervals of a child task. A child task with summary resource usageh[a,b℄,[,d℄,[e,f ℄i
contributes one of two summary resource usages to each intersecting subinterval2:h[a; b℄; [; d℄; [0; 0℄i; h[a; d℄; [a; d℄; [0; 0℄i:

2 For summary resource usages of the last interval intersecting the child task, we replace[0; 0℄
with [e; f ℄ in thepersist range.

149

soak rays

<[0,4],[4,6],[0,0]>

move(A,B)

soak rays

soak rays

<[-6,-6],[-6,-6],[0,0]>
<[-5,-5],[-5,-5],[0,0]>

<[-4,-4],[-4,-4],[0,0]>

Fig. 3.Possible task ordering for a rover’s morning activities, with resulting subintervals.

While the first usage has the tighter[a; b℄; [; d℄ local ranges, the second has looser[a; d℄; [a; d℄ local ranges. Since theb and bounds only apply to the subintervals con-
taining the subtask’s minimum and maximum usages, the tighter ranges apply to one of
a subtask’s intersecting subintervals. While the minimum and maximum usages may not
occur in the same subinterval, symmetry arguments let us connect them in our computa-
tion. Thus one subinterval has tighter local ranges and all other intersecting subintervals
get the looser local ranges, and the extra complexity comes from having to investigate all
subtask/subinterval assignment options. For instance, there are three subintervals inter-
sectingmove(A;B) in Figure 3, and three different assignments of summary resource
usages to the subintervals: placing[0; 4℄; [4; 6℄ in one subinterval with[0; 6℄; [0; 6℄ in the
other two. These placement options result in a subtask withn subintervals havingn
possible subinterval assignments. So if there arem child tasks each withn alternate
assignments, then there arenm combinations of potential subtask/subinterval summary
resource usage assignments. Thus propagating summary information through an AND
branch is exponential in the number of subtasks with multiple internal subintervals. How-
ever since the number of subtasks is controlled by the domainmodeler and is usually
bounded by a constant, this computation is tractable. In addition, summary information
can often be derived offline for a domain. The propagation algorithm takes on the form:

– For each consistent ordering of endpoints:� For each consistent subtask/subinterval summary usage assignment:� Use PARALLEL-AND computations to combine subtask/subinterval sum-
mary usages by subinterval.� Use a SERIAL-AND computation on the subintervals’ combinedsummary
usages to get a consistent summary usage.

– Use OR computation to combine all consistent summary usagesto get AND task’s
summary usage.

4 Using Summary Information

In this section, we describe techniques for using summary information in local search
planners to reason at abstract levels effectively and discuss the complexity advantages.
Reasoning about abstract plan operators using summary information can result in expo-
nential planning performance gains for backtracking hierarchical planners [3]. In itera-
tive repair planning, a technique calledaggregationthat involves scheduling hierarchies
of tasks similarly outperforms the movement of tasks individually [8]. But, can summary
information be used in an iterative repair planner to improve performance when aggre-
gation is already used? We demonstrate that summarized state and resource constraints
makes exponential improvements by collapsing constraintsat abstract levels. First, we
describe how we use aggregation and summary information to schedule tasks within an

150

iterative repair planner. Next, we analyze the complexity of moving abstract and detailed
tasks using aggregation and summary information. Then we describe how a heuristic
iterative repair planner can exploit summary information.

4.1 Aggregation and Summary Information

While HTN planners commonly take a generative least commitment approach to problem
solving, research in the OR community illustrates that a simple local search is surpris-
ingly effective [12]. Heuristic iterative repair planninguses a local search to generate a
plan. It starts with an initial flawed plan and iteratively chooses a flaw, chooses a repair
method, and changes the plan by applying the method. Unlike generative planning, the
local search never backtracks. Since taking a random walk through a large space of plans
is inefficient, heuristics guide the choices by determiningthe probability distributions for
each choice. We build on this approach to planning by using the ASPEN planner [1].

Moving tasks is a central scheduling operation in iterativerepair planners. A planner
can more effectively schedule tasks by moving related groups of tasks to preserve con-
straints among them. Hierarchical task representations are a common way of representing
these groups and their constraints. Aggregation involves moving a fully detailed abstract
task hierarchy while preserving the temporal ordering constraints among the subtasks.
Moving individual tasks independent of their siblings and subtasks is shown to be much
less efficient [8]. Valid placements of the task hierarchy inthe schedule are computed
from the state and resource usage profile for the hierarchy. This profile represents one
instantiation of the decomposition and temporal ordering of the abstract task’s hierarchy.

A summarized state or resource usage represents all potential profiles of an abstract
task before it is decomposed. Our approach involves reasoning about summarized con-
straints in order to schedule abstract tasks before they aredecomposed. Scheduling an
abstract task is computationally cheaper than scheduling the task’s hierarchy using ag-
gregation when the summarized constraints more compactly represent the constraint pro-
files of the hierarchy. This improves the overall performance when the planner/scheduler
resolves conflicts and finds solutions at abstract levels before fully decomposing tasks.

4.2 Complexity Analysis

To move a hierarchy of tasks using aggregation, valid intervals must be computed for each
resource variable affected by the hierarchy.3 These valid intervals are intersected for the
valid placements for the abstract tasks and their children.The complexity of computing
the set of valid intervals for a resource isO(C) where is the number of constraints
(usages) an abstract task has with its children for the variable, andC is the number of
constraints of other tasks in the schedule on the variable [8]. If there aren similar task
hierarchies in the entire schedule, thenC = (n� 1), and the complexity of computing
valid intervals isO(n2). But this computation is done for each ofv resource variables
(often constant for a domain), so moving a task will have a complexity ofO(vn2).

The summary information of an abstract task represents all of the constraints of
its children, but if the children share constraints over thesame resource, this informa-
tion is collapsed into a singlesummaryresource usage in the abstract task. Therefore,
when moving an abstract task, the number of different constraints involved may be far
fewer depending on the domain. If the scheduler is trying to place a summarized abstract

3 The analysis also applies to state constraints, but we restrict our discussion to resource usage
constraints for simplicity.

151

task among other summarized tasks, the computation of validplacement intervals can be
greatly reduced because the in O(vn2) is smaller. We now consider two extreme cases
where constraints can be fully collapsed and where they cannot be collapsed at all.

In the case that all tasks in a hierarchy have constraints on the same resource, the
number of constraints in a hierarchy isO(bd) for a hierarchy of depthd and branching
factor (number of child tasks per parent)b. In aggregation, where hierarchies are fully
detailed first, this means that the complexity of moving an task is O(vnb2d) because = O(bd). Now consider using aggregation for moving a partially expanded hierarchy
where the leaves are summarized abstract tasks. If all hierarchies in the schedule are
decomposed to leveli, there areO(bi) tasks in a hierarchy, each with one summarized
constraint representing those of all of the yet undetailed subtasks beneath it for each
constraint variable. So = O(bi), and the complexity of moving the task isO(vnb2i).
Thus, moving an abstract task using summary information canbe a factor ofO(b2(d�i))
times faster than for aggregation.

The other extreme is when all of the tasks place constraints on different variables.
In this case, = 1 because any hierarchy can only have one constraint per variable.
Fully detailed hierarchies containv = O(bd) different variables, so the complexity of
moving a task in this case isO(nbd). If moving a summarized abstract task where all
tasks in the schedule are decomposed to leveli, v is the same because the abstract task
summarizes all constraints for each subtask in the hierarchy beneath it, and each of those
constraints are on different variables such that no constraints combine when summarized.
Thus, the complexity for moving a partially expanded hierarchy is the same as for a fully
expanded one. Experiments in Section 5 exhibit great improvement for cases when tasks
have constraints over common resource variables.

Along another dimension, scheduling summarized tasks is exponentially faster be-
cause there are fewertemporalconstraints among higher level tasks. When task hierar-
chies are moved using aggregation, all of the local temporalconstraints are preserved.
However, there are not always valid intervals to move the entire hierarchy. Even so, the
scheduler may be able to move less constraining lower level tasks to resolve the conflict.
In this case, temporal constraints may be violated among themoved task’s parent and sib-
lings. The scheduler can then move and/or adjust the durations of the parent and siblings
to resolve the conflicts, but these movements can affect higher level temporal constraints
or even produce other conflicts. At a depth leveli in a hierarchy with decompositions
branching with a factorb, the task movement can affectbi siblings in the worst case and
produce a number of conflicts exponential to the depth of the task. Thus, if all conflicts
can be resolved at an abstract leveli, O(bd�i) scheduling operations may be avoided. In
Section 5, empirical data shows the exponential growth of computation with respect to
the depth at which ASPEN finds solutions.

Other complexity analyses have shown that under certain restrictions different forms
of hierarchical problem solving can reduce the size of the search space by an exponential
factor [10, 9]. Basically, these restrictions are that an algorithm never needs to backtrack
from lower levels to higher levels in the problem. In other words, subproblems introduced
in different branches of the hierarchy do not interact. We donot make this assumption
for our problems. However, the speedup described above doesassume that the hierarchies
need not be fully expanded to find solutions.

4.3 Decomposition Heuristics for Iterative Repair

Despite this optimistic complexity, reasoning about summarized constraints only trans-
lates to better performance if the movement of summarized tasks resolves conflicts and

152

advances the search toward a solution. There may be no way to resolve conflicts among
abstract tasks without decomposing them into more detailedones. So when should sum-
mary information be used to reason about abstract tasks, andwhen and how should they
be decomposed? Here, we describe techniques for reasoning about summary information
as abstract tasks are detailed.

We explored two approaches that reason about tasks from the top-level of abstraction
down in the manner described in [3]. Initially, the planner only reasons about the sum-
mary information of fully abstracted tasks. As the planner manipulates the schedule, tasks
are gradually decomposed to open up new opportunities for resolving conflicts using the
more detailed child tasks. One strategy (that we will refer to aslevel-decomposition) is
to interleave repair with decomposition as separate steps.Step 1) The planner repairs the
current schedule until the number of conflicts cannot be reduced. Step 2) It decomposes
all abstract tasks one level down and returns to Step 1. By only spending enough time
at a particular level of expansion that appears effective, the planner attempts to find the
highest decomposition level where solutions exist withoutwasting time at any level.

Another approach is to use decomposition as one of the repairmethods that can be
applied to a conflict so that the planner gradually decomposes conflicting tasks. This
strategy tends to decompose the tasks involved in more conflicts since any task involved
in a conflict is potentially expanded when the conflict is repaired. The idea is that the
scheduler can break overconstrained tasks into smaller pieces to offer more flexibility in
rooting out the conflicts. This resembles the EMTF (expand-most-threats-first) [3] heuris-
tic that expands (decomposes) tasks involved in more conflicts before others. (Thus, we
later will refer to this heuristic as EMTF.) This heuristic avoids unnecessary reasoning
about the details of non-conflicting tasks. This is similar to a most-constrained variable
heuristic often employed in constraint satisfaction problems.

Another heuristic for improving planning performance prefers decomposition choices
that lead to fewer conflicts. In effect, this is a least-constraining value heuristic used in
constraint satisfaction approaches. Using summary information, the planner can test each
child task by decomposing to the child and replacing the parent’s summarized constraints
that summarize the children with the particular child’s summarized constraints. For each
child, the number of conflicts in the schedule are counted, and the child creating the
fewest conflicts is chosen.4 This is thefewest-threats-first(FTF) heuristic that is shown
to be effective in pruning the search space in a backtrackingplanner [3]. Likewise, the
experiments in Section 5 show similar performance improvements.

5 Empirical Comparisons

The experiments we describe here show that summary information improves perfor-
mance significantly when tasks within the same hierarchy have constraints over the same
resource, and solutions are found at some level of abstraction. At the same time, we find
cases where abstract reasoning incurs significant overheadwhen solutions are only found
at deeper levels. However, in domains where decomposition choices are critical, we show
that this overhead is insignificant because the FTF heuristic finds solutions at deeper
levels with better performance. These experiments also show that the EMTF heuristic
outperforms level-decomposition for certain decomposition rates. In addition, we show
that the time to find a solution increases dramatically with the depth where solutions are
found, supporting the analysis at the end of Section 4.2.

4 Or, in stochastic planners like ASPEN, the children are chosen with probability decreasing with
their respective number of conflicts.

153

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU Seconds

A
g

g
re

g
at

io
n

 C
P

U
 s

ec
o

n
d

s

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

A
g

g
re

g
at

io
n

 C
P

U
 s

ec
o

n
d

s

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

A
g

g
re

g
at

io
n

 C
P

U
 s

ec
o

n
d

s

Fig. 4.Plots for theno channel, mixed, andchannel onlydomains

The domain for our problems expands the single rover problemdescribed in earlier
sections to a team of rovers that must resolve conflicts over shared resources. Paths be-
tween waypoints are assigned random capacities such that either one, two, or three rovers
can traverse a path simultaneously; only one rover can be at any waypoint; and rovers
may not traverse paths in opposite directions. In addition,rovers must communicate with
the lander for telemetry using a shared channel of fixed bandwidth. Depending on the
terrain, the required bandwidth varies. 80 problems were generated for two to five rovers,
three to six observation locations per rover, and 9 to 105 waypoints. Schedules ranged
from 180 to 1300 tasks. Note that we use a prototype interfacefor summary information,
and some of ASPEN’s optimized scheduling techniques could not be used.

We compare ASPEN using aggregation with and without summarization for three
variations of the domain. The use of summary information includes the EMTF and FTF
decomposition heuristics. One domain excludes the communications channel resource
(no channel); one excludes the path capacity restrictions (channel only); and the other
includes all mentioned resourcesmixed). Since all of the movement tasks reserve the
channel resource, we expect greater improvement in performance when using summary
information according to the complexity analyses in the previous section. Tasks within
a rover’s hierarchy rarely place constraints on other variables more than once, so theno
channeldomain corresponds to the case where summarization collapses no constraints.

Figure 4 (top) exhibits two distributions of problems for the no channeldomain. In
most of the cases (points along the y-axis), ASPEN with summary information finds a
solution quickly at some level of abstraction. However, in many cases, summary infor-
mation performs notably worse (points along the x-axis). Wefind that for these prob-
lems finding a solution requires the planner to dig deep into the rovers’ hierarchies, and
once it decomposes the hierarchies to these levels, the difference in the additional time
to find a solution between the two approaches is negligible Thus, the time spent reason-
ing about summary information at higher levels incurred unnecessary overhead. Previous
work shows that this overhead is rarely significant in backtracking planners because sum-

154

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Average Depth of Hierarchies in Solution

S
u

m
m

ar
y

In
fo

rm
at

io
n

 +
 A

g
g

re
g

at
io

n

C
P

U
 s

ec
o

n
d

s

Fig. 5. CPU time for solutions found at varying depths.

mary information can prune inconsistent search spaces at abstract levels [3]. However,
in non-backtracking planners like ASPEN, the only opportunity we found to prune the
search space at abstract levels was using the FTF heuristic to avoid greater numbers of
conflicts in particular branches. Later, we will explain whyFTF is not helpful for this
domain but very effective in a modified domain.

Figure 4 (left) shows significant improvement for summary information in themixed
domain compared to theno channeldomain. Adding the channel resource rarely affected
the use of summary information because the collapse in summary constraints incurred
insignificant additional complexity. However, the channelresource made the scheduling
task noticeably more difficult for ASPEN when not using summary information. In the
channel onlydomain (Figure 4 right), summary information finds solutions at the abstract
level almost immediately, but the problems are still complicated when ASPEN does not
use summary information. These results support the complexity analysis in the previous
section that argues that summary information exponentially improves performance when
tasks within the same hierarchy make constraints over the same resource and solutions
are found at some level of abstraction.

Figure 5 shows the CPU time required for ASPEN using summary information for
themixeddomain for the depths at which the solutions are found. The depths are average
depths of leaf tasks in partially expanded hierarchies. TheCPU time increases dramati-
cally for solutions found at greater depths, supporting ourclaim that finding a solution at
more abstract levels is exponentially easier.

For the described domain, choosing different paths to an observation location usually
does not make a significant difference in the number of conflicts encountered because if
the rovers cross paths, all path choices will still lead to conflict. We created a new set of
problems where obstacles force the rovers to take paths through corridors that have no
connection to others paths. For these problems, path choices always lead down a different
corridor to get to the target location, so there is usually a path that avoids a conflict and a
path that causes one. The planner using the FTF heuristic dominates the planner choosing
decompositions randomly for all but two problems (Figure 6 left).

Figure 6 (right) shows the performance of EMTF vs. level decomposition for differ-
ent rates of decomposition for three problems selected fromthe set. The plotted points
are averages over ten runs for each problem. Depending on thechoice of rate of de-
composition (the probability that a task will decompose when a conflict is encountered),
performance varies significantly. However, the best decomposition rate can vary from
problem to problem making it potentially difficult for the domain expert to choose. Our
future work will include investigating the relation of decomposition rates to performance
based on problem structure.5

5 For other experiments, we used a decomposition rate of 20%.

155

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + FTF CPU Seconds

S
u

m
m

ar
y

In
fo

rm
at

io
n

C

P
U

 S
ec

o
n

d
s

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

C
P

U
 s

ec
o

n
d

s

A
A level-decomp
B
B level decomp
C
C level decomp

Fig. 6. Performance using FTF and EMTF vs. level-decomposition heuristics.

6 Conclusions

Reasoning about abstract constraints exponentially accelerates finding schedules when
constraints collapse during summarization, and solutionsat some level of abstraction can
be found. Similar speedups occur when decomposition branches result in varied num-
bers of conflicts. The offline algorithm for summarizing metric resource usage makes
these performance gains available for a larger set of expressive planners and schedulers.
We have shown how these performance advantages can improve ASPEN’s effectiveness
when scheduling the tasks of multiple spacecraft. The use ofsummary information also
enables a planner to preserve decomposition choices that robust execution systems can
use to handle some degree of uncertainty and failure. Our future work includes evalu-
ating the tradeoffs of optimizing plan quality using this approach as well as developing
protocols to allow multiple spacecraft planners to coordinate their tasks asynchronously
during execution.

References

1. S. Chien, G. Rabideu, R. Knight, R. Sherwood, B Engelhardt, D. Mutz, T. Estlin, B. Smith,
F. Fisher, T. Barrett, G. Stebbins, and D. Tran. Automating space mission operations using
automated planning and scheduling. InProc. SpaceOps, 2000.

2. B. Clement and E. Durfee. Theory for coordinating concurrent hierarchical planning agents.
In Proc. AAAI, pages 495–502, 1999.

3. B. Clement and E. Durfee. Performance of coordinating concurrent hierarchical planning
agents using summary information. InProc. ATAL, pages 202–216, 2000.

4. K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task-network planning. Technical
Report CS-TR-3239, University of Maryland, 1994.

5. J. Firby.Adaptive Execution in Complex Dynamic Domains. PhD thesis, Yale Univ., 1989.
6. M. Georgeff and A. Lansky. Procedural knowledge.Proc. IEEE, 74(10):1383–1398, Oct.

1986.
7. M. Huber. Jam: a bdi-theoretic mobile agent architecture. In Proc. Intl. Conf. Autonomous

Agents, pages 236–243, 1999.
8. R. Knight, G. Rabideau, and S. Chien. Computing valid intervals for collections of activities

with shared states and resources. InProc. AIPS, pages 600–610, 2000.
9. C. Knoblock. Search reduction in hierarchical problem solving. In Proc. AAAI, pages 686–

691, 1991.
10. R. Korf. Planning as search: A quantitative approach.Artificial Intelligence, 33:65–88, 1987.
11. J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. Umprs: Animplementation of the proce-

dural reasoning system for multirobot applications. InProc. AIAA/NASA Conf. on Intelligent
Robotics in Field, Factory, Service, and Space, pages 842–849, March 1994.

12. Papadimitriou and Steiglitz.Combinatorial Optimization - Algorithms and Complexity. Dover
Publications New York, 1998.

156

From Abstract Crisis to Concrete Relief

A Preliminary Report on Combining State Abstraction and

HTN Planning

Susanne Biundo and Bernd Schattenberg

Department of Artificial Intelligence
University of Ulm, Germany

Abstract Flexible support for crisis management can definitely be improved
by making use of advanced planning capabilities. However, the complexity of
the underlying domain often causes intractable efforts in modeling the domain
as well as a huge search space to be explored by the system. A way to over-
come these problems is to impose a sophisticated structure not only according
to tasks but also according to relationships between and properties of the ob-
jects involved. We outline the prototype of a system that is capable of tackling
planning for complex application domains. It is based on a well-founded combi-
nation of action and state abstractions. The paper presents the basic techniques
and provides a formal semantic foundation of the approach. It introduces the
planning system and illustrate its underlying principles by examples taken from
the crisis management domain used in our ongoing project.

1 Introduction

When trying to exploit planning technology for realistic applications like system sup-
port for crisis management, one of the main problems to be tackled is the complexity
of the underlying domain. Not only does it cause intractable modeling efforts, a huge
search space has to be explored by the system as well. Furthermore, such a system
has to be flexible in the sense that mixed initiative planning has to be supported and
incoming information as well as most recently arising tasks should be considered and
integrated during runtime. In order to meet multiple requirements like in this case,
hybrid planning approaches have to be developed to provide enough flexibility and
lucidity as has repeatedly been argued by other authors as well (cf. [5] and [8]).
We introduce a planning approach for system support in the realistic and complex
application domain of crisis management. It integrates hierarchical action- and state-
based techniques in a consequent way by imposing hierarchical structures on both
operators and states. The hierarchical concept is partly adopted from traditional hier-
archical task network (HTN) planning (cf. [4]). Therefore, basic notions like primitive
and abstract tasks as well as methods for decomposing the latter stepwise into primi-
tive ones are among the core concepts. However, tasks do show pre- and postconditions
–like operators do in classical state-based planning– on every level of abstraction. This
provides the flexibility to make use of state-based planning techniques by introducing
additional tasks when trying to establish missing preconditions, and enables the system
to integrate incoming tasks on any level of abstraction at any time. This is done by
allowing for so-called decomposition axioms, which are defined as part of the domain
model. The planning approach is based on a formal semantics, which relies on previous
work on logic-based planning [20]. Our formalism builds upon the semantics for basic

157

2 Susanne Biundo and Bernd Schattenberg

STRIPS-like operators and extends the formalism to abstract tasks and decomposition
methods.
A first prototype implements our integrative approach. We use an object-oriented pro-
gramming paradigm, thereby exploiting object-oriented structures and mechanisms to
efficiently deal with the hierarchy of planning objects and their properties. According to
our experience with this first implementation, the system is currently being completed
and extended towards several directions.
The paper is organized as follows. In Section 2 we introduce the formal semantics. The
application domain –a mission of the German Federal Agency for Technical Relief at
a flood– is briefly introduced in Section 3. Section 4 describes our planning method
and illustrates the techniques by means of examples taken from the crisis management
domain of Section 3. In Section 5, we shortly report on the implementation and the
lessons learned from this experiment. Section 6 is devoted to related work and finally
we conclude with some remarks in Section 7.

2 Formal Framework

The Logical Language: The semantics of our planning approach is based on a many-
sorted first-order logic. The logical language L = (Z,Rr,Rf ,C,V) consists of a finite
set of sort symbols Z, Z∗ indexed families of finite disjoint sets of rigid and flexible
relation symbols (Rr and Rf , resp.), a Z indexed family of disjoint sets of constants,
and a Z indexed family of disjoint sets of variables. Formulae over L are built as usual.
The formal planning language is obtained by extending L by O, T , and E. O and T

are Z∗ indexed families of finite disjoint sets of operator and task symbols, respectively.
For all z̄ ∈ Z∗ the sets Rr,z̄, Rf,z̄, Oz̄, and Tz̄ are supposed to be mutually disjoint.
E denotes a Z∗ indexed family of so-called elementary operation symbols. It provides
for each flexible relation symbol R a so-called add-operation +R as well as a delete-
operation –R.
As for the semantics, we adopt some essential features of the planning formalisms
introduced in [19] and [20], which are based on programming and temporal logics,
respectively.
Following a state-based planning approach, we use operators and tasks to take us from
one state to another. The flexible symbols provided by our planning language are used
to express the changes caused by these state transitions. Consequently, we introduce
states as interpretations of the flexible symbols.

States and State Transitions: For a logical language L = (Z,Rr,Rf ,C,V) a model
denotes a structure M = (D,S,I), where D is a Z indexed family of carrier sets, S is
a set of states, and I is a (state-independent) interpretation that assigns elements of
the respective carrier sets to constants and a relation of appropriate type to each rigid
symbol. As usual, sort preserving valuations β : Vz → Dz are used for variables. Given
a model M= (D,S,I), an atomic formula R(τ1, ..., τn) is valid in a state s ∈ S under
a valuation β denoted by s |=M,β R(τ1, ..., τn) according to the following definition.

For R ∈ Rr: s |=M,β R(τ1, ..., τn) iff (Iβ(τ1), ..., Iβ(τn)) ∈ I(R)
For R ∈ Rf : s |=M,β R(τ1, ..., τn) iff (Iβ(τ1), ..., Iβ(τn)) ∈ s(R)

Based on these definitions, validity of complex formulae is defined as usual.

158

From Abstract Crisis to Concrete Relief 3

Now we are ready to turn from states to state transitions. To this end, we first assume
that our models are natural ones [19]. This means, the carrier sets are supposed to
be finite and we restrict the set of states to those, which assign finite relations to the
symbols in Rf . Furthermore, for each flexible symbol R ∈ Rf,z̄, z̄ = z1, ..., zn, two
functions d-R : Dz1

× ... × Dzn
→ S × S and a-R : Dz1

× ... × Dzn
→ S × S are

defined as follows.

s d-R(d1, ..., dn) s′ iff s′(R) = s(R) − {(d1, ..., dn)} and s′(R’) = s(R’) for R’ 6= R

s a-R(d1, ..., dn) s′ iff s′(R) = s(R) ∪ {(d1, ..., dn)} and s′(R’) = s(R’) for R’ 6= R.

Given a natural model, for any two states s and s′ there exists a finite sequence of a-...
and d-... function operations op1...opn such that s op1 ◦ ... ◦ opn s′, where ◦ denotes
functional composition [19].

Elementary Operations: Based on the definitions of a-... and d-... functions on
states, we can now define the semantics of the elementary operations E of our planning
language as follows. Given a model M = (D,S,I) and a valuation β, a pair of states
(s, s′) satisfies an elementary operation +R(τ1, ..., τn) according to

(s, s′) |=M,β +R(τ1, ..., τn) iff s a-R(Iβ(τ1), ..., Iβ(τn)) s′

(s, s′) |=M,β –R(τ1, ..., τn) iff s d-R(Iβ(τ1), ..., Iβ(τn)) s′

This means, elementary operations represent single state transitions.
We finally adopt from [19] the concept of weakest preconditions (wp) w.r.t. elementary
operations. Let ϕ be a formula which contains only variables that are distinct from
those occurring in τ1,...,τn. The weakest precondition of ϕ w.r.t. +R(τ1, ..., τn) is the
formula resulting from ϕ when replacing all atomic sub-formulae R(σ1,...,σn) by [(τ1 6=
σ1 ∨ ... ∨ τn 6= σn) → R(σ1,...,σn)]. wp(ϕ, –R(τ1, ..., τn)) results from ϕ by replacing
all atomic sub-formulae R(σ1,...,σn) by [R(σ1,...,σn) ∧ (τ1 6= σ1 ∨ ... ∨ τn 6= σn)].

Operators and Invariants: Given a planning language P = (Z,Rr,Rf ,C,V ,O,T ,E),
an operator (primitive task) is a triple (O(x̄), prec, ē), where O is an operator symbol,
x̄ = x1...xn is a list of variables, prec is a formula over L = (Z,Rr,Rf ,C,V), and ē =
e1...em is a (finite) sequence of elementary operations from E. For a given model M=
(D,S,I) and a valuation β, this operator transforms a state s into a state s′, denoted
by (s, s′) |=M,β (O(x̄), prec, ē), iff s |=M,β prec (the operator is applicable in s)

and s op1 ◦ ... ◦ opm s′ where opi is the a-... resp. d-... function corresponding to
ei for 1 ≤ i ≤ m. The operator generates a formula post over L if in addition s |=M,β

wp(post,ē). The weakest precondition of a formula ϕ w.r.t a sequence of elementary
operations is generated according to a straightforward extension of the above definition.
Before finally defining tasks and methods, we introduce the notion of invariant in order
to extend the generation of formulae from single operators to operator sequences.
For a given model M= (D,S,I) and a valuation β, a formula ϕ is invariant against an
operator (O(x̄), prec, ē) iff for all states s and s′ with (s, s′) |=M,β (O(x̄), prec, ē) : if
s |=M,β ϕ , then s′ |=M,β ϕ.
A formula post is generated by a sequence O1...On of operators iff it is generated by
some Oi (1 ≤ i ≤ n) and is invariant against each Oj (i < j ≤ n).

159

4 Susanne Biundo and Bernd Schattenberg

Tasks and Methods: Given a planning language P = (Z,Rr,Rf ,C,V ,O,T ,E), a task
is a triple (T(x̄), prec, post), where T is a task symbol, x̄ = x1...xn is a list of variables,
and prec and post are formulae over L = (Z,Rr,Rf ,C,V). For a given model M=
(D,S,I) and a valuation β, the task transforms a state s into a state s′, denoted by
(s, s′) |=M,β (T(x̄), prec, post) iff s |=M,β prec and s′ |=M,β post and there exist a finite
sequence s1...sn of states and a finite sequence O1...On−1 of operators, where s = s1,
s′ = sn, (si, si+1) |=M,β Oi for all 1 ≤ i < n, and O1...On−1 generates a formula post′

such that sn |=M,β post′ → post. The task generates a formula post′′ iff in addition
sn |=M,β post → post′′.

The hierarchical structure of planning domains is reflected in two ways. First of all
so-called methods are used to specify how an abstract task can be subdivided into a set
of (primitive) subtasks, like it is usually done in HTN planning. Secondly, a hierarchy
is imposed on the formulae used to express the pre- and postconditions of primitive
and non-primitive tasks. To this end, user-defined decomposition axioms of the form
ϕ ↔ [ψ1 ∨ ... ∨ ψn] specify how an abstract condition ϕ can be refined into a more
concrete one, each ψi being a possibility to do so.

A method {(T(x̄), prec, post), T } is given by a task and a set T of task sequences.
For each such sequence t1...tn the ti may be primitive or non-primitive. A method is
called legal iff each task sequence t1...tn ∈ T is a legal decomposition of the task.

For a given model M= (D,S,I) and a valuation β a task sequence t1...tn is a legal
decomposition of a task (T(x̄), prec, post) iff the task sequence transforms a state s
into s′ such that for the precondition prec′ of task t1 s |=M,β prec′ → prec and the
sequence t1...tn generates a formula post′ such that s′ |=M,β post′ → post.
The above mentioned axioms are thereby used to justify legality of decompositions
when specifying methods. Illegal decompositions can be detected during compilation
of the domain.

3 The Application

Our planning domain is crisis management as being provided by organizations like
THW. The German Technisches Hilfswerk is a governmental disaster relief organization
that provides technical assistance at home as well as humanitarian aid abroad. Their
mission within the flood disaster at the river “Oder” in July 1997 is used in our ongoing
project to build a first realistic domain model for the planner. In the following, examples
from this domain will be used to demonstrate our approach. The tasks of the THW
are rich and widespread, they cover all aspects of crisis management, ranging from first
measures after a hazardous event to long term supplies after clearing some disaster area.
Therefore, Figure 1 only shows a relative small part of the complex task hierarchy, and
most task networks are depicted as single, more “self-explanatory” actions.

The most abstract task is named flood-disaster. It comprises a management and
communication task to determine which areas are endangered to what level. Further-
more, the logistics and supplies have to be installed, e.g. quarters for the relievers to
be set up. The evacuation and the securing of the embankment are the most crucial
sub-tasks in reality, and during all the activities, the relievers have to clear the area
continuously, i.e. to check damaged buildings, to remove perished animals, etc.

In our examples we will focus on the evacuation task, which consists of two sub-tasks:
one informs the population about the relief measures, the second brings people to safe

160

From Abstract Crisis to Concrete Relief 5

...

determine−critical−places
determine−safe−places

install−depot
establish−camp

...

management−and−communications

logistics−and−supplies

...

securing−embankment clearing

evacuating

informing−population

securing−population
...

assist−leaving−population

transport

medical−treatment
build−support−camp...

driving ...
board un−board

ship
...

maintenance

check−weather

get−clearance
fly
...

check−engine

drive−by−truck
drive−by−jeeptechnical−assistance

clearing−roadsbuilding−bridges

flood−disaster

Figure 1. Task hierarchy in the flood disaster scenario, ellipses represent task networks

areas. The methods for latter define two expansions, depending on the initial situation.
The relievers can help the people to leave the endangered area by themselves, or the
circumstances might require the population to be moved by the THW.

4 Combining hierarchical action- and state-based planning

Our planning approach flexibly combines classical HTN and classical state-oriented
POCL planning based on the formal framework introduced in Section 2. The prototype
implements a simple top-level algorithm comparable to [16, p. 374], which is basically
a classical nonlinear planning algorithm with decomposition of abstract tasks as an
additional plan modification step. Although it looks very similar to those used by
existing hybrid planning systems (see section 6), we will use it to outline the underlying
principles in the sub-routines. First we will focus on the closing of open preconditions.
In order to enable the planner to reason about the plans’ causal structures and depen-
dencies at all levels of abstraction, complex tasks do carry preconditions and effects like
the operators do. For the time being they are assumed to be conjunctions of positive
and negative literals.
While the relation between abstract and primitive tasks is given by a number of meth-
ods as in classical HTN planning, in our approach relations between the respective
preconditions and effects are specified by the decomposition axioms. The example in
Figure 2 shows two methods for the expansion of the abstract transport task in the
evacuation context. The ordering constraints represent all possible sequences of sub-
tasks, sort information for the variables is given in the task definitions.
One of the decomposition axioms that will be applied in the respective expansion steps,
will e.g. look like this (assuming the intuitive subsort relationships):

At(Unit u, Location l) ↔ [Standing-at(Vehicle u, Location l, Road r) ∨

Aircraft-at(Aircraft u, Location l, Height h) ∨

(At(Container c, Location l) ∧ In(Container c, Unit u)) ∨ . . .]

The specified decomposition axioms together with the sort and subsort definitions,
represent a hierarchy on the relations and objects in the domain. We can make use
of this knowledge when closing open preconditions with tasks on different levels of
abstraction. When some (possibly abstract) effect of a task is needed to establish the
precondition of another, the planner can provide this by choosing some –according to

161

6 Susanne Biundo and Bernd Schattenberg

method m_1 method m_2
expands transport (?passengers,?from,?to,?by) expands transport (?passengers,?from,?to,?by)
vars ?road Road vars ?tower Tower
nodes (1:board (?passengers,?from,?by)) nodes (1:get-clearance (?from,?tower,?by))

(2:driving (?by,?from,?to,?road)) (2:check (?by))
(3:un-board (?passengers,?from,?by)) (3:board (?passengers,?by))
... (4:fly (?by,?from,?to,?tower))

...
order 1<2, 2<3 order 1<4, 2<4, 3<4
causal 1--in(?passengers,?by)--2 causal 1--cleared(?by)--4,

2--checked(?by)--4,
1--in(?passengers,?by)--4

binding - binding -

Figure 2. Example for a method definition

the decomposition axioms– suitable tasks in the partial plan to close the open condition.
We then add causal links like in classical non-hierarchical POCL planning to represent
causality. But no establisher may be identified, even in the initial state. In this case the
planner can introduce a suitable establisher for the open condition from the domain
description. Figure 3 shows the planning process in such a situation.

(Vehicle ?u, Location ?from,
Location area4, Road ?r)

Pre:

Effect:

driving

Standing−at(?u,?from,?r),

+Standing−at(?u,area4,?r),

Reachable−by−land(?from,area4,?r),

−Standing−at(?u,?from,?r)

status(?r,ok)

transport

(Passengers group1, Location area4,

Pre:

Effect:

Location camp2, Unit ?u)

At(?u,area4),At(group1,area4)

+At(?u,camp2),+At(group1,camp2),
−At(?u,area4),−At(group1,area4)

medical−treatment
build−support−camp...

informing−population

securing−population
...

evacuating

...

logistics−and−supplies

Pre:

fly

(Aircraft ?u, Location ?from,
Location area4,Tower ?t)

Effect:

At(?u,?from),
Handled−by(?u,?t),

+At(?u,area4),
−At(?u,?from),

clearence(?t,ok),
maintenance−status(?u,ok)

+maintenance−status(?u,ko)
−maintenance−status(?u,ok)

(Location area4, Group thw26,

Pre:

Effect:

establish−camp

Jeep jeep18,Truck truck9 ...)

+At(jeep18,area4),

status(area4,cleared) ...

+At(truck9,area4),

+status(area4,occup),
−status(area4,cleared) ...

Pre:

Effect:

move

(Unit ?u, Location ?from,
Location area4)

At(?u,?from)

+At(?u,area4),
−At(?u,?from)

Figure 3. Closing an open precondition along the condition hierarchy.

The abstract need for an arbitrary THW unit to be present in the evacuation area can
be fulfilled by any of the tasks shown. The first task move is a “classical” candidate. Its
sub-task fly and the establish-camp action qualify in our system, because of aircraft
and jeeps being sub-sorts of the abstract sort unit. The driving task establishes a
more specialized effect than the precondition needs in two ways. Not only vehicles are
more special objects, but also the relation Standing-at is more concrete than At (see
decomposition axiom above).

At this point, search control has more choices to investigate, some of which might spe-
cialize the involved objects too early, an effect sometimes called hierarchical promiscu-
ity. But on the other hand, the commitment to a less abstract establisher can rule out
inconsistent solutions at an early stage. We may use the driving task for closing the
condition at this point and add a variable assignment for the “downcast” of the unit

162

From Abstract Crisis to Concrete Relief 7

in the transportation task. Later in plan generation we might find out, that there is no
road to the evacuation area anymore, and the planner has to backtrack and focus on
solutions with aircraft.

We note, that especially at this point the search strategy plays a crucial role, i.e.
when to insert new tasks. Currently, we work on an extension to the algorithm, that
is looking for invariants in expansions. If an open precondition is invariant against all
tasks expanded so far, it is obvious, that the planner has to insert a new task. But if
ther are tasks in the current plan, against which the condition is not invariant, it is a
promising strategy to enforce their expansion. The rationale behind this strategy is to
check, whether the expansions in which the desired effect might manififests eventually
result in consistent solutions.

Now assume, the abstract movement is chosen for establishing the condition, and a
causal link with the label At(?u,area4) is inserted. Furthermore, let the planner decide
to expand the transport task according to the above definition in method m 1 into the
task network describing a transport by land vehicles. As in classical HTN planning,
the specified network substitutes the expanded task in the net, respecting existing
orderings and variable bindings, but we cannot update the causal links, because the less
abstract tasks show more concrete, and hence syntactically not equivalent, conditions.
Our solution lies in the decomposition axioms, according to which we distribute the
abstract effects and conditions under the tasks of the expanded network. This means,
the decomposition axioms are used to inherit causal links from an abstract level to
a more concrete one. Figure 4 shows the result: the passengers are boarded on some
vehicle, driven to the camp and then un-boarded again. The more abstract link carried

Pre:

Effect:

move

Location depot)
(Unit Jeep1, Location ?l,

At(Jeep1,?l)

−At(Jeep1,?l),
+At(Jeep1,depot)

driving

Pre:

Effect:

(Vehicle ?u, Location area4,
Location camp2, Road ?r)

Standing−at(?u,area4,?r),
Reachable−by−land(area4,camp2,?r),

+Standing−at(?u,camp2,?r),
−Standing−at(?u,area4,?r)

status(?r,ok)

board(group1,area4,?u)
un−board(group1,area4,?u)

medical−treatment
build−support−camp...

transport

logistics−and−supplies
evacuating

...

Standing−at(?u,area4,?r)

At(?
u,

ar
ea

4)

...

Pre:

Effect:

move

(Unit ?u, Location ?from,
Location area4)

At(?u,?from)

+At(?u,area4),
−At(?u,?from)

Figure 4. Handling task interactions on different abstraction levels

the At relation between a vehicle ?u and the location area4. The decomopsition axioms
justify a specialization of this link into Standing-At for vehicles. Please note, that
the vehicle boarding task may carry the same precondition, which leads to a second
inherited causal link derived from the abstract causal relation. Furthermore, when the
abstract move task is specialized, it has to be checked against the decomposition axioms,
whether the newly introduced causal links are inheritable or not. If not, the plan has
to be considered inconsistent.

Now we come to threat handling, where the system can make use of the decomposition
axioms like it did for condition establishment. Conflicts can be detected and resolved

163

8 Susanne Biundo and Bernd Schattenberg

between arbitrary expansion levels, as the negation of an abstract condition implies the
negation of every concrete one specified in the decomposition axioms, and a negation of
one of the concrete conditions threatens the abstract one. This mechanism guarantees
correct solutions when using the standard POCL conflict resolution strategies at any
time the algorithm chooses to check for threats. In addition, besides orderings and non-
codesignation, expansion becomes a reasonable threat resolution mechanism. Due to a
finer granularity, the conflicting effect might turn out to be harmless at the primitive
operator level where the conflicting tasks may overlap.
The example in Figure 4 shows the expansion of a support procedure with a second
movement task, and how it interferes with an established condition. The light line
indicates the conflict at an abstract level, the dark one does so for the more concrete
link. The negated effect can be specialized in a way that makes the plan inconsistent.
A simple non-codesignation or some ordering constraint can solve this situation, for a
conflict involving several layers of abstraction.

5 Implementation

We implemented a first prototype of the planning system in Java. It integrates task
decomposition with state-based planning techniques for conflict handling and closing
of preconditions. The main algorithm, which is briefly described in Section 4, performs
non-deterministic steps according to a very simple strategy that first tries to close
open preconditions, then resolves threats and binds variables, and with least priority
expands complex tasks. This rather simple procedure is able to perform a systematic
planning strategy like it can be found in classical nonlinear planners: As a last choice
in closing preconditions, binding variables, and resolving threats, it tries to expand the
respective task. In a least commitment fashion it tries to develop the plan at the most
abstract level. The upcoming next version of the system will use a more flexible top
level routine which determines the appropriate sequence of plan manipulating steps by
analyzing the visited and expected plan space, thereby projecting causal interactions.
As already suggested above, we found it e.g. very useful to concentrate expansion within
the conflicting tasks to rule out inconsistent solutions at an level as early as possible.
However, we note that in the first experiments the proposed modeling approach seems
to lead to more “benign” domain models in terms of efficient task hierarchies, that
prune large parts of the non-useful search space quite efficient.
To increase the system’s performance, we use a conservative algorithm for manipulating
a global plan structure representing the expanded networks. By doing so, we have the
additional advantage to automatically bookkeep the performed expansion steps as well
as all other choices made by the algorithm (cf. decomposition links in [24]). When
looking for an appropriate effect to close an abstract precondition, the system can
easily inspect already expanded abstract tasks and follow their decomposition to less
abstract levels.
The algorithm allows recursive task expansion schemata to model loops. If for every
recursive task a terminating method is provided and if an appropriate search algorithm
is used (here: iterated deepening) then the recursion is harmless with respect to program
termination and “increasing the incompleteness” of the planning process. These loops
are very useful in the presented examples, e.g. evacuation has to be performed until all
persons safe, although recursion handling still requires improvement (cf. future work
in section 7).

164

From Abstract Crisis to Concrete Relief 9

6 Discussion and Related Work

Hierarchical task network (HTN) planning as described and analyzed in [3] is the basis
for systems like O-Plan, UMCP and Shop.
In contrast to our approach, which makes use of state abstractions in condition achieve-
ment, abstract tasks in O-Plan [2] do not carry preconditions and effects. Instead, the
system relates conditions of primitive operators over different levels in the plan gen-
eration process by introducing condition types in the abstract expansion schemes [21].
These types specify how conditions of the tasks in the expansion can be achieved: by
the effect of a task that is (a) inside or outside the current expansion and (b) in-
troduced at the current plan generation level, above, or below. Please note, that this
technique requires the domain encoder to structure the task hierarchy very carefully
as methodologically it’s pruning works rather on the system’s search space structure
than on that of plan space. Compared to O-Plan, UMCP [4] is a much more puristic
implementation. The search space is constraint pruned, down to the most concrete
operator level, where the typical conditions are introduced. Both systems merely rely
on action abstraction.
A new direction in the HTN paradigm is given by the Shop system [14], that proposes
ordered task decomposition, using if-then-else cascades in method selection. The main
idea is to plan all tasks in the order they are later executed. This enables the system
to deduce complete state descriptions, beginning with the initial state. The developers
met the criticism on their linearity assumption with a modified system, called M-
Shop [15] which can handle planning problems with parallel goals in the initial task.
Many realistic domains may meet this partial linearity property, the crisis management
domain in our work, however, does not as task execution itself is higly distributed and
the execution order for most tasks is not known in advance.
Planning using state abstraction was the earliest form of hierarchical planning in linear
planning systems. Nonetheless, the Abstrips system [17] is still discussed [7], and has
influenced many modern planners. Classical state abstraction works by deleting certain
sets of preconditions, thereby defining ”criticality levels” for each of which the system
plans in a classical manner. Alpine in [9] automatically generates these levels, building
abstraction hierarchies with “ordered monotonicity”, i.e. detailed action levels do not
interfere with more abstract established conditions. Similar work in the context of
nonlinear planning has been done by Yang in the Abtweak planner [23].
Exploiting object-oriented formalisms or state abstraction is a comparatively new tech-
nique in planning. Semantic foundations for “real” object oriented approaches can be
found in the literature, ranging form reasoning about object database models in the
style of terminological logics [1] to specification oriented work [18]. [6] uses plans as
object methods for an hybrid reactive robot controller, mapping incoming percepts
on partially specified object templates as plan selection criteria. More related to our
view is that of object centered planning [13], where objects are organized in static and
dynamic sorts. Each instance of a dynamic sort has its own local state which is defined
by a set of predicates. Consequently, predicates are owned by exactly one sort, the
key attribute of the predicate, and thereby becoming static or dynamic themselves.
For all sorts legal local states are specified, and over their transitions again operators.
OCLh [12] extends this formalism to action abstraction by introducing a sort hierarchy,
in which dynamic predicates are inherited from super-sorts. So-called guards play the
role of pre and postconditions of objects transition sequences that build the semantics

165

10 Susanne Biundo and Bernd Schattenberg

for abstract tasks. The planning algorithm in this framework repeats an expand then
make-sound cycle: after expanding one level of task networks, the system is checking
for inconsistencies and repairing them. Although our state abstraction is similar (and
so far yet simple, compared to “full” object oriented systems), we can handle the re-
finement of objects and predicates, likewise, and are not restricted to a fixed planning
strategy.

Integrating state-based nonlinear planning capabilities, i.e. reasoning about operator
interactions and inserting new plan steps/tasks in the fashion of e.g. UCPop [11], into
an action abstracting system promises many advantages. As Estlin, Chien and Wang
point out in [5] it adds the strengths of both, at the same time softening their weak
points. This is reflected in the modeling process: task networks more naturally represent
hierarchy and modularity and enable the user to represent domains in an object oriented
form which easier to write and reason about. Decomposition rules can refer to either
low- or high-level forms of a particular object or goal, as the information pertaining
to specific entities is contained in smaller, more specialized rules. The drawback of
this technique is that “inter-modular constraints” [5], i.e. exceptions or special cases
in action execution, cannot be represented adequately, which often leads to overly-
specified reduction rules. This can be seen in the example in figure 3, where classical
hierarchical planners would introduce expansion schemes for every kind of support
task to be ordered before the evacuation. Operator based techniques on the other hand
help encoding implicit constraints, as their kind of plan refinement is more general and
provides more compact representations. In addition, it brings with it an early detection
of inconsistencies at an abstract level, together with means of resolving the conflicts.
But using solely operators, certain aspects are difficult to represent (for a discussion
about the expressive power of HTN planning, see [3]). The advantages of a natural
mixed domain knowledge representation are obvious, although difficult to evaluate
quantitatively: “[it is] easier to encode the initial knowledge base, fewer encoding errors
occur [...], and maintenance of the knowledge base is considerably easier.”[5]

Such hybrid systems had been watched suspiciously a long time, because the planning
paradigms were considered to be conflictive. New AI textbooks present this approach in
the style of state abstraction planning in [23], i.e. the abstract tasks carry preconditions
and effects from a subset of the less abstract tasks. Yang suggests in [22] to keep
hierarchical models restricted in such a way, that in every reduction schema there is one
task carrying the main effects of the network and hence those of the associated abstract
task. In such domains the downward solution property holds as a basis for effective
search space reduction. A similar approach is presented by Russell and Norvig [16], who
allow distribution of conjuncts of conditions among the sub-tasks of the network. One of
the very few existing systems is DPOCL [24], mentioned before with its introduction of
decomposition links to record decisions during planning. DPOCL decomposes abstract
tasks into networks with additional initial and final steps which carry the conditions
of the abstract tasks. Some of the techniques used there raise the crucial question
of user intent. The system prunes unused steps and takes condition establishers from
every level of abstraction, even from sub-tasks of potential establishers. The problem
of when to insert new tasks, and where to use decomposition rules only, is very hard
to solve, as it depends in part on the modeller’s intention. So far, we have provided
the system a switch for explicitly not inserting new tasks in precondition achievement,
as well as an output, indicating the inserted tasks Moreover, premature insertion of
new tasks may lead to non-optimal short plans, but we postpone this problem for this

166

From Abstract Crisis to Concrete Relief 11

time as a matter of “good” search strategies, like it is solved for classical state-based
nonlinear planners –but of course it will be tackled in the future.

Closely related to our approach is the work of Kambhampati [8]. He integrates HTN
planning in a general framework for refinement planning, thereby making use of op-
erator based techniques. This unified view should help making use of recent progress
in planning algorithms, e.g. by giving propositional encodings for SAT based planners
[10]. In his view, the algorithm uses reduction schemes where available, and primitive
actions otherwise. Causal interaction is analyzed also at the abstract level, and refined
by a mapping of conditions and effects of abstract tasks on conditions and effects in its
sub-tasks. Abstract conditions are closed by phantom establishers that are identified
at a later stage, while our algorithm just “waits” if no suitable task is less abstract
enough. Conflict detection and resolution can only be done at the primitive level, as
in contrast to our methodology, there is no “vertical” link between causalities in the
different levels of abstraction. Kambhampati addresses user intent by defining a subset
of abstract effects explicitly for condition establishment, and by explicit representing
the incompleteness of scheme definitions. For the latter, a specific predicate prevents
insertion of new steps.

Another aspect of hybrid planning to mention is its relevance to the relative new area of
mixed initiaive planning. Only small modifications to hybrid planning algorithms allow
the user to propagate decisions as commitments to the planner, including insertion of
new tasks (many technical problems concerning systematicity of the system, etc. are
of course beyond the scope of this paper). The resulting system benefits from our state
abstraction technique, because the intermediate results, which are the basis for user
interaction, become more usable in two ways: (a) The explicit representation of causal
interactions is intuitive, even for abstract tasks, and (b) all modifications can be done at
an arbitrary level of abstraction. An example might be an abstract plan with transport
tasks, for some of which a human user can decide – on the basis of the plan developped
so far – not to be performed by aircraft. He can introduce at this level constraints to
choose land vehicles.

7 Conclusions and Future Work

We have introduced a planning approach that integrates hierarchical task networks
and state-based POCL planning techniques by imposing hierarchical structures on
both tasks and state descriptions. Tasks on all abstraction levels are extended by pre-
and postconditions, which enable the flexible integration of hierarchical decomposition
and nonlinear planning. A formal semantics of the approach provides the notion of
legal decomposition, among others. It is an essential means to ensure that during
domain modelling tasks and state abstractions are defined in a mutually consistent
way. A planning system has been presented, which implements this integrative planning
approach. It will be used to flexibly generate mission plans for environmental disasters.

Future work will, among others, be devoted to even further exploit the object-oriented
implementation paradigm and to the implementation of a more flexible search strat-
egy. Furthermore, the example domain strongly demands resource reasoning, especially
time, and a specialized loop mechanism.

167

12 Susanne Biundo and Bernd Schattenberg

References

1. D. Calvanese, G. De Giacomo, and M. Lenzerini. Structured objects: Modeling and reason-
ing. In Proc. of DOOD-95, volume 1013 of LNCS, pages 229–246, Berlin, 1995. Springer.

2. K. Currie and A. Tate. O-Plan: The Open Planning Architecture. AI, 52(1):46–86, 1991.
3. K. Erol. Hierarchical Task Network Planning: Formalization, Analysis, and Implementa-

tion. PhD thesis, The University of Maryland, 1995.
4. K. Erol, J. Hendler, and D. S. Nau. UMCP: A Sound and Complete Procedure for

Hierarchical Task Network Planning. In Proc. of AIPS-94, pages 88–96, Chicago, IL,
1994. American Assoc. for AI, AAAI Press, Menlo Park, California.

5. T. A. Estlin, S. A. Chien, and X. Wang. An argument for a hybrid HTN/operator-based
approach to planning. In Proc. of ECP-97, volume 1348 of Lecture Notes in AI, pages
182–194, Berlin, Sept. 24–26 1997. Springer.

6. U. Fonda, A. Natali, and A. Omicini. An object-oriented approach to planning. In
FAPR’96 Workshop “Reasoning about Actions and Planning in Complex Environments”,
pages III–1/8, Darmstadt, Germany, 1996.

7. F. Giunchiglia. Using ABSTRIPS abstractions – where do we stand? IRST Technical
Report 9607-10, Istituto Trentino di Cultura, Italy, Jan. 1997.

8. S. Kambhampati, A. D. Mali, and B. Srivastava. Hybrid planning for partially hierarchical
domains. In Proc. of AAAI-98, pages 882–888, 1998.

9. C. A. Knoblock. Automatically Generating Abstractions for Planning. AI, 68:243–302,
1994.

10. A. Mali and S. Kambhampati. Encoding HTN Planning in Propositional Logic. In Proc. of

AIPS-98. AAAI Press, 1998.
11. D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In Proc. of AAAI-91,

pages 634–639, 1991.
12. T. McCluskey. Object transition sequences: A new form of abstraction for HTN planners.

In Proc. of AIPS-2000, pages 216–225, 2000.
13. T. McCluskey, D. Kitchin, and J. Porteous. Object-centred planning: Lifting classical

planning from the literal level to the object level. In Proc. of 11th IEEE Int. Conf. on

Tools with AI, Toulouse, 1996. IEEE Press.
14. D. S. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP: Simple hierarchical ordered

planner. In Proc. of IJCAI-99, pages 968–975, S.F., 1999. Morgan Kaufmann Publishers.
15. D. S. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP and M-SHOP: Planning with

ordered task decomposition. Technical Report CS TR 4157, University of Maryland, 2000.
16. S. Russell and P. Norvig. Artifical Intelligence: A Modern Approach,. Prentice-Hall,

Englewood Cliffs, NJ, ISBN 0-13-103805-2, 912 pp., 1995, first edition, 1995.
17. E. D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. AI, 5:115–135, 1974.
18. A. Sernadas, C. Sernadas, and J. F. Costa. Object specification logic. Journal of Logic

and Computation, 5(5):603–630, 1995.
19. W. Stephan and S. Biundo. A New Logical Framework for Deductive Planning. In

R. Bajcsy, editor, Proc. of IJCAI-93, pages 32–38. Morgan Kaufmann, 1993.
20. W. Stephan and S. Biundo. Deduction-Based Refinement Planning. In B. Drabble, editor,

Proc. of AIPS-96, pages 213–220. AAAI Press, 1996.
21. A. Tate, B. Drabble, and J. Dalton. The Use of Condition Types to Restrict Search in

an AI Planner. In Proc. of AAAI-94, pages 1129–1134. AAAI Press, 1994.
22. Q. Yang. Intelligent Planning: A Decomposition and Abstraction Based Approach to Clas-

sical Planning. Springer, Berlin, 1997.
23. Q. Yang, J. Tenenberg, and S. Woods. On the implementation and evaluation of abtweak.

Computational Intelligence Journal, 12(2):295–318, 1996.
24. R. M. Young, M. E. Pollack, and J. D. Moore. Decomposition and causality in partial

order planning. In Proc. of AIPS-94. American Assoc. for AI, AAAI Press, 1994.

168

On the Adequacy of Hierarchical Planning Characteristics for
Real-World Problem Solving?

L. Castillo, J. Fdez-Olivares, A. González

Departamento de Ciencias de la Computación e InteligenciaArtificial
E.T.S. Ingenierı́a Informática. Universidad de Granada

18071 Granada.fL.Castillo,faro,A.Gonzalezg@decsai.ugr.es

Abstract Starting from a set of requirements which should be accomplished by any hierachical planning ap-
proach to real-world problem solving, we show how known hierarchical models may be improved by means
of a hybrid approach. Additionally, on the basis of this hybrid model, which is being applied to a real domain,
we present a compared criticism about known hierarchical planning properties and its usefulness to reflect the
complexity of real-world problems.

Keywords: hierarchical planning, abstraction formalism, planning in real domains

1 Introduction

The use of hierarchical planning techniques is intended to achieve two goals. On the one hand, to improve the
efficiency in time and space of non-hierarchical planning methods [3,4,14,17,18,24,23]. And, on the other hand, to
achieve problem solving strategies closer to those exhibited by humans in real-world problems [5,10,11,20]. In any
case, these hierarchical planning techniques search for a sequence of plansfS1,..,Sng such thatS1 is a solution at
the highest level of abstraction,Sn is a solution at the lowest level of abstraction, that is, a primitive solution, and
every planSi+1 is a valid refinement of a more abstract planSi.

In order to achieve those goals, a hierarchical planning model for real-world problems should be based both
on some knowledge abstraction formalism for domains descriptions and also on some planning process able to
obtain abstract plans and refine them into primitive plans, but in any case, these planning models should satisfy the
following requirements:

– Expressiveness. The domain description language and the abstraction formalism should support the represen-
tation of real-world problems similarly to hierarchical problem solving knowledge representations of humans.

– Simplicity. The stage of domain description should be as simple as possible, that is, it must have the lowest
number of syntactical restrictions and, if possible, it must be supported by knowledge acquisition tools.

– Autonomy. A hierarchical planning model should reduce at maximum the number of decisions taken during
domain description, most of them manually defined by humans,and translate these decisions into the planning
process which reaches a higher responsibility in the problem solving process. The fact is that domain descrip-
tions may be used to code some procedural knowledge, that in many cases may be an excessive amount of this
type of knowledge. The goodness of this practice is not clear. On the one hand, the encoding of procedural
knowledge in domain descriptions may be very efficient and may be a straightforward domain description
technique. However this could lead the planner not to solve some instances of problems if some “precoded
knowledge” is missing. On the other hand, a more declarativeknowledge representation in domain descrip-
tions may be more difficult or not very intuitive to handle but, because of its generality, the scope of solvable
instances of problems is increased.

– Soundness and completeness. A hierarchical planning process should find valid solutions at every abstraction
level whenever they exist.

– Efficiency. In order to adequately exploit a hierarchy of knowledge, a hierarchical planning process should
intensively reuse the knowledge embedded in higher level solutions as a guide to refine lower level solutions
more efficiently.? This work has been supported by the spanish government CICYTunder project TAP99-0535-C02-01.

169

Known models of hierarchical planning hardly satisfy all ofthese requirements, but only some of them, since
there seems to be a trade-off between the attainment of ones with respect to others. In general, this is true both in
non-decompositional models based on abstraction hierarchies [3,17,18,24] and in decompositional models, either
HTN-based models [11,16,20] or POCL-decomposition models [12,13,25].

In the case of decompositional methods, mainlyHTN methods, it is widely recognized that they have a great
expressiveness power for real world problems [16], however, there is a high number of decisions which must be
taken during the description stage of a domain, decreasing the autonomy of the planning process and increasing
the effort needed to represent a domain [20,23]. In the case of non-decompositional methods, mainly abstraction
hierarchies, they are almost completely devoted to improvethe efficiency of planning processes, disregarding
expressiveness issues. They represent an excellent theoretical framework for the study of hierarchical planning
processes, but its lack of expressiveness makes these methods more difficult to apply in real-world problems.
These models may lead to conclude that any improvement in expressiveness implies a decrease in efficiency, and
this is not always true [8].

The need to satisfy the above mentioned requirements has lead to the definition of a set of properties which
only appear in hierarchical planning models. The main properties which can be found in the literature areUpward
Solution Property, Monotonic, Ordered MonotonicandDownward Refinement Property[3,17,23].

These properties are intended to define a reference framework for the design of “good” hierarchical planning
models so that any model which meet these properties, also satisfies some of the requirements, mainly, efficicency
and completeness. However, despite its undoubted theoretical usefulness and the benefit achieved in the devel-
opment of hierarchical planning models, this set of properties may be questioned because they do not take into
account all of the requirements and some property may put in serious risk some of the requirements, mainly expre-
siveness, i.e. an appropriate representation of knowledge, one of the most important issues for solving real-world
problems [9].

However, it is possible to achieve a higher attainment of these requirements by means of a hybrid planning
process which could use decomposition techniques jointly with operator-based techniques to benefit of the advan-
tages of both models [12]. This work analyzes the main shortcomings of known hierarchical planning methods and
presents a hybrid hierarchical planning model which provides a higher accomplishment of the above requirements
and that has been used to solve real-world problems [7,8]. The hybrid process presented in [12] is only focused
on representational issues, by reusing concepts fromHTN and operator-based planning, neglecting details about its
impact on the planning process. This work is a deep effort to explicit the syntax and semantics of decomposition
and modularity based on a representational scheme which differs from that ofHTN and operator-based planning,
and also to explicit the impact of this knowledge representation in the planning process.

In order to correctly argue this criticism, the main issues during the design of a hierarchical planning model
have been identified, and they will be used to show how known hierarchical planning methods present some
shortcomings in every category and how the approach presented in this work solves some of them providing a
higher degree of accomplishement of the requirements. These issues are the following ones:

– Issues related to domain description.
1. The definition of the abstraction formalism.
2. A syntactic description to articulate the decompositionof actions.
3. A semantic description to identify valid decompositionsand modularity relations.

– Issues related to the planning process.
1. Completeness issues in backtracking between different abstraction levels.
2. Consistency issues of the causal structure of plans between different abstraction levels.

Next section will show the shortcomings of known approachesto hierarchical planning under the point o view
of these issues, and this same point of view will be used to show the contributions of this paper in Section 3.
Finally, some reflections about the role of these issues, andmore complex interactions between the requirements
are shown.

2 Shortcomings of known hierarchical models

2.1 Abstraction formalisms

Every hierarchical planning model establishes a set of syntactical tools to allow for the description of different
abstraction levels in a domain. This abstraction formalismis used during the planning process in a “top-down”

170

refinement of high level plans into lower level plans which ends when primitive plans are obtained. The definition
of this abstraction formalism directly has effects on requirements such as expressiveness, simplicity and autonomy.

An optimal abstraction formalism should allow for a real knowledge abstraction at different levels [5,15,21]
so that actions and literals are represented at different granularity levels and the number of syntactical rules and
human decisions are reduced to the minimum in the stage of domain description.

Abstraction hierarchies based models use “literal-oriented” abstraction formalisms in which every literal from
level i remains at leveli+ 1. This is a very hard syntactic restriction since it limits the abstraction of knowledge,
mainly actions, which maintain their semantics at every abstraction level, but described with a different number of
literals, so that this formalism is unable to represent compound actions. For this reason, it is very difficult to apply
in real-world problems [5,21].

On the other hand, decompositional models use an “action-oriented” abstraction formalism, based either on
static decompositions (reduction schemes) [11,23] or on dynamic decompositions (decompositon schemes) [12,13,25]
which allow for a real abstraction of actions so that lower level actions are represented with a higher granularity that
higher level actions. This formalism provides a great expressiveness power for complex problems [16]. However,
in these models, every precondition and effect of a compoundaction must be somehow distributed amongst its
constituent subactions [23,25]. This restriction limits the real abstraction of knowledge, since all of the abstraction
levels share the same set of literals, it decreases the simplicity of domain descriptions and needs a great effort of
human decisions.

2.2 Decomposition mechanism

This is a set of syntactic tools to decompose high level actions into lower level subactions and it influences expres-
siveness, simplicity, autonomy and completeness. With respect to expressiveness and completeness, the decompo-
sition mechanism must allow for alternative decompositions and a true modularity of actions, that is, a different
granularity of knowledge between the compound action and its subactions. With respect to simplicity and auton-
omy, action decomposition should provide the means to describe domains with the minimum amount of knowledge
supplied by humans.

Action decompositions are present in decompositional models but do not appear in abstraction hierarchies.
Although there are some minor differences between them, in both models the decomposition mechanism always
need extra knowledge which has to be coded by hand. It is basedon a set of static reduction rules which must be
supplied by hand during domain description: the antecedentof the rule is a compound action and its consequent is
the set of subactions, its relative ordering a set of causal links between them and even binding constraints. These
mechanisms are very expressive but also make the stage of domain description very difficult.

2.3 Semantic validity of decompositions

The decomposition mechanism establishes a modularity relation between two plansSi andSi+1 at different ab-
straction levels so that every action inSi is mapped into a set of actions ofSi+1. Not every syntactically valid
decomposition is also a semantically valid one, so a set of criteria which feature semantically valid decomposi-
tions, i.e. modularity relations, should be defined taking into account the following issues.

– Every action at leveli+ 1 must be related to an action at leveli.
– A decomposition of an action should not have any internal unsolvable flaw.
– Subactions should not interfere with the effects of higher level of the action whose decomposition they belong

to.

In known decompositional models these issues are responsibility of the human who writes a domain descrip-
tion, decreasing the autonomy of the planner. This shift in responsibility could be avoided by defining general
semantic properties which must be satisfied by any modular decomposition, and giving more responsibility to the
planner to find a valid decomposition by means the syntactic tools of the mechanism and reducing the effort of
coding a domain.

171

2.4 Backtracking between abstraction levels

A key issue in any hierarchical planning algorithm is the need of backtracking between different abstraction levels
during the search process. This is particularly important when at some abstraction leveli a solution cannot be
found and the algorithm needs to go back at leveli � 1 to search for other refinements. This can be seen as a
knowledge-based pruning mechanism which is able to reject dead-end branches at high abstraction levels and
provide an improvement in efficiency. However, depending onthe abstraction formalism and on the features of a
valid solution, there may be somedomainsin which a planner may lose its completeness due to this backtracking
mechanism [17,23].

The existence of these domains led to the definition of theUpward Solution Property(USP) [17,23]. This
property states that if a primitive solution existsSn in a hierarchical domain, then there is a sequence of refinementsfS1,..,Sng which starts at the highest abstraction level and ends at thelowest level such that everySi+1 is a valid
refinement ofSi. It may be seen that the contrapositve of this property allows for backtracking when a solution
does not exist at any abstraction level, i.e., there will be no solution at primitive level.

This property is always satisfied by abstraction hierarchies based models [3,17]. But in the case ofHTN based
models, it is shown [23] that this property does not usually hold but it can be satisfied by the addition of some
syntactic restrictions, mainly theUnique Main Subaction(UMS). This restriction states that all of the preconditions
and effects of a compound action must be reproduced in only one subaction of its decomposition. This restriction
leads to use the same granularity of knowledge in compound actions as well as in their subactions, thus completely
losing the modular relation of a real decomposition of actions. This implies a lose in expressiveness in real-world
problems and, therefore, mostHTN based planners do not satisfy the USP. One might think that ifUSP is not
satisfied, then completeness of decompositional planning algorithms may be put in risk in those situations in
which the algorithm bactracks but, actually, it depends on the representation of the final solution.

When the solution to a problem is seen as the lowest level plan, i.e., a primitive plan, then hierarchical planning
methods may be seen as another heuristic to improve the efficiency of planning, that is, a different way to arrive
at a one-level plan which solves a planning problem. In thesecases completeness may be lost since in some
domains, there can be a primitive solution but no abstract solutions and thus a backtracking criterium based on
the nonexistence of abstract solutions would not be enough.On the opposite, when a solution to a problem needs
a complete hierarchy of valid plans where every abstract plan is completely autonomous and operational, and it
is used as a modularization tool for lower level plans, then the nonexistence of any abstract solution impedes the
existence of a complete hierarchy of valid plans and it can beused as a sound backtracking criterium.

Another property related toUSPis theDownward Refinement Property(DRP) [2,3]. The DRP states that if a
non-abstract, concrete level solution to the planning problem exists, then any abstract solution can be refined to a
concrete solution without backtracking across abstraction levels. This property is also hard to satisfy in real-world
problems. Its fulfilment implies a drastic improvement in efficiency since a hierarchical planner does not need to
backtrack between abstraction levels, but in order to do that, there cannot be more than one decomposition for every
compound action. This is also very restrictive for real-world problems in which the need to represent alternative
decompositions has been widely recognized as a key requirement [16,20].

2.5 Consistency of causal structures through abstraction levels

This last issue consists of reusing the set of causal links established at some abstraction leveli as a guide to refine
a plan at leveli + 1. When every causal link established at leveli is somehow “inherited” at leveli + 1 then a
hierarchical planner is said to satisfy theMonotonic Property[2,17,23,24]. This property is very important with
respect to the attainment of efficiency and consistency of the planning process:

– The efficiency may be improved since the reuse of causal linkswhich have been established at higher levels
avoids the redundancy of the planning process in the sense that flaws previously solved at higher levels do not
need to be reconsidered again at every lower level. Furthermore, unsolvable threats may be detected earlier to
prune dead-end branches.

– From the point of view of the consistency of the planning process, it would not be easily understandable that
any action in a plan at some level could contradict any causalrelation previously established at any previous
level despite of the correctness of that plan in its own levelof abstraction.

Therefore, a hierarchical planning model for real-world problems should satisfy this semantic property. In the
case of abstraction hierarchies, this property directly holds, due to the abstraction formalism and independently of

172

the planning process followed, eitherABSTRIPS[3,17] orABTWEAK [24]. HTN based models provide the means to
inherit causal links between abstraction levels, but once again, they must be hand-coded during domain descriptions
[23] decreasing the autonomy of the planner, whereas in other decompositional models this issue is not addressed
[12,13,25].

Next section will show the main contribution of this paper and how it provides helpful advances in every issue
discussed in this section with respect to both non decompositional and decompositional approaches to planning for
real-world problems.

3 A hybrid model for real-world problem solving

Behavior

Compound Agent

Name

Variables

Properties

States

&

Compound

Actions

Interface

Behavior

Pr imitive Agent

Name

Variables

Properties

States

&

Primitive

Actions

Behavior

Pr imitive Agent

Name

Variables

Properties

States

&

Primitive

Actions

Is Part Of Is Part Of

Figure1. Primitive and Compound agents.

In our model a domain is represented as acompositional hierarchy of agents(see Figure 1), i.e., an agent
hierarchy with different levels of abstraction such that high-level agents (compound agents) are composed by
lower-level agents. Leaf nodes of the hierarchy areprimitive agents, which represent real world entities able to act.
We can find many real applications which fit into these features [22] (robot planning and control [1], manufacturing
systems [6,19] or aerospace applications [12]).

Every agentg of a compositional hierarchy is represented by means of its properties (name and variables) and
its behaviour. The behaviour is modeled as a finite automatonin which every actiona of g is represented by a set
of requirements,Req(a), which must be satisfied in order to achieve a correct execution of the action, and a set of
effects,Efs(a), which include the change of state produced bya over the agentg (we noteAg(a) the agent which an
actiona belongs to). In order to achieve an adequate expressivenessfor real-world planning, the model of actions
embodies two fundamental features:

– Actions are considered as intervals, that is, every actiona of an agentg executes over an interval,[a;End(a)℄,
defined froma until the next change of state ofg, produced by another action of the same agent,End(a).

– The set of requirements is divided into a set of condition types to represent different ways for preconditioning
an action (see [7,8] for more details).

Actions in a compositional hierarchy may beprimitive actions, if they are executed by primitive agents, or
compound actions, if they are executed by compound agents. Both action types share the same structure, but
compound actions, which are represented at a higher level ofabstraction, additionally include a set ofexpansion
methods, which are used to decompose them into subactions. Details about this decomposition mechanism will be
described later in Section 3.2.

Remaining sections are devoted to explain in more detail ourhybrid model, and to show how the key issues of
known hierarchical models, shown in Section 2, may be improved in order to solve real-world problems.

3.1 Abstraction formalism

As opposite to the formalisms described in Section 2.1, the abstraction formalism of our hybrid approach isbe-
haviour oriented, that is, the abstraction is centered on the behaviour of compound agents in such a way that the
behaviour of high level agents is a more abstract representation of the behaviour of their components.

173

Firstly, the knowledge of a compound agent and the knowledgeof its components are related by means of
the Interfaceof the compound agent [6] (noted asIntg). This is a set of simple association rules used to map
literals, variables and states of an agent into literals, variables and states of its components. This mechanism allows
an expert to easily describe and relate actions and literalsof agents at different levels with a different semantic
granularity, such that sets of literals and actions at different abstraction levels are also different.

Secondly, in order to articulate levels of abstraction downwards, during the planning process, we have defined
anarticulation function[6,15]. This function (noted asfg) is a domain independent mechanism defined for every
compound agentg which uses its interface to translate every literal into a new level of abstraction. Hence, every
literal l=(N x1 : : : xn) at leveli, in the description of a compound action�1 of a compound agentg, is translated
into a set of literals of leveli+ 1, whose arguments are consistent with the new level of abstraction. These literals
are built according to these rules:

– If there is a rule inIntg which specifically associatesl to a set of literals, thenfg(l) returns that set.
– Otherwise, the literal is translated component by component, i.e., fg(l) returns the single setf (Intg(n)

Intg(x1) : : : Intg(xn))g
– Finally, if there is no semantic correspondence in the next abstraction level forl, fg(l) returns the empty set.

Both the articulation function and the interface of compound agents may be used to relate knowledge at dif-
ferent granularities. The knowledge of a compound agent, with a lower granularity, may be translated into the
knowledge of its constituent agents, with a greater granularity.

Additionally, there is a sort of assisting tool for domain descriptions: an expert may describe a domain as a
compositional hierarchy from an existingclass libraryof predefined agents which also contains predefined agent
interfaces. That is, rules contained in interfaces may be easily reused, simplifying the process of domain encoding.

This abstraction mechanism provides a real abstraction of knowledge since actions and literals in the hierar-
chy are represented at different granularity levels, but related between them. As a result, the amount of syntactic
constraints which must be observed during the domain description stage is reduced. There is no need to distribute
preconditions and effects at lower abstraction levels since this knowledge will be translated by the articulation
function. Moreover, a human domain designer only has to specify which are the components of a compound agent
and, if needed, to specialize some agents by introducing domain specific knowledge.

As will be seen later, this formalism is able to maintain anHTN-like expressiveness, but with a simpler domain
description process which reduces human decision making atearly stages.

3.2 Decomposition Mechanism

Every compound action� of every agent at leveli, contains a set ofexpansion methodsfm0;m1; : : :g where every
methodmj;j>0 is a set of literals at leveli+ 1 which represent subgoals to be achieved by actions of agentsat the
next leveli+1. This set of literals will be noted asDecomp(�) and they are a semantically equivalent representation
of the effects of� at leveli+ 1.

From the point of view of a human at the domain description stage, it must be taken into account that every
compound action� contains adefault expansion method, m0, whose literals are the result of applyingfg to every
literal in the set of effects of�. Moreover, in most cases this method has shown to be expressive enough to describe
how a compound action may be decomposed.

The decomposition mechanism is a dynamic process, performed at planning time, which decomposes a com-
pound action� at leveli following these two steps:

1. Determine the set of literals at the next leveli+1 which have to be achieved by actions of agents at that level.
It may be obtained fromm0, without any additional knowledge, or by means of another alternative method. .

2. Determine, by means ofPOP-based techniques, the set of actions such that either they satisfy those literals
generated by� or they contribute to their establishment. These actions will make up the real decomposition of�.

This decomposition process preserves the expressiveness of decomposition rules of other models, that is, it
allows for alternative action decompositions, with different grain size. Additionally, it improves decomposition
mechanisms discussed in Section 2.2 in the sense that it doesnot require to know the modular decomposition
1 Greek letters represent higher level actions and latin letters lower level actions.

174

of every compound action, prior to the planning process, andin most cases the only required knowledge is the
interface of every compound agent, covering much better requirements of simplicity and autonomy.

Another feature of this mechanism is that the correctness ofa decomposition does not have to be checked
“a priori” by hand. Instead of this, this task is shifted intothe planning process who becomes the responsible to
dynamically check the correctness of every decomposition at every level of abstraction.

3.3 Semantic validity of decompositions

A key issue in the previously described decomposition process is that it allows to shift the task of determining the
set of subactions which corresponds to a compound action into the planner, while preserving semantic correctness.
This feature leads to define amodularization relationshipbetween two plans at different levels of abstraction. In
the following we will introduce some fundamental concepts that, finally, will allow us to define what we consider
a valid decomposition as acorrect modularization relationship.

Modularization relationships In our compositional hierarchy we use two functions,Sub(�) and Scope(a), to
represent hierarchical relationships “is composed by” and“is part of” respectively, so we say thata 2 Sub(�) ,� = Scope(a). FunctionScope(a) (Figure 2) gathers the general criteria that a hierarchicalplaner has to take into
account to dynamically find the set of subactionsfa1; a2: : : :g of a compound action�. It takes as input an actiona, from a planSi at leveli, which satisfies a literall from the same level, and it decides which is thescopeof a,
that is, the compound action� at the inmediately higher level which contains the actiona in its decomposition.

Scope(a)
IF 9� = aSat�!l; l 2 Decomp(�)
THEN Let f�1; : : : ; �ng such that aSat�!li; li 2 Decomp(�i)

Let� = Non Deterministically Choose One OfFirstf�1; : : : ; �ng
ELSE Let fa1; : : : ; ang such that aSat�!li; li 2 Req(ai)

Let� = Non Deterministically Choose One OfFirstfScope(a1); : : : ;Scope(an)g
Return�

Figure2. FunctionScope

Summarizing, the scope of an actiona is a higher level action� if one of the following conditions holds:

– a establishes several literals generated by different higher level actions,f�1; : : : ; �ng, and� is one of the first
actions of this set (functionFirst returns a set of actions for which no other actions precede them in the set of
actions used as argument). It must be said that a same action may contribute to different higher level actions
but it is assigned to only one of them.

– a establishes several requirements of a set of actions at its same level,fa1; : : : ; ang, and� is one of the first
scopesof this set of actions.

This definition is based on literal satisfaction, so it is possible to dynamically generate, at planning time by
means ofPOP-based techniques, the set of subactions for a given compound action at leveli. Moreover, functions
Scope(a) andSub(�) establish a modularization relationship between plans at two consecutive abstraction levels,
such that every action in a plan at leveli is mapped into a set of actions of a plan at the next leveli+ 1.

Taking into account the terms of this definition,POP-based causal link management is the natural way to
dynamically guarantee a valid causality between the subactions of a compound action.

Correct modularization relationships In order to guarantee a correct modularization relationship, high-level
effects of a compound action� at leveli should not be deleted by any of its subactions at leveli + 1. The set
of literals Decomp(�), generated at leveli + 1 by the above described decomposition mechanism of�, are a
semantically equivalent representation of the effects of� at leveli, therefore these are actually the literals which
should be protected at leveli+ 1.

175

The new concept ofhybrid causal linkis used to protect these literals. In order to understand howa hybrid
causal link is represented, and its semantic implications,it is necessary to know the extended representation of a
causal link used in our model, which embodies the notion of actions interval, a more suitable representation for
real-world domains [7,8].

A causal link[a l!b; ℄ is a structure used for representing that a requirementl of an actionb has been satisfied
by another actiona and this has to be protected during the action interval[a; ℄ and is not necessarilyEnd(a). So,

an actiona0 threatens a causal link[a l!b; ℄, whena0 deletesl and the interval[a; ℄ is unordered with respect to
the interval[a0;End(a0)℄2
Definition 1 (Hybrid causal link.) A hybrid causal link at leveli is a structure represented as[a� l!�; ℄, where

– � and are two compound actions at leveli� 1 which belong to a causal link[� r!�; ℄ at leveli� 1.
– l is a literal at leveli generated by�, at leveli� 1, such thatl 2 fAg(�)(r).
– a� is an action which satisfiesl and� = Scope(a). 2

A hybrid causal link describes that a literal generated by� and satisfied by some subactiona� of � has to be
protected from any other threatening actiona0, at the same level thana�, which could delete that literal. Thus, a
hybrid causal link will be used to detect and solve ahybrid threat, an analogous concept to that of classic threat
which takes into account the existence of causal links at different abstraction levels.

Definition 2 (Hybrid Threat.) An actiona0 produces a hybrid threat to a hybrid causal link[a� l!�; ℄ when

i) a0 Del�!l
ii) [a0;End(a0)℄ is unordered with respect to[a; ℄ 2

Finally, based on these concepts of hybrid causal link and hybrid threats we are able to establish what we con-
sider acorrect modularization relationship. A correct modularization between two plans at consecutiveabstraction
levels exists when there are no hybrid threats within the scope of any compound action, that is, when any effect of
a compound action is not deleted by any of its subactions.

Therefore, any modularization relationship must satisfy that6 9a�; a0� 2 Sub(�); such thata0� produces a hybrid threat to a hybrid causal link[a� l!�; ℄.
The definition of a correct modularization relationship is aparticular case of a hybrid threat in which the

threatening action and the causal link belong to the same scope. It allows a planner to decide which decompositions
are correct and also to establish the order relations and causal links between its subactions, both dynamically.
Moreover, from the point of view of a human domain designer, the planner will be able to modularize the actions
of one level with respect to the actions of a higher level, a task which is only carried out by humans in HTN
methods.

This procedure to dynamically identify valid decompositions of actions allows for an increase of autonomy
of the planner and a greater simplicity of domains descriptions, since the knowledge which identifies these valid
decompositions does not have to be provided during domain coding. Instead, this knowledge is “distilled” during
the planning process.

3.4 The planning process

The goal of the planning process is obtaining a hierarchicalplan which correctly describes the behaviour of a com-
positional hierarchy of agents at different levels of abstraction. A solution to a problem is a hierarchical plan, that
is, a sequence of plansfS1 : : : Sng at different abstraction levels, where every planSi must be a valid solution
at leveli, which will be called a leveli partial solucion, since it describes the behaviour of agents at leveli. The
lowest level plan is completely made up of primitive actions, and every plan at leveli has a correct modulariza-
tion relationship with respect to the plan at the next abstraction leveli + 1. The algorithm which generates such
hierarchical and modular plans is shown in Figure 3.
2 Two intervals are unordered when their limits are unordered[8].

176

HYBIS (Domain, Agenda, H-Plan)
IF Agenda is emptyAND IsPrimitivePlan (H-Plan[CurrentLevel])
THEN RETURNH-Plan
ELSE LET Flaw = SelectFlaw(Agenda)

IF Flaw consists on a hierarchical refinement
THEN RETURN REFINE (Domain, Flaw, Agenda, H-Plan)
ELSE RETURNGENERATE (Domain, Flaw, Agenda, H-Plan)

REFINE (Domain,�, Agenda, H-Plan)
LET Methods = HowToRefine?(�, Domain, H-Plan)
WHILE Methods is not empty

LET m = ExtractExpansionMethod(Methods)
Insert(m, Plan-H])
LET Result = HYBIS (Domain, Agenda, H-Plan)
IF Result 6= FAIL THEN RETURN Result

RETURN FAIL

GENERATE (Domain, Flaw, Agenda, H-Plan)
LET Alternatives = HowToDoIt?(Flaw, Domain, H-Plan)
WHILE Alternatives is not empty

LET How = Extract (Alternatives)
DoIt (How, Domain, Agenda, H-Plan)
LET Result = HYBIS (Domain, Agenda, H-Plan)
IF Result 6= FAIL THEN RETURN Result

RETURN FAIL

Figure3. A hierarchical hybrid algorithm based on hierarchicalHTN-like refinement and generativePOP-like re-
finement.

This algorithm synthesizes a hierarchical plan by generating and refining a set of plans at different levels of
abstraction. Every planSi describes the behaviour of a set of agents at the same level, and it may be considered a
complete solution to a leveli problem or a partial solution to the whole problem.

The highest level plan,S1, is obtained by generative techniques, and every planSi, for i > 1, is obtained by
means of a hybrid process which interleaves hierarchical (functionREFINE) and generative (functionGENER-
ATE) refinements. FunctionREFINE performs the step 1 described in Section 3.2, that is, it decomposes every
compound action� into a set of literals by any of its existing methods and then it inserts these literals in the plan.
FunctionGENERATE performs the step 2 described in Section 3.2 taking into account the validity of decompo-
sitions described in Section 3.3. That is, it satisfies everyliteral by means of generative techniques and establishes
a correct modularization relationship between every compound action and its subactions. FunctionGENERATE
is based on a non-hierarchical POCL planner described in [8].

The process ends when all of the actions in the current plan are primitive actions and that plan has been correctly
modularized.

Next, we will discuss the key issues of backtracking betweenlevels of abstraction, and the consistency of causal
structure through levels of abstraction.

3.5 Backtracking between abstraction levels.

In the algorithm described in Figure 3, backtracking between abstraction levels is done when there is no possibility
to generate a planSi modular and causally correct with respect toSi�1 as seen in Section 3.3. It must be said that,
taking into account the type of solutions obtained by our approach, backtracking between abstraction levels has no
negative effect over the completeness of the algorithm, as discussed in Section 2.4.

A solution is not a primitive plan, as in mostHTN approaches, but a complete hierarchical and modular plan,
that is a sequence of plansfS1 : : : Sng, where the lowest level plan is completely made up of primitive actions,
every planSi is a partial solution at leveli and it has a correct modularization relationship with respect to the plan
at the next abstraction leveli + 1. Hence, if there is no partial solution at some abstraction level, then there is no
possibility to obtain such a complete hierarchy of valid plans, despite of the existence of any later primitive partial
solution. Therefore, in these situations, the need to obtain a complete hierarchy of plans leads to backtrack to the
previous abstraction level to continue the search for alternative refinements. Given that a solution is a complete
hierarchy of plans, as opossite to most HTN approaches in which a solution is a primitve plan, a backtracking
criterium based on the contrapositve ofUSPdoes not put in risk the completeness of the algorithm.

As can be seen, the usefulness of theUSP to backtrack between abstraction levels in real-world planning
depends on how a correct solution is defined. However, our experience in solving real-world planning cases points
to an interesting role of this property in domain validation, which will be outlined in Section 4.

Finally, next section will be devoted to show the monotonicity of the causal structure through different abstrac-
tion levels.

177

3.6 Consistency of causal structures through abstraction levels.

In our hybrid model, a planSi inherits the causal link structure generated in the planSi�1 by means of a dynamic
process at planning time. This process is based on reusing the high level structure of causal links, taking into
account the inheritance rules shown in Figure 4.

RULE 1:
A causal link[� r!�; ℄ fromSi�1 , such thatfAg(�)(r) 6= NIL ,

has associated a hybrid causal link[a� l!�; ℄ in Si if
i) l 2 fAg(�)(r)
ii) a�Sat�!l RULE 2:

A hybrid causal link[a� l!�; ℄ fromSi
has associated a causal link[a l!b; ℄ in Si if

i) b 2 Sub(�)
ii) aSat�!l; l 2 Req(b)

Figure4. Inheritance rules of causal links

This monotonic inheritance of higher-level causal structures is used to detect and solve hybrid threats. These
hybrid threats represent a violation of a causal link established at leveli by an action at leveli + 1 and they will
become a classic threat at leveli + 1 when all of the actions at leveli had been decomposed. Hence, unsolvable
hybrid threats, which will later become unsolvable classicthreats, may be used for an early detection of dead-end
branches and backtracking before all of the decompositionshave been completed.

In summary, this inheritance of causal structures not only provides a greater expressiveness, since it is the basis
of the dynamic decomposition mechanism, but it also provides a greater efficiency, since it allows for an early
detection of some unsolvable threats exploiting the knowledge synthesized at previous levels.

4 Conclusions

In this work we have shown some advances in hierarchical planning which overwhelm a set of shortcomings on
known hierarchical models, and we have presented a discussion on the adequacy of hierarchical planning properties
for real-world planning, on the basis of a hybrid planning approach developed to solve real-world problems.

Space precludes to justify our proposal with an appropriateexperimentation. It must be said that our model
has been extensively used for the automatic synthesis of hierarchical control programs for manufacturing systems
in which simple domain descriptions and modularity relations play a very important role. This experimentation is
being carried out in close collaboration with experts on industrial domains within a research project, and it will
appear in other paper in preparation.

In any case, all of the improvements which have been proposedhave a common basis: the abstraction formal-
ism based on thearticulation function. This abstraction formalism allows for a high accomplishment of formerly
enumerated requirements (see Table 1 for more details):

– Simplicity: it reduces human effort on syntactic constraints observance and decision making, at domain de-
scription stage.

– Autonomy and expressiveness: it provides the basis for a dynamic action decomposition process performed at
planning time and it allows to obtain “ready-to-use” plans which describe the behaviour of a compositional
hierarchy of agents.

– Soundness and completeness: it also provides the basis for dynamically checking the semantic correctness
through plan levels with different semantic granularity, while preserving completeness.

– Efficiency: the inheritance of causal structures provides the means for an intensive reuse of the knowledge
embedded in higher levels. This reuse of higher level knowledge produces a great benefit on the efficiency
and, in addition, it allows for a more understandable planning process from the point of view of a human.

On the other hand, we have also discussed the adequacy of known hierarchical planning properties for real-
world problem solving. In summary, theDRP is too restrictive and it leads to reduce expressiveness forreal world
problems. However, we have shown that the Monotonic Property is very useful for real-world planning. In par-
ticular, we have introduced a new mechanism which monotonically inherits causal structures between plans at
different abstraction levels, which are represented at different semantic granularity by changing the representation

178

language. Finally, we have shown thatUSPmay be used to bactrack between abstraction levels without putting in
risk the completeness of our hybrid algorithm. This is because the type of solution needed in our approach is not
a primitive plan, but a complete hierarchy of plans. However, the accomplishment of this property is still useful
during domain description process, from a knowledge engineering perspective.

Although the completeness of the planning algorithm could be formally proven, it is always possible to describe
a hierarchical domain with no partial solution at some abstract level, but with a partial solution at ground level.
This means that theUSPis an inherent property to every hierarchical domain, whoseaccomplishment is necessary
to prevent the description of bad domains. However, it couldbe argued that there could be some feedback between
the planning process and the domain description process, such that the planner could be able to detect and suggest
some domain coding errors. This strategy could be implemented by means of a mixed initiative planning process,
such that the planner would inform the expert about the circumstances which invalidate the execution of actions at
a given level (for instance, a unsolvable threat could mean adeadlock between two agents). This situation would
interrupt the hierarchical refinement process until a redefinition of conditions at that abstraction level had been
done.

This mixed initiative process could provide the basis for a dynamic knowledge validation, at different levels of
abstraction, during the planning process. But it must be said that such as mixed initiative redefinition process, at
a single level of abstraction, is only operative with an abstraction formalism like the one presented here, since it
needs a completely differentiated representation at everyabstraction level, otherwise this redefinition should also
be propagated into lower level representations.

At present we are developing an intelligent digital assistant for the interactive development of industrial control
programs on the basis of this hybrid model.

Abstraction formalism Decomp. mechanism Decomp. validity Backtracking C.Links Inherit.

Non-Dec. Models

Literal Oriented Ab-
straction. Same set of
literals for every level.
Hierarchies may be
self-generated.

No No
Always correct. Sat-
isfy USP,DRP.

Satisfy Monotonic
Prop. Direct inheri-
tance.

Decomp. Models

Action Oriented Ab-
straction. Same set of
literals for every level.
Syntactic constraints
about actions literals.

Reduction schemes.
Need extra knowl-
edge. Total or partial
description.

It is restricted by hand
at domain description.

USP depends on UMS.
Directly inherited or
restricted at domain
description.

Hybrid Model

Behavior Oriented Ab-
straction. Granularity
levels of knowledge.
No syntactic con-
straints about actions
literals.

Default expansion
method. No need of
extra knowledge.

All the decision taken
on planning time. Cor-
rect modularization re-
lationship.

Correct, due to solu-
tion features. Mixed
initiative may help to
accomplish USP.

Hybrid c.links are
built at planning
time. Causal inheri-
tance with change of
language.

Table1.Characteristics of hierarchical planinng

References

1. R.C. Arkin. Behavior-Based Robotics. MIT press, Cambridge, MA, 1998.
2. F. Bacchus and Q. Yang. The downward refinement property. In Proceedings of IJCAI 91, pages 286–292, 1991.
3. F. Bacchus and Q. Yang. Downward refinement and the efficiency of hierarchical problem solving.Artificial Intelligence,

71:43–100, 1994.
4. C. Backstrom and P. Jonsson. Planning with abstraction hierarchies can be exponentially less efficient. InProc. of IJCAI

95, pages 1599–1604, 1995.
5. R. Bergman and W. Wilke. Building and refining abstract planning cases by change of representation language.JAIR,

3:53–118, 1995.
6. L. Castillo, J. Fdez-Olivares, and A.González. A hybridhierarchical/operator-based planning approach for the design of

control programs. InProceedings of ECAI’2000. Workshop on Planning, Scheduling and Design. PUK’2000., 2000.

179

7. L. Castillo, J. Fdez-Olivares, and A. González. A three-level knowledge-based system for the generation of live andsafe
petri nets for manufacturing systems.Journal of Intelligent Manufacturing, 11(6):559–572, 2000.

8. L. Castillo, J. Fdez-Olivares, and A. González. Mixing expresiveness and efficiency in a manufacturing planner.To appear
in Journal of Experimental & Theoretical Artificial Intelligence (JETAI), 2001.

9. S. Chien, R. Hill, Jr. X. Wang, and H. Mortenson T. Estlin, K. Fayyad. Why real-world planning is difficult: a tale of two
applications. In M. Ghallab and A. Milani, editors,New directions in AI Plannig, pages 287–298. IOS Press, 1996.

10. K. Currie and A. Tate. O-Plan: Control in the open planning architecture. InBCS Expert systems conference, 1985.
11. K. Erol, J. Hendler, and D. Nau. UMCP: A sound and completeprocedure for hierarchical task-network planning. In

AIPS-94, 1994.
12. T.A. Estlin, S.A. Chien, and X. Wang. An argument for a hybrid HTN/operator based approach to planning. InRecent

Advances in AI Planning.Proc. of 4th European Conference onPlanning ECP’97, pages 182–194, 1997.
13. M. Fox. Natural hierarchical planning using operator decomposition. InRecent Advances in AI Planning.Proc. of 4th

European Conference on Planning ECP’97, pages 195–207, 1997.
14. F. Giunchiglia. Using abstrips abstractions – where do we stand?Artificial Intelligence Review, 13:201–213, 1999.
15. J. Hobbs. Granularity. InIJCAI 85, pages 432–435, 1985.
16. C. Knoblock. AI Planning systems in the real world.IEEE Expert, pages 4–12, 1996.
17. C. A. Knoblock.Generating Abstraction Hierarchies. Kluwer Academic Publishers, 1993.
18. D. E. Sacerdoti. Planning in a hierarchy of abstraction spaces.Artificial Intelligence, 5:115–135, 1974.
19. S.Viswanathan, C.Johnsson, R.Srinvivasan, V.Venkatasubramanian, and K.E. Arzen. Automating operating procedure

synthesis for batch processes. part I: Knowledge representation and planning framework.Computers and Chemical Engi-
neering, 22:1673–1685, 1998.

20. D. E. Wilkins. Domain-independent planning: Representation and plan generation.Artificial Intelligence, 22:269–301,
1984.

21. D. E. Wilkins.Practical planning: Extending the classical AI planning paradigm. Morgan Kaufmann, 1988.
22. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.Knowledge Engineering Review, October

1995.
23. Q. Yang.Intelligent Planning. A decomposition and Abstraction Based Approach. Springer Verlag, 1997.
24. Q. Yang, J. Tenenberg, and S. Woods. On the implementation and evaluation of ABTWEAK.Computational Intelligence,

12:307–330, 1996.
25. R.M. Young, M.E. Pollack, and J.D. Moore. Decompositionand causality in partial order planning. InProceedings of the

Second International Conference on AIPS, 1994.

180

Slak-based Tehniques for Robust ShedulesAndrew J. Davenport1, Christophe Ge�ot2, and J. Christopher Bek21 IBM T J Watson Researh Center, PO Box 218, Yorktown HeightsNew York 10598 USAdavenport�us.ibm.om2 ILOG, S.A., 9, rue de Verdun, B.P. 85, F-94523 Gentilly Cedex Franefgefflot, bekg�ilog.frAbstrat. Many sheduling systems assume a stati environment withinwhih a shedule will be exeuted. The real world is not so stable: ma-hines break down, operations take longer to exeute than expeted, andorders may be added or aneled. One approah to dealing with suhdisruptions is to generate robust shedules: shedules that are able toabsorb some level of unexpeted events without resheduling. In this pa-per we investigate three tehniques for generating robust shedules basedon the insertion of temporal slak. Simulation-based results indiate thatthe two novel tehniques out-perform the existing temporal protetiontehnique both in terms of produing shedules with low simulated tardi-ness and in produing shedules that better predit the level of simulatedtardiness.Keywords: Robustness, Unertainty, Sheduling, Heuristis1 IntrodutionBased on a �eld study of a number of job shops, MKay et al. [MSB88℄ ommentthat \the [stati job shop℄ problem de�nition is so far removed from job-shopreality that perhaps a di�erent name for the researh should be onsidered". Inpartiular, they found that modern sheduling tehnology failed to adequatelyaddress sheduling in unertain, dynami environments.There are two general approahes to dealing with unertainty in shedul-ing. Whereas reative tehniques address the problem of how to reover from adisruption one it has ourred, pro-ative sheduling onstruts shedules thataount for statistial knowledge of unertainty. One way of ahieving this isby generating robust shedules, that is, a shedule with \the ability to satisfyperformane requirements preditably in an unertain environment" [LP91℄.In this paper, we explore slak-based tehniques for robust sheduling. Theentral idea behind slak-based tehniques is to provide eah ativity with ex-tra time to exeute so that some level of unertainty an be absorbed withoutresheduling. We de�ne the amount slak for an ativity, A, as follows:slakA = lftA � estA + durA (1)Where estA and lftA are respetively the earliest start time and latest �nishtime of ativity A and durA is the duration of ativity A.
181

Three slak-based tehniques are examined in this paper. The �rst, temporalprotetion [Gao95℄, adds slak to an ativity before sheduling. The originalduration of eah ativity is extended and then this proteted duration is usedduring sheduling. Two novel tehniques are introdued here:{ Time window slak (TWS): Rather than extending the durations of ativi-ties, this tehnique modi�es the problem de�nition to ensure that eah a-tivity will have at least a spei�ed amount of slak. The advantage of thisapproah over temporal protetion is that the amount of slak for eah a-tivity an be reasoned about during the problem solving rather than being\hidden" inside the proteted duration.{ Foused time window slak (FTWS): TWS and temporal protetion speifythe amount of slak required for eah ativity before problem solving. InFTWS, the amount of slak for eah ativity depends on where along thetemporal horizon an ativity is sheduled. The intuition is that the later inthe shedule an ativity is exeuted, the more likely it is to have a disruptiveevent our before its exeution and, therefore, the more slak is needed.2 Problem De�nitionThe problem addressed here is the job shop sheduling problem with release anddue dates, mahine breakdowns, and the optimization riteria of minimizationof the sum of job tardiness.Eah job is omposed of a set of totally ordered ativities. Eah job, j, hasa release date, rd(j), and a due date, dd(j). The former is the earliest timean ativity in the job an exeute and the latter is the latest time that thelast ativity in the job should �nish exeution. Eah ativity requires a singleresoure (also referred to as a mahine) and has a prede�ned duration duringwhih it must be the only ativity exeuting on its required resoure. One anativity has begun exeution it annot be pre-empted by another ativity.The goal is to sequene the ativities on eah resoure suh that the orderwithin eah job is respeted and that the sum of the job tardiness is minimized.More formally, given C(j), the ompletion time for the last ativity in job j, weseek to minimize Pmax(0; C(j)� dd(j)) over all jobs in a problem.To represent unertainty, some mahines are subjet to breakdowns. Duringa breakdown, a mahine annot proess any ativities and any ativity whih wasexeuting on the mahine at the time of breakdown is stopped and then resumedfrom the point where it was stopped after the mahine has been repaired. Sta-tistial harateristis of mahine breakdowns are known.1 We assume normaldistributions parameterized by:{ �tbf (R): the mean time between failure of resoure R{ �tbf (R): the standard deviation in time between failure on R{ �dt(R): the mean down time (or duration of breakdown) on R{ �dt(R): the standard deviation in down time on R1 In a prodution sheduling domain, suh harateristis may be supplied by themanufaturer and/or may be based on shop oor operational history.
182

3 Temporal ProtetionTemporal protetion [Gao95℄ is a preproessing tehnique whih extends theduration of eah ativity based on the unertainty statistis of the resoure onwhih it exeutes.2Resoures that have a non-zero probability of breakdown are designated asbreakable resoures. The durations of ativities requiring breakable resouresis extended to provide extra time with whih to ope with a breakdown. Thesheduling problem with proteted durations is then solved with standard shedul-ing tehniques.The intuition behind the extension of durations is that during shedule ex-eution, the proteted durations provide slak time whih an be used in theevent of mahine breakdown. For instane, in Figure 1, ativities A and B aresequened to exeute onseutively on a breakable resoure. The length of thewhite box represents the original duration of the ativities while the shaded boxrepresents the extension due to temporal protetion. If the mahine breaks downwhile ativity A is exeuting, the extra time within the proteted duration anbe used to absorb the breakdown. If the breakdown lasts no longer than theavailable protetion, its e�et will not be felt in the rest of the shedule. If thebreakdown lasts longer, some reative approah must be taken to restore onsis-teny to the shedule. If no breakdown ours during the exeution of ativity A,then ativity B an start earlier: the slak provided by the temporal protetionfor A is available for use by ativity B.
Activity A Activity B

timeFig. 1. Example of a temporally proteted shedule, with white boxes representing theoriginal duration and grey boxes representing the extended durations.A key issue is the amount of temporal protetion added to eah ativity.Too muh protetion will result in a poor quality but highly robust shedule.Too little protetion will also result in a poor quality shedule exeution if abreakdown ours. The approah taken by Gao extends the duration so as toamortize the breakdown over a number of ativities.More formally, given an ativity, A, that requires a breakable resoure, R,temporal protetion de�nes a proteted duration for A, durA;tp, where tp denotestemporal protetion, as follows:2 We present a simpli�ed desription of temporal protetion in the ase that eah ativ-ity requires only one resoure. For a formulation for multiple resoure requirementssee [Gao95℄.
183

durA;tp = durA + durA�tbf (R) � �dt(R) (2)The equation spei�es that the proteted duration of an ativity A is itsoriginal duration plus the duration of breakdowns that are expeted to ourduring the exeution of A.4 Time Window SlakBy extending ativity durations in a preproessing step, temporal protetiontransforms the original problem to a new problem that an be solved with anysheduling tehnique. We onjeture, however, that the preproessing has a dis-advantage in that during sheduling the amount of slak added to eah ativityannot be diretly reasoned about. This an lead to situations where it is impos-sible to share slak between ativities even when no resoure breakdowns haveourred. Indeed, the laim that ativity B in Figure 1 an start exeution earlyif there is no breakdown during or before ativity A is an over-simpli�ation.For example, in Figure 2 we introdue a third ativity, C, whih exeutes on anon-breakable resoure and so has no temporal protetion. Ativity B must ex-eute after ativity C, and sine ativity C �nishes exeution later than ativityA, the earliest start time of B is the end time of C. The temporal protetionrepresented by the extension of the duration of ativity A is not available foruse by ativity B as B annot start earlier than the end time of C.
Activity A Activity B

Activity C

timeFig. 2. A situation where the temporal protetion annot be shared between ativitiesA and B.To avoid suh situations, we propose the time window slak (TWS) approahwhih reasons diretly about the slak time available for an ativity during prob-lem solving. Rather than inluding this slak as part of the ativity duration,we expliitly reason about it by adding a relation to the problem de�nition thatspei�es that shedules must have suÆient slak time for eah ativity.The advantage of this approah is that there is more information about ativ-ity slak during the problem solving. In a situation suh as the one in Figure 2,
184

we are able to detet that the slak of ativity A annot be shared with ativityB. If there is still suÆient slak in the shedule after ativity B, we still may beable to generate a valid shedule. If not, we must baktrak and ontinue searh.The amount of slak for eah ativity is still ritial for the generation ofa robust shedule. Using atsR to denote the set of all ativities exeuting onresoure R, the required slak for ativity A 2 atsR is:slakA � PB2atsR durB�tbf (R) � �dt(R) (3)The required slak for an ativity under TWS is onsiderably larger than theduration extension in temporal protetion. Indeed, the amount of slak on eahativity is equal to the sum of the durations of all the expeted breakdowns onR. This di�erene is beause we expet the slak on all ativities on a resoureto be shared. If the slak is ompletely shared then the total slak on a break-able resoure is approximately equal (given integer rounding) to the sum of thedurations extensions in temporal protetion.The relation in inequality 3 is somewhat problemati for standard shedulingapproahes: no solution whih assigns start times to ativities an satisfy it unlessthe left-hand side evaluates to 0. The very at of assigning a start time foresthe slak (as de�ned in equation 1) to be 0. Therefore, rather than being ableto use arbitrary sheduling tehniques, we must use sheduling tehniques thatreason about the order of ativities on resoures. Fortunately, suh tehniquesare not unommon (e.g., [SC93,BF00℄).5 Foused Time Window SlakNeither temporal protetion nor TWS take into aount the plaement of ativi-ties on the sheduling horizon. For example, onsider sheduling a newly repairedmahine whose �tbf (R) is 1000 days and whose �tbf (R) is 50 days. Given thenegligible probability of a breakdown before day 800, it does not seem worth-while to fous on making the shedule more robust before this time. Fousedtime window slak (FTWS) uses the unertainty statistis to fous the slak onareas of the horizon that are more likely to need it to deal with a breakdown.The probability distribution, P (N(�tbf (R); �tbf (R)) � t), allows us to om-pute the probability that a breakdown event will our at or before time t. Anapproximation of this urve an be eÆiently omputed using standard statisti-al tehniques. This urve is used to determine the amount of slak an ativityshould have given the basi intuition that the higher the probability of a break-down ourring before the exeution an ativity, the greater the amount of slak.The slak for an ativity is omputed as a funtion of the probability that abreakdown will our before or during the exeution of the ativity and of theexpeted breakdown duration. If the �tbf (R) for a mahine is muh less than thesheduling horizon, the possibility of multiple breakdowns must be onsidered.We do this by onsidering the ases for eah breakdown, nb, separately. First,we assume that at time 0 the mahine has just been maintained. For eah value
185

of nb = 1::M , where M is a large number, we ompute the expeted time thatthe nb-th breakdown will our as:�(nb) = (nb� �tbf (R)) + ((nb� 1)� �dt(R)) (4)We alulate the standard deviation of the time for nb breakdowns as:�(nb) = ((nb� �2tbf (R)) + ((nb� 1)� �2dt(R))) 12 (5)These alulations onstitute an abuse of the entral limit theorem: the ran-dom variables representing the breakdown events are not independent. This al-ulation is an approximation and future work will examine a more sophistiatedstatistial analysis.We use the statistis for nb breakdowns to alulate the P (N(�(nb); �(nb)) �t) urve estimating the probability that nb breakdowns will our before a par-tiular time t. The amount of slak time required for an ativity exeuting at apartiular time point t on resoure R is:slakA(t; R) � MXnb=1P (N(�(nb); �(nb)) � t)� �dt(R) (6)As with TWS, we add relation 6 to the problem model as a pruning rule.6 Experimental EvaluationTo evaluate the three robustness tehniques we run a simulation-based experi-ment. Eah problem is solved to optimality: an ordering of the ativities on eahresoure is found that minimizes the sum of the tardiness of the jobs. A simula-tion of the \exeution" of eah shedule under unertainty is then performed.The problem sets used in our experiments were onstruted as follows. Ten6�6 job shop problems with unorrelated durations were onstruted using a jobshop problem generator [WBHW99℄. For eah problem, TLB, the lower boundon the makespan due to Taillard [Tai93℄, was alulated. The release dates foreah job were assigned by randomly hoosing a time (with uniform probability)from the interval [0; TLB8 ℄. Standard temporal propagation was then performedto provide a lower-bound, ddlb(j), on the due date of eah job. For eah originalproblem, six problems were then generated by setting the atual due date ofeah job to dd(j) = ddlb(j) � L, where L represents the \looseness" of the duedates and ranges from 1.0 to 1.5 in steps of 0.1.For eah of these 60 problems, we then introdued nine levels of unertaintybased on two unertainty fators : Umahine, the number of mahines prone tofailure and Ustat, the magnitude of the unertainty statistis. Eah of the uner-tainty fators have three levels f1, 2, 3g and the overall level of unertainty is,U = 3�(Umahine�1)+Ustat. This enoding produes nine levels of unertaintydivided into three groups. Levels 1-3 have one breakable mahine, levels 4-6 havetwo breakable mahines, and levels 7-9 have 3 breakable mahines. Within eah
186

group the likelihood of breakdown on eah breakable mahine inreases as thelevel inreases.The statistial values for eah level of Ustat are derived as follows for a break-able resoure, R. Given the set of ativities, atsR, requiring resoure R, a lower-bound, lb(R) on the latest end time of the ativities is alulated:lb(R) = max(minA2atsR(estA) + XA2atsR durA; maxA2atsR(lftA)) (7)Using lb(R), we de�ne, �tbf (R;Ustat), the mean time between failure forresoure R, and �tbf (R), the standard deviation time between failure, as follows:�tbf (R;Ustat) = lb(R)2Ustat�1 ; �tbf (R) = lb(R)8 (8)The standard deviation of the down time �dt(R) is simply the mean durationof the ativities in atsR while the mean down time, �dt(R) is twie that value.As we began with 10 problems, 6 values for L, the due date looseness fator,and have a total of 9 ombinations of the unertainty fators, we have a total of540 test problems.6.1 Evaluation CriteriaThe evaluation of the shedules under unertainty is done using a simulator.Our optimization funtion, therefore, has two forms: simulated and predited.Given problem instane, p, we use TARD(p; �) to denote the minimal sum ofthe tardiness over all jobs in a preditive shedule. Similarly, we use TARD(p; s)to denote the tardiness of problem instane p in simulation s.Given a set of simulations, S, and a set of problems, P , the primary basis ofomparison of our robustness tehniques is the mean simulated tardiness:MST (P; S) = Ps2S;q2Q TARD(p; s)jSj � jQj (9)Our seondary evaluation riteria is the mean absolute di�erene betweenthe predited tardiness and the simulated tardiness.MATD(P; S) = Ps2S;q2Q jTARD(p; s)� TARD(p; �)jjSj � jQj (10)6.2 ResultsFor eah test problem and for eah robustness tehnique (inluding the no pro-tetion where the unertainty statistis were ignored), eah sheduling problemwas solved to optimality using ILOG OPL Studio 3.1, ILOG Sheduler 4.4, andILOG Solver 4.4. Solving a single problem to optimality took approximately 10seonds, regardless of robustness tehnique, on a Pentium II, 300 MHz PC.
187

A simulator, written in ILOG OPL Studio 3.1, simulated the exeution ofeah shedule, introduing breakdowns based on the spei�ed unertainty distri-butions. When a breakdown ourred, the duration of the exeuting ativity wasextended by the duration of the breakdown. In the temporal protetion ondi-tion, the proteted durations were replaed with the original durations and theativities were left-shifted (subjet to their release dates) before the simulation.Figure 3 presents the graph of, MST (P; S), the mean simulated tardinessfor 100 simulations of eah problem under eah robustness tehnique and eahombination of unertainty fators. Exept for the highest level of unertainty,temporal protetion results in a higher mean tardiness than is observed even ifthe unertainty information is ignored. This is onsistent with previous exper-iments with temporal protetion [Gao95℄. In ontrast, both TWS and FTWSahieve a lower mean tardiness than no protetion aross all unertainty levelswith FTWS ahieving slightly lower mean tardiness than TWS.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

M
ea

n
S

im
ul

at
ed

 T
ar

di
ne

ss

Uncertainty Level

temporal protection
no protection

ftws
tws

Fig. 3. The mean simulated tardiness for eah unertainty levelFigure 4 presents, MATD(P; S) the mean di�erene in the absolute valuebetween the simulated tardiness and the predited tardiness for eah robustnesstehnique. Here we observe that for low levels of unertainty, the preditions ofthe TWS, FTWS, and no protetion tehniques are quite similar. In ontrast,the temporal protetion results vary widely: the mean absolute di�erene is fourtimes greater than that of the other tehniques at unertainty level 3. As thelevel of unertainty inreases however, we see the mean absolute di�erene for noprotetion inreasing quikly while TWS and FTWS results inrease more slowly.Interestingly, the relative results of temporal protetion improve signi�antlywith inreased unertainty, ahieving the lowest mean absolute di�erene of alltehniques at unertainty levels 7 through 9.
188

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

M
ea

n
A

bs
ol

ut
e

D
iff

er
en

ce
 in

 S
im

ul
at

ed
 a

nd
 P

re
di

ct
ed

 T
ar

di
ne

ss

Uncertainty Level

temporal protection
no protection

ftws
tws

Fig. 4. The mean absolute di�erene between simulated and predited tardiness foreah unertainty level7 DisussionThere are two goals for robustness tehniques in sheduling. The �rst is thatthough in building robust shedules, the overall shedule quality may be di-minished, the auray of the preditive shedules is inreased. The ability tobetter predit the atual ompletion time of a job, even if this ompletion timeis tardy is valuable in real world sheduling. The seond goal is that by takingunertainty into aount, the preditive shedule will not only provide more a-urate performane information but will atually result in better overall sheduleperformane. This better performane omes from the fat that the preditiveshedule an atually be onstruted using the unertainty information.In omparing the robustness tehniques with ignoring unertainty informa-tion, we see that all tehniques ahieve the �rst goal with the exeption of tem-poral protetion at low levels of unertainty. At unertainly levels above level3, the absolute di�erene between the simulated and prediated tardiness (Fig-ure 4) is approximately two times smaller when the unertainty is taken intoaount. These di�erenes are not apparent at lower levels of unertainty and,indeed, temporal protetion performs very badly at level 3.TWS and FTWS also ahieve the seond goal: Figure 3 shows that the sim-ulated tardiness for the TWS and FTWS solutions is less than that for thesolutions with no protetion. Exept for high level of unertainty, temporal pro-tetion does not result in better overall shedules.Looking more deeply at the experimental results, we see two interesting phe-nomenon. First, when only one mahine is breakable (i.e., levels 1-3) the no pro-tetion ondition performs almost as well (and in some ases better) than TWSand FTWS on both mean simulated tardiness and mean absolute di�erene mea-sures. This is not terribly surprising as, at low levels of tardiness, breakdowns
189

are less disruptive: unless the breakdown ours during an ativity that is on aritial path3 some of the breakdown will be absorbed by the naturally ourringslak. Furthermore, with low levels of unertainty, the level of slak required inthe TWS and FTWS onditions is small. The ativity sequenes in the optimalsolutions in the no protetion ondition will therefore be quite similar to thoseof TWS and FTWS. Similar sequenes will lead to similar simulated tardinessresults.The seond phenomenon is that while temporal protetion performs verypoorly in terms of absolute di�erene with one breakable mahine, when threemahines are breakable it has a lower mean absolute di�erene than TWS andFTWS. The poor behavior, espeially at level 3, arises from the fat that extend-ing the durations of the ativities on the breakable resoure leads to a shedulingproblem where the breakable resoure is essentially a bottlenek. The optimal-ity of a solution depends almost wholly on the sequene of ativities on thatresoure while the sequenes on the rest of the resoures are irrelevant. An op-timal solution, therefore, has an almost random sequening of ativities on thenon-breakable resoures. When the duration extensions are removed in the sim-ulation, the sub-optimal sequenes on the non-breakable resoures leads to hightardiness. In ontrast, with multiple breakable mahines, optimality depends onmore than one resoure, leading to a better sequene of ativities over more ofthe resoures. The TWS and FTWS methods do not lead to a single bottlenekresoure when there is only one breakable mahine. This is beause the slakthat is added to the ativities on the breakable resoure a�ets upstream anddownstream ativities as well. Sine by onstrution all jobs have one ativityon the breakable resoure, all ativities in the problem are onstrained to havesome level of slak. Even though there is only one breakable resoure, all re-soures are required to have an equal amount of slak and therefore there is nobottlenek resoure that ompletely de�nes optimality. During problem solving,the ativity sequenes on the non-breakable resoures are just as important asthose on the breakable resoure in terms of optimality. The fat that the slakis \propagated" to ativities that are not on a breakable resoure is, in retro-spet, obvious. Based on our results, however, it may have a signi�ant impaton the performane of robustness tehniques. An interesting question arises asto the relative ontribution of reasoning about slak during problem solving andof \slak propagation" toward dealing with unertainty.We do not as yet have an explanation of the good performane of temporalprotetion with high levels of unertainty.7.1 Relation to Previous WorkSlak-based tehniques involve the addition of extra time in order to reover fromunexpeted events. Similar approahes, alled temporal redundany, are ommonin real-time fault tolerant sheduling [GMM95℄. Suh sheduling problems di�erfrom those typially investigated in the AI ommunity both in the sope (i.e.,3 See [Kre00℄ for a de�nition of ritial path on tardiness minimization problems.
190

often only one mahine) and in the de�nition of a solution (e.g., a guaranteethat the system is shedulable). Nonetheless, real-time fault tolerant shedulingresearh represents an important soure of ideas for further investigations.Overall, there has been little work in the researh literature that spei�allyaddresses unertainty in the ontext of the types of sheduling problems thatare typially of interest in AI (e.g., problems with multiple resoures and ativ-ities). A variety of tehniques, inluding resoure redundany [GMM95℄, proba-bilisti reasoning [BPLW97,DC97℄, and a variety of o�-line/on-line approahes[Ber93,GB97,Hil94,MHK+98℄ have been investigated, usually in the ontext ofsimpler sheduling problems. There does not yet appear to be a broader under-standing of either the role that unertainty plays in real sheduling problems ora omparison of di�erent approahes.8 ConlusionIn this paper, we examined three tehniques for taking into aount uner-tainty in sheduling by adding slak to the sheduling problem. Our experi-ments demonstrate that an existing tehnique, temporal protetion, results in aredued overall shedule performane but more aurate shedules than not tak-ing unertainty information into aount. The sole exeption is at low levels ofunertainty, when temporal protetion produes shedules that are signi�antlyless aurate than no protetion.Two novel tehniques, time window slak and foused time window slak,were developed to aount for the fat that temporal protetion reasons aboutunertainty as a preproessing step, before atual sheduling. Time window slakand foused time window slak both inorporate reasoning about unertaintyinto the problem solving as well as resulting in a propagation of slak timefrom ativities on breakable resoures to temporally onneted ativities. Ourexperiments indiate that both the novel tehniques are able to produe better,more aurate shedules than either temporal protetion or no protetion.We view the work reported in this paper as preliminary. As noted above, thereare a number of approahes to unertainty that have been tried in various typesof sheduling problems, however there is not, as yet, any broader understandingof unertainty as it applies to sheduling problems typially investigated in theAI literature. This paper demonstrates that for a simple, but interesting, lassof sheduling problems, slak-based tehniques an provide higher quality, moreaurate shedules.9 AknowledgmentsPortions of this researh were funded by the Materials and Manufaturing Coun-il of Ontario. Part of this researh was performed while the �rst author was avisiting researher at SINTEF Applied Mathematis. We would like to thankGeir Hasle, Dag Kjenstad and Martin Stolevik for useful disussions.
191

Referenes[Ber93℄ P. M. Berry. Unertainty in sheduling: Probability, problem redution,abstrations, and the user. In IEE Colloquium on Adaned Software Teh-nologies for Sheduling, 1993. Digest No: 193/163.[BF00℄ J. C. Bek and M. S. Fox. Dynami problem struture analysis as a basis foronstraint-direted sheduling heuristis. Arti�ial Intelligene, 117(1):31{81, 2000.[BPLW97℄ A Burns, S. Punnekkat, B. Littlewood, and D.W. Wright. Probabilistiguarantees for fault-tolerant real-time systems. Tehnial Report DeVaTR No. 44, Design for Validation, Esprit Long Term Researh Projet No.20072, 1997. Available at http://www.ful.researh.e.org/deva.[DC97℄ R.L. Daniels and J.E. Carrillo. �-robust sheduling for single-mahinesystems with unertain proessing times. IIE Transations, 29:977{985,1997.[Gao95℄ H. Gao. Building robust shedules using temporal protetion{an empir-ial study of onstraint based sheduling under mahine failure uner-tainty. Master's thesis, Department of Industrial Engineering, Universityof Toronto, 1995.[GB97℄ R.P. Goldman and M.S. Boddy. A onstraint-based sheduler for bathmanufaturing. IEEE Expert, 12(1):49{56, 1997.[GMM95℄ S. Ghosh, R. Melhem, and D. Moss�e. Enhaning real-time shedules totolerate transient faults. In Real-Time Systems Symposium, 1995.[Hil94℄ D. W. Hildum. Flexibility in a knowledge-based system for solving dy-nami resoure-onstrained sheduling problems. PhD thesis, Departmentof Computer Siene, University of Massahusetts, Amherst, MA. 01003-4610, 1994. UMass CMPSCI TR 94-77.[Kre00℄ S. Kreipl. A large step random walk for minimizing total weighted tardinessin a job shop. Journal of Sheduling, 3(3), 2000.[LP91℄ C. Le Pape. Constraint propagation in planning and sheduling. Tehni-al report, CIFE Tehnial Report, Robotis Laboratory, Department ofComputer Siene, Stanford University, 1991.[MHK+98℄ N. Meuleau, M. Hauskreht, K.E. Kim, L. Peshkin, L.P. Kaelbling,T. Dean, and C. Boutilier. Solving very large weakly oupled markovdeision proesses. In Proeedings of the Fifteenth National Conferene onArti�ial Intelligene (AAAI-98), 1998.[MSB88℄ K.N. MKay, F.R. Safayeni, and J.A. Buzaott. Job-shop sheduling the-ory: What is relevant? Interfaes, 18(4):84{90, 1988.[SC93℄ S. F. Smith and C. C. Cheng. Slak-based heuristis for onstraint satis-fation sheduling. In Proeedings of the Eleventh National Conferene onArti�ial Intelligene (AAAI-93), pages 139{144, 1993.[Tai93℄ E. Taillard. Benhmarks for basi sheduling problems. European Journalof Operational Researh, 64:278{285, 1993.[WBHW99℄ J.P. Watson, L. Barbulesu, A.E. Howe, and L.D. Whitley. Algorithmsperformane and problem struture for ow-shop sheduling. In Proeed-ings of the Sixteenth National Conferene on Arti�ial Intelligene (AAAI-99), pages 688{695, 1999.

192

Dynami Shedule Management: Lessons fromthe Air Campaign Planning Domain ?Brian Drabble and Najam-ul HaqComputational Intelligene Researh Laboratory,1269, University of Oregon,Eugene, OR 97403drabble,haqn�irl.uoregon.eduAbstrat. This paper desribes the Dynami Exeution Order Shedul-ing (deos) system that has been developed to handle highly dynamiand interative sheduling domains. Unlike typial sheduling problemswhih have a stati task list, deos is able to handle dynami task listsin whih tasks are added, deleted and modi�ed \on the y" Deos is alsoable to handle tasks with unertain and/or probabilisti outomes. Deosextends the urrent sheduling paradigm to allow tasking in dynami andunertain environments by viewing the planning and sheduling tasks asbeing integrated and evolving entities. deos has been suessfully ap-plied to the domains of Air Campaign Planning (ap) and Intelligene,Surveillane and Reonnaissane (isr) management. The paper providesan overview of the dynami task model and the \penalty box" shedulingalgorithm whih was developed to provide robust solutions to over on-strained sheduling problems. The basi algorithm is desribed togetherwith extensions to handle exible time onstraints.1 IntrodutionThis paper desribes the Dynami Exeution Order Sheduling deos systemthat has been developed to handle highly dynami and interative shedulingproblems. Unlike typial sheduling problems whih have a stati task list, deosis able to handle dynami task lists in whih tasks are added, deleted and mod-i�ed \on the y". In addition, the dynami tasking model used by the deossystem allows it to handle tasks with unertain and probabilisti outomes. Thisallows deos to takle a wider range of problems than possible with previousapproahes.? This researh is supported by darpa Contrat: DABT63-98-C-0069 \IntelligentWorkow for Colletion Management" and Contrat: F30602-97-1-0294 \Under-standing and Exploiting Hierarhy". The u.s.Government is authorized to reprodueand distribute reprints for Governmental purposes notwithstanding any opyrightannotation hereon. The views and onlusions ontained herein are those of the au-thors and should not be interpreted as neessarily representing oÆial poliies orendorsements, either express or implied, of darpa, Rome Laboratory or the u.s.Government.
193

Several systems [11, 6, 10℄ have attempted to solve problems in domains inwhih there are de�ned time bounds on ativities or where an ativity's outomefollows some preditable distribution. For example, in semi-ondutor manufa-turing a mahine may have a failure rate of between 0.1% and 0.5% dependingon the hip being manufatured. It may also be the ase that some steps needto be re-exeuted to deal with failures and reworking, e.g. most of the failedhips an be �xed if they pass through steps 112 through 118 again. Systemssuh as asper [3℄ and pef [9℄ have also attempted to address the planningand exeution problem. However, neither system has taken a resoure enteredoptimization approah and neither has attempted to oordinate planning fun-tions aross distributed platforms. While these tehniques have been suessfulin domains with limited amounts of unertainty they are totally unsuitable fordealing with domains suh as ap that ontain large amounts of unertainty(e.g., partially order ativities, ativities with unknown durations, unexpetedoutomes, new requirements) and probabilities (e.g., expeted airraft attritionrates, target damage, loations of enemy fores). The problem is further om-pliated by the distributed nature of the planning proess in whih di�erentaspets of the plan are generated and maintained by separate planning ells(e.g. logistis, airborne tankers,, maintenane). The problem beomes one of op-timally putting together many di�erent sheduling piees and monitoring theirdependenies and requirements over time.One of the key aspets of the ap proess is the sheduling of airraftand weapons to targets (i.e., how many airraft, of what type, arrying whihweapons are assigned to the target). This is a very omplex problem as it ontainslarge numbers of di�erent types of onstraints (e.g., time, user priority, weight ofe�ort 1, phasing 2, resoures). The assignment problems needs to address threemajor onerns:1. Identifying trade-o�s between di�erent airraft assignments. For example,a mission's suess an be inreased if it has �ghter esort but these same�ghter airraft ould be employed on other bombing missions. If the opti-mization riteria is to minimize the shedule's makespan and to maximizemission suess then the hoie of whether or not �ghter airraft are assignedbeomes an important trade-o�.2. Identifying the optimal set of targets whih an be attaked with the re-soures available. This requires the sheduler to identify a subset of the tar-gets that an be suessfully assigned and to ensure the reasons why targetsthat are unassigned are fed bak to the human planners. This allows for thedevelopment of more robust shedules (i.e., ones with a higher probability ofsueeding) than previously available to usaf planners. In many ases thehuman planners would sooner have a shedule that has a high probability ofdestroying 90% of the targets than one than one whih has a low probability1 the weight of e�ort spei�es the perentage of airraft whih an be assigned to apartiular target type, e.g. 40% of F-15s to sam targets.2 phasing spei�es the relative order target types should be attaked, e.g. all samsbefore bridges
194

of suess but attaks 100% of the targets. The problem is identifying whatperentage is possible and the targets in that sub-set. In addition, it is vi-tal to avoid situations where many missions must be aneled or replannedbeause of small anomalies, suh as a single target being missed.3. Identifying the optimal break point at whih the air ampaign should swithfrom one target type to another. By �nding the optimal break point it be-omes possible to assign resoures to attak high priority targets in tempo-rally later target sets rather than using limited resoures trying to destroyall the targets in an earlier target set the last few of whih have relativelylow value. Again this allows for more robust shedules whih have a higherprobability that they will ahieve their overall aims.The key to deoss ability to suessfully solve problems in this domain is thatit an generate shedules very quikly and be adaptable to hanges in the taskand the situation. There is no point in deos generating shedules for the next12 hours when the shedule needs to hange on a minute by minute basis. Theore algorithm of the deos system is the \Squeakywheel" optimization (swo)tehnique developed by Joslin and Clements [7℄. The basi swo algorithm hasbeen modi�ed to handle several new onstraint types and these inlude prob-ability distributions, probabilisti funtions, temporal windows, resoure limitsand a limited set of preedene onstraints. In addition a more expressive taskdesription language [2, 1℄ has been integrated to allow the sheduler to bettermodel the atual dynamis and ativities in the domain. The algorithm has alsobeen modi�ed to allow it to identify optimal sub-sets of tasks from the task listand this tehnique is referred to as Penalty Box sheduling. These modi�ationare generi and ould be easily applied to problems in manufaturing, assembly,integration and test. Details of the task model and algorithm modi�ations areprovided later in the paper.Previous work [8℄ has addressed aspets of this problem but this approahdi�ers in several important ways. The overall deos approah is to identify opti-mal resoure assignments and where insuÆient resoures are available the bestsub-set. The previous work [8℄ took an mdp approah to try and identify thebest poliy for a given target. This resulted in a solution in whih the targetmay need to be attaked for several days onseutively and disussions for usafpilots have shown that suh a mission plan is usually a suiide one.3 The deosapproah is able to handle problems far larger and generate solutions in a fewseonds as opposed to tens of minutes. In addition, the deos approah is able tohandle a riher set of onstraint types and optimization riteria (e.g., minimizemakespan, maximize probability of damage and minimize attrition). Finally, thedeos approah is able to handle the dynami aspets of the problem (e.g. missedtargets, pop-up targets) whih the previous work annot. This allows deos todevelop shedules whih are robust against ertain types of hange and minimizethe knok on e�ets of hanging missions on the y. Current usaf planning sys-tems use lp/ip solvers to generate mission shedules. The ore swo algorithm3 The enemy begin to expet the raids and hene the attrition rate beomes very high!!
195

has been ompared with lp/ip solvers on several manufaturing problems andwas found to out perform them in terms of the speed of solution and the qualityof the solutions generated [4℄.The paper is strutured as follows, Firstly, it provides an overview of theap domain and the data used by the deos system. Seondly, it provides anoverview of the task model and thirdly, it desribes the basi sheduling algo-rithm and two extensions whih allow it to identify optimal sub-sets. Fourthly,it provides details of the shedules generated and their evaluation by membersof the usaf. Finally, it provides a summary of urrent progress and desribesseveral additional tehniques and ideas whih will be explored.1.1 Overview of the Target Sheduling ProessThe weapon/airraft pairing problem is a ompliated one due to the many di�er-ent trade-o�s whih are possible and the ability of the airraft to be on�gured tosuit di�erent missions and di�erent weapons loads. The atual weapon/airraftpairing is based on a set of probabilities whih take into aount, probability ofhitting the target, destroying the target4 and the expeted attrition rate of theairraft against the target type. In theory any weapon/airraft pairing ould besent against a target but it may have a very low hane of suess. As desribedearlier some airraft have a greater probability of suess if additional assets aresent with them. For example, the expeted airraft attrition rate an be reduedby sending sead airraft with the strike airraft. However, this would mean thatthe sead airraft ould not be used as strike airraft whih may result in theirbeing insuÆient resoures to attak a high value target later in the shedule. Inaddition to the onstraints on individual targets and airraft there are also fur-ther onstraints relating to time and resoure limits. The temporal onstraintsspeify a window during whih a target must be attaked, the window duringwhih targets of a partiular type an be attaked and the time delay betweentargets whih are \onneted" (e.g. the ooling towers of a power station mustbe attaked with 12 hours of the generator halls). The resoure onstraints spe-ify the available quantities of airraft and weapons (whih an vary over time)and perentages limits on the number of airraft whih an assigned to a giventarget type5 (e.g. 40% of missions against air defenses, 20% of missions againstommuniation sites). These onstraints are very problemati as the number ofmissions is not known in advane hene the sheduler needs to keep the perent-ages of di�erent mission types in balane. The targets themselves are groupedinto target sets (e.g. all bridges aross the Thames) and these are then groupedinto target systems (e.g. all railway enters in southern England). Unfortunately,the same target might be in two or more di�erent target sets and hene has ahigher \value" than the other targets in the same set. In addition, it may bethe ase that it is not neessary to attak all the targets in the set to ahieve4 some weapons may be able to hit a target but not destroy it, e.g. an anti-tank missilean hit a building but it very unlikely to destroy it5 This is referred to as the Weight of E�ort.
196

the overall aim. For example, if the aim is to stop the enemy fores rossing theriver it may be possible to ahieve this by destroying only 80% of the bridges.This makes target seletion a very important aspet of the sheduling proess.The sheduling proess aims to �nd an optimal assignment of airraft to tar-gets whih minimizes the probability of needing to restrike the target or auseollateral damage while also minimizing the risk to the assigned airraft.The problem is further ompliated by the fat that airraft an be reassignedto a di�erent mission on the y. For example, airraft ould be diverted to attaka pop-up target for whih they are an optimal math. Alternatively, the airraftmay be a good math but the weapons they are arrying are not. This means theairraft ould be diverted to a base and reon�gured if time permits. Changingmissions on the y has potential knok on e�ets with later missions beingpostponed or reassigned due to longer than expeted mission durations.1.2 Mission Planning Data ModelsThe target mathing problem is driven by a set of tables whih provide detailsof the di�erent airraft, weapons, targets, support assets, et. The primary in-formation soure is the target table and a setion is provided in Table 1. Thistable show the type of mission, air superiority (as) the hardness of the targetand the risk assoiated with attaking the target 6. Assoiated with eah tar-get type is a reward whih de�nes the importane of the target to the humanplanners. Table 2 shows a setion of the rewards table (these values were alu-lated through disussions with human planners and through the analysis of theshedules generated by deos).Obj Task Lat Long Hardness Risk TargetAS 1 180804N 233902W Hard High air�eldAS 3 172708N 223930W Soft Medium radar-omms... Table 1. ACP Target TableThe mission type from Table 1 identi�es the lass of airraft whih ould besent against the target. Table 3 shows the mapping of airraft to mission typeand shows that the same airraft an be used in for many di�erent missions.One of the optimization riteria for this problem is minimize risk and deostries to identify airraft whih have a low risk against a seleted type of target.The expeted risk to an airraft is alulated by summing the total probabilitythat the airraft will be shot down either to or from the target7 One key deision6 Not shown is the time window during whih the target needs to be attaked, e.g.D+5, D+10, et7 sam batteries have a threat radius whih has a known probability of detetion basedon the distane the airraft is from the enter of the radius.
197

Mission Rewardmil ativity 45SAM site 90SSM site 100C3 35ommand HQ 60...Table 2. Target Reward Tabledeos needs to make is to whether or not to use sead protetion to redue therisk to the attaking airraft. As pointed out earlier this may have the side e�etof making another strike mission late.One a potential airraft has been seleted it must be heked to ensure thatit an arry appropriate weapon load for the target. The probability of destru-tion is noted in terms of a single weapon and the urrent usaf dotrine is thatthe plane arries enough weapons to give a 90% or better hane of destroyingthe target. There is no guarantee that a spei�ed weapon load will destroy thetarget as they ould all miss. Additional tables provides details of the probabilityof weapon hitting the target, provide data on air to air refueling times, airraftspeed and range, turn round times, et. Full details of the airraft/weapon pair-ing algorithm are given later in the paper.Mission AirraftCounter Air F15E, F117, F16C, F16CLN, F14A, F14B, F14D, FA18A, FA18C,FA18D, AV8B, B52H, B1BSEAD F16CJ, EA6B, FA18CDef Counter Air F14A, F14B, F14D, F16CInterdition F15E, F117, F16C, F16CLN, B52H, B1B, F14A, F14B, F14D, FA18A,FA18C, FA18D, AV8BClose Air Support A10, AV8B, F16C, F15E, FA18A, FA18C, FA18DStrategi Attak F117, B52H, B1BTable 3. Airraft and Mission Mapping TableEah mission is modeled using the prfer mission task model [5℄ that de�nesa natural breakdown of a mission into its onstituent parts or sub-bloks.{ Plan: Time taken for the pilot to plan the mission. One a plan has beenidenti�ed it is inserted in the slot for other workow tasks to examine andhek.{ Ready: Time taken to prepare the plane for the mission
198

{ Fly: Time taken to get to the mission objetive 8{ Exeute: Time taken to exeute the mission, e.g. drop weapons, unload foodpallets, et.{ Reonstitute: Time taken to turn the airraft round one it has returned tobase.The prfer model allows a tasking agent to reate a better model of theproessing the task needs and to better understand how to alloate resoures,identify tradeo�s, asses hanges and modify the assoiated task list. The sub-bloks are allowed to \breath" as hanges in the domain are reeted as hangesin one or more of the sub-bloks. For example, if the airraft hosen for themission develops a failure during its ready time then the \Ready" sub-task willexpand and aommodate the extra time. The prfer model allows deos toquikly identify the impat of hanges, propose potential hanges to the missiontasking and inform the planners of new deadlines and onstraints (e.g. the planesnow on hold need refueling in the next 30 minutes).2 Resoure Alloation AlgorithmThe basi onept behind deos is to generate shedules quikly and to updatethem on the y as new requirements and hanges our in the domain. Theore swo algorithm uses a priority queue to determine the order in whih tasksshould be released to a greedy sheduling algorithm. This identi�es the bestairraft/weapon for a given task from those available. Tasks later in the priorityqueue have a smaller hoie of resoures due to earlier ommitments. The orderof the priority queue is determined by how diÆult the task is to deal with thatis, the higher the task is in the queue the harder it is to handle it orretly. It doesnot require an external priority to be identi�ed by the user. One a shedule hasbeen generated it is analyzed to identify whih tasks were handled badly (e.g.,a task was ompleted after its deadline, or assigned to a high attrition airraft).Any task that \squeaks" (i.e., was handled badly) is given a \blame sore" andis promoted in the priority queue, with the distane it is promoted determinedby the extent of the problem. This new priority queue is then used to generateanother shedule that is analyzed for problems. This proess ontinues until nosigni�ant improvement in the shedule is noted over several iterations. swo isextremely fast with eah yle of generate, analyze, and re-prioritize taking onlya few seonds, even for large problems.One of the key issues in this domain was to generate shedules whih balaneda number of potentially oniting fators. For example, the planners wanted all2500 targets attaked in the shortest time, with minimum attrition and minimumrisk of ollateral damage. However, to guarantee that eah target was attakedwith minimum risk would require all missions to be own by F-117s and thatwould result in very long shedules. A sample shedule was generated whih used8 This an be replaed by a \drive" or \sail" blok for operations using land or seatransport
199

only the best target/airraft pairing and it had a makespan in exess of six days.Using the deos approah the shedule was redued in length to just under twodays with a less than 1% redution in overall shedule quality.To address these potential onits a series of funtions were developed whihinvestigated the di�erent aspets of the problem, e.g. airraft attrition, probabil-ities of hitting and destroying the target, numbers of weapons needed, numberof airraft needed, support assets, number of sorties, et. It was identi�ed thatthe key elements of evaluation were the probability that the target would beattaked suessfully and that the attaking airraft would have a low attritionrate. This allowed two main funtions to be identi�ed 9. Funtion 1 desribes theprobability that a target will be destroyed given a spei�ed number of weaponsW and the probabilities of hit and kill (Ph Pk) respetively for a single weapon.Funtion 2 desribes the expeted attrition rate for n airraft when attakingwith N total airraft.Funtion 1: Pkill(W;Ph; Pk) =PWh wXn=1�wh��1� PhPh �w�n �1� (1� Pk)N�Funtion 2: Pattrition(N;n; Pa) = �Nn� (1� PA)N�n PnAThe deos uses these formulas to evaluate di�erent ombinations of weaponsand airraft for a given target type, trying to identify the best possible math.However, it may be the ase that the required airraft/weapon pairing may beunavailable in the desired time interval (e.g., between 0900 hrs and 1100 hrs all F-16s may be assigned to other missions). deos may deide to use a seond option(i.e., a di�erent airraft and/or weapon) and will yle through the di�erentoptions until an assignment of airraft/weapons to the target an be made 10.In addition, deos may add in a sead sortie to o� set a high expeted attritionrate. After an assignment has been made it may be the ase that it is a poorone (e.g., high attrition rate, low probability of suess) and this is dealt with inthe next yle of algorithm when the generated shedule is analyzed and poorassignments identi�ed.During the development of the algorithm it was identi�ed that in many asesthe number of targets greatly exeeded the available resoures. In addition, it wasalso identi�ed that some of the time onstraints provided by the human shed-ulers were leading to less than optimal shedules. Details of the modi�ations tothe basi algorithm are provided in the following setions.9 Other support funtions were developed but are not disussed in this paper10 By default the targeting database provided 5 options but the 4th and 5th usuallyhad a low probability of suess
200

2.1 Penalty Box ShedulingThe aim of penalty box sheduling is to identify a sub-set of tasks whih an beresoured e�etively and avoid the problem of generating low quality sheduleswhih resoure all tasks. For example, human planners may be happier striking90% of the targets with high probability of suess rather than 100% of thetargets with a muh lower probability of suess (i.e., the planners wanted robustsolutions whih has a higher probability of suess). The problem is �nding whatperentage an be assigned and whih tasks to selet. Penalty box shedulingextends the swo algorithm by viewing the inability to assign a task within itsspei�ed time window as a high priority problem (i.e., a large squeak). Insteadof plaing the task at a point later in the shedule the task is put in the penaltybox11 for a single yle of the algorithm. The penalty tasks are assigned a highblame value and their position in the priority queue altered. The blame value alsotakes into aount the potential reward for striking the target and the externalpriority assigned by the user to the target set. At the end of the shedulingproess12 those tasks in the penalty box are left unassigned. This extensionproved highly eÆient (i.e., there was a negligible slow down in the speed ofsolution) at identifying sub-sets of tasks and provided the human shedulers withmore robust solutions to the targeting problem. After sheduling was ompletethe human planners were able to provide feedbak on whih tasks left in thepenalty box needed to be resoured. They ould then ompare the resultingshedule with the optimal one and measure (i.e., number of missions, sorties,expeted attrition rate, et) the drop in the overall shedule quality.2.2 Temporal Phase TransitionMissions are spei�ed with time windows during whih the mission must be a-omplished. However, these assoiated time windows tend to be arbitrary andestimates by the human planners. Rather than use the time onstraints as in-variable, deos was allowed to relax them and attempt to identify the point atwhih to swith from one mission type to another. For example, attaking samsites should be ompleted �rst (for the next 6 hours) and then attaks againstpower stations for the next 6 hours. Their division may mean that fairly lowpriority sam missions an be handled whereas only the highest priority powerstation missions an be assigned. A better shedule may be to stop sam missionsafter 4 hours and give the additional 2 hours to the power station missions. Theseletion of suitable subsets needs to be weighted against the exibility built intothe shedule by alloating maximal windows. For example, more tasks might beresoured within a window at the expense of making the shedule more brittle.The temporal phase transition problem was investigated through two di�er-ent methods. The �rst method involves a variation of the penalty box sheduling11 This is a term onneted with sports where a player ommitting an o�ense is plaedin the penalty box for a spei�ed period.12 Deos keeps trak of the best shedule found so far and its assoiated penalty boxentries.
201

algorithm in whih pointers are maintained to the last task of the temporallyearlier set and to the earliest task of the later set respetively. It always thease that no sam an be plaed after any power mission. For example, if a sammission annot be sheduled before the earliest power mission then it is sent tothe penalty box for a yle. Alternatively, if a power mission an be sheduled af-ter all sam missions but before the urrent earliest power mission then it an beadded and the pointers updated. This relies on the ability of the ritiquing phaseof the swo algorithm to apportion blame appropriately to move the missions inthe penalty box the required distane in the priority queue. The seond methodinvolves rippling all the power missions to the right to �t in a new sam mission.Any power missions already in the shedule keeps their assignment (i.e. a F-16)but are moved later in time (i.e., they do not have to aept a lower qualityassignment). If the tasks annot be rippled right then the new task is assignedto the penalty box. This relies on the onstrution phase of swo algorithm be-ing able to reonstrut new partial assignments on the y. By having alreadyassigned power tasks keep their assignments (or be assigned one no worse (i.e.,swap the F-16 or a F-15) it keeps the problem tratable. The analysis of theshedule showed that on problem sizes up to 2000 tasks it was better to use theshu�e approah and for problems greater than 2000 the pointer approah wasmarginally better.3 ResultsFigure 1 shows the performane of deos on an example test set of 700 tar-gets and 150 airraft. The optimization riteria inluded low attrition rate, highprobability of suess and a minimal makespan. The best shedule identi�edompletes all 700 targets in 47 hours with an expeted loss rate of less than 1%.To date the deos results are the best for these problem and easily surpass thosedeveloped by urrent usaf mission planners. Figure 1 shows that the additionof penalty box sheduling and phase transition omponents does not e�et theoverall performane of the system. Deos very quikly settles in an appropri-ate region of the searh spae and spends many iterations trying to improve ona reasonably good shedule. deos is trying to identify trade-o�s between thedi�erent optimization riteria and Table 4 shows a typial example. Betweeniteration 2 and 3 the raw sore13 inreased by less than 1% but the analysissore14 inreased by nearly 25% due to the shedule being a lot shorter.The example above also shows that deos was able to �nd the best sub-setof targets from those spei�ed (e.g., 667 out of 700 were suessfully tasked).The deos shedules allow usaf planners to identify robust solutions and theinremental osts (e.g., additional planes, sorties, attrition) neessary to attakall targets. For eah target deos identi�es an appropriate number of airraft,weapon load and timing information. In some ases the assigned airraft/weapon13 This is the summation of the number of targets attaked, probability of suess,number of missions and sorties14 This is the raw sore divided by the makespan in minutes
202

Iteration Targets Assigned Raw Sore Analysis2 667 667075 157443 667 669873 20219Table 4. Target set vs Makespan Trade-o�

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

0 1000 2000 3000 4000 5000

Va
lue

IterationFig. 1. Air Mission Planning Resultsis a less than optimal math. It is often the ase that to obtain a good overallshedule some tasks need to be handled badly (i.e., they need to be sari�ed). Itis possible to handle the sari�ed tasks better but only at the expense of makingthe overall shedule worse. The presene of \sari�e tasks" usually indiates thatadditional resoures of a partiular lass are needed. The system was evaluatedby subjet matter experts (sme) from the usaf. The aim was to show that thesme's view of shedule quality and that of deos were orrelated. The smes weregiven pairs of shedules whose di�erene in quality narrowed gradually and wereasked to hoose the better shedule. In all ases the view of the sme and deoswas orrelated. After six iterations the smes were unable to make an informeddeision over whih shedule was better.4 Summary and Further WorkThis paper has presented a desription of the deos sheduling system, its shedul-ing algorithm and its appliation to the mission sheduling problem. deos allowsfor the expliit analysis of trade-o�s in resoure alloation, dynami update ofon going shedules, on the y task addition and for foussed impat analysisand repair. To date the system has been applied to large sale ap problems(i.e. 2500 targets and 200 airraft over a 5 day period) and was suessfullydemonstrated as part of the usafs E�ets Based Operations projet at the endof 2000. The tehniques are generalizable to other domains in whih there are
203

exible time onstraints and the \penalty box" tehniques are appliable toproblems where there is phasing between di�erent groups of tasks. For exam-ple, in manufaturing domains shedulers are often faed with the problem ofswithing prodution from one type to another to improve overall produtiv-ity. Several improvements will be made to deos and these inlude adversarialplanning in whih the shedule will propose robust solutions to potential enemyresponses. The interfae will be improved to allow easier interation and spei-�ation of poliies and preferenes. The results from the ap domain and othernon-probabilisti manufaturing domains show a distint grouping of shedulequality as shown in Figure 1. These groups represent lasses of solutions (ratherthan point solutions) that have partiular attributes and values. Deos will bemodi�ed to automatially identify these disontinuities in the solution spae andalert the planners.Referenes1. Berry, P.M. and Drabble, B: SWIM: An AI-based System for Workow EnabledReative Control, in the Proeedings of the Workshop on Workow and ProessManagement held as part of the International Joint Conferene on Arti�ial Intelli-gene (ijai-99), (eds, B, Drabble and M. Ibrahim), ijai In, August, 1999.2. Berry, P.M. and Drabble, B.,: The aim Proess Modeling Methodology, ai Center,sri International, Tehnial Report, 1789, Menlo Park, a, 1999.3. Chien, S., Knight, R., Stehert, A., Sherwood, R., and Rabideau, G.,: IntegratedPlanning and Exeution for Autonomous Spaeraft, in the proeedings of the ieeAerospae Conferene (ia), Aspen, o, Marh 1999.4. Clements, D., Crawford, L., Joslin, D., Nemhauser, G., Puttlitz M. and Savelsbergh,M.: Heuristi Optimization: A hybrid AI/OR approah, in the proeedings of theWorkshop on Industrial Constraint-Direted Sheduling, 1997. (Held in onjuntionwith CP'97, Shloss Hagenberg, Austria.).5. Drabble, B.: Task Deomposition Support to Reative Sheduling, in the proeed-ings of the 5th European Conferene on Planning (ep-99), Springer Verlag Press,New York, ny, usa, September, 1999.6. Fox, M.S.: ISIS: A Retrospetive, in Intelligent Sheduling, (Zweben. M. and Fox,M.S.), 1994. Publisher Morgan Kaufmann, Palo Alto, a, 94303, usa, pp3-28.7. Joslin, D.E. and Clements, D.P.: Squeakywheel Optimization, in the proeedings ofthe Fifteenth National Conferene on Arti�ial Intelligene, Madison, wi, aaai Press,Menlo Park, a, usa 1998.8. Meuleau, N., Hauskreht, M., Kim K., Peshkin. L., Pak Kaelbling. L., Dean. T.,and Boutilier., C.: Solving Very Large Weakly Coupled Markov Deision Proesses,in the Proeedings of the Fifteenth National Conferene on Arti�ial Intelligene,aaai Press/mit Press, MIT, Cambridge, ma 02142, usa, July, 1998, pp165-172.9. Myers, K.L..: A Continuous Planning and Exeution Framework, ai Magazine, Vol20(4), aaai Press, Menlo Park, a, 1999.10. Sadeh, N.: Miro-Opportunisti Sheduling: The Miro-Boss Fatory Sheduler, inIntelligent Sheduling, (Zweben. M. and Fox, M.S.), 1994. Publisher Morgan Kauf-mann, Palo Alto, California, 94303, usa, pp99-136.11. Smith, S.F.: OPIS: A Methodology and Arhiteture for Reative Sheduling, inIntelligent Sheduling, (Zweben. M. and Fox, M.S.), 1994. Publisher Morgan Kauf-mann, Palo Alto, a, 94303, usa, pp29-66.
204

Algorithms for Propagating Resoure Constraints inAI Planning and Sheduling: Existing Approahesand New ResultsPhilippe LaborieILOG S.A., 9, rue de Verdun, BP 85F-94253 Gentilly Cedex, Franeplaborie�ilog.frAbstrat. This paper summarizes the main existing approahes to the prop-agation of resoure onstraints in Constraint-Based sheduling and identi�essome of their limitations for using them in an integrated planning and shedul-ing framework. We then desribe two new algorithms to propagate resoureonstraints on disrete resoures and reservoirs. Unlike most of the lassialwork in sheduling, our algorithms fous on the preedene relations betweenativities rather than on their absolute position in time. They are eÆient evenwhen the set of ativities is not ompletely de�ned and when the time windowof ativities is large. These features explain why they are partiularly suitedfor integrated planning and sheduling approahes. All our algorithms are il-lustrated with examples. Some enouraging preliminary results are reported onpure sheduling problems.1 IntrodutionAs underlined in [18℄, some tools are still missing to solve problems that lie between pureAI planning and pure sheduling. Until now, the sheduling ommunity has foused onthe optimization of big sheduling problems involving a well-de�ned set of ativities andresoure onstraints. In ontrast, AI planning researh - due to the inherent omplexityof plan synthesis - has foused on the seletion of ativities leaving aside the issues ofoptimization and the handling of time and omplex resoures. From the point of view ofsheduling, mixed planning and sheduling problems have two original harateristis.First, as the set of ativities is not ompletely known beforehand it's better to avoidtaking strong sheduling ommitments during the searh (e.g. instantiating or stronglyreduing the time window of an ativity). Seondly, most of the partial plans handledby partial order planners (POP) or by hierarhial task network planners (HTN) makean extensive usage of preedene onstraints between ativities. And, surprisingly, un-til now the onjuntion of preedene and resoure onstraints has not been deeplyinvestigated, even in the sheduling �eld itself. Indeed, exept for the speial ase ofunary resoures (for example in job-shop sheduling), disjuntive formulations of u-mulative resoure onstraints are relatively new tehniques and until now, they weremainly used for searh ontrol and heuristis [5, 14℄. This paper proposes some newonstraint propagation algorithms that strongly exploit the onjuntion of preedeneand resoure onstraints and allow a natural implementation of least-ommitment plan-ning and sheduling approahes. The �rst setion of the paper desribes our shedulingmodel. The seond one summarizes the state-of-the-art sheduling propagation teh-niques and explains why most of them are not satisfatory for dealing with integrated
205

planning and sheduling. In the next setion, we desribe the basi struture whih thenew algorithms we propose rely on: preedene graphs. Then, we present two originaltehniques for propagating resoure onstraints: the energy preedene algorithm andthe balane algorithm. Finally, the last setion of the paper desribes how these propa-gation algorithms an be embedded in a least-ommitment searh proedure and givessome preliminary results on pure sheduling problems.2 Model and NotationsPartial shedule. A partial shedule orresponds to the urrent sheduling infor-mation available at a given node in the searh tree. In a mixed planning and shedulingproblem, it represents all the temporal and resoure information of a partial plan. Apartial shedule is omposed of ativities, and temporal onstraints and resoure on-straints. These onepts are detailed below.Ativities. An ativity A orresponds to a time interval [start(A); end(A)) wherestart(A) and end(A) are deision variables denoting the start and end time of ativityA. startmin(A), startmax(A), endmin(A) and endmax(A) will respetively denote theurrent earliest start time, latest start time, earliest end time and latest end timeof ativity A. The duration of ativity A is a variable dur(A) = end(A) � start(A).Depending on the problem, the duration may be known in advane or may be a deisionvariable. In a mixed planning and sheduling problem, a planning operator may beomposed of one or several ativities.Temporal onstraints. A temporal onstraint is a onstraint of the form: min �ti � tj � max where ti and tj are either some variable representing the start or endtime of an ativity or a onstant and min and max are two integer onstants. Notethat simple preedene between ativities as well as release dates and due dates arespeial ases of temporal onstraints.Resoures. The most general ase of resoures we onsider in this paper is the reser-voir resoure. A reservoir resoure is a multi-apaity resoure that an be onsumed,produed and/or just required over some time interval by the ativities in the shedule.A reservoir has an integer maximal apaity and may have an initial level. As an ex-ample of a reservoir, you an think of a fuel tank. A disrete resoure is a reservoirresoure that annot be produed. Disrete resoures are also often alled renewable orsharable resoures in the sheduling literature. A disrete resoure has a known max-imal apaity that may hange over time. A disrete resoure allows for example torepresent a pool of workers whose availability varies over time. A unary resoure isa disrete resoure with unit apaity. It imposes that all the ativities requiring thesame unary resoure are totally ordered. This is typially the ase of a mahine thatan only proess one job at a time. Unary resoures are the simplest and the moststudied resoures in sheduling as well as in AI planning.Resoure onstraints. A resoure onstraint de�nes how a given ativity Awill require and a�et the availability of a given resoure R. It onsists of a tuple< A;R; q; TE > where q is an integer deision variable desribing the quantity of re-soure R onsumed (if q < 0) or produed (if q > 0) by ativity A and TE is a timeextent that desribes the time interval where the availability of resoure R is a�etedby the exeution of ativity A. For example:
206

{ < A;R1;�1; F romStartToEnd > is a resoure onstraint that states that ativityA will require 1 unit of resoure R1 between its start time and its end time.{ < A;R2; q = [2; 3℄; AfterEnd > is a resoure onstraint that states that ativityA will produe 2 or 3 units of reservoir R2 at its end time. This will inrease theavailability of R2 after the end time of A.{ < A;R3;�4; AfterStart > is a resoure onstraint that states that ativity A willonsume 4 units of resoure R3 at its start time. This will derease the availabilityof R3 after the start time of A.Of ourse, the same ativity A may partiipate into several resoure onstraints. Notethat the hange of resoure availability at the start or end time of an ativity is on-sidered to be instantaneous: we do not handle ontinuous hanges.Close Status of a Resoure. At given node in the searh, we say that a resoure islosed if we know that no additional resoure onstraint on that resoure will be addedin the partial shedule when ontinuing in the searh tree. In strati�ed planning andsheduling approahes where the planning phase is separated from the sheduling one,all the resoures an be onsidered losed during sheduling as all the ativities andresoure onstraints have been generated during the planning phase. Note also thatin approahes that interleave planning and sheduling and implement a hierarhialsearh as in [11℄, it is also possible to identify as losed resoures during the searh theones belonging to already proessed abstration levels.3 Existing ApproahesFrom the point of view of Constraint Programming, a partial shedule is a set ofdeision variables (start, end, duration of ativities, required quantities of resoure)and a set of onstraints between these variables (temporal and resoure onstraints).A solution shedule is an instantiation of all the deision variables so that all theonstraints are satis�ed. In Constraint Programming, the main tehnique used to prunethe searh spae is onstraint propagation. It onsists in removing from the domainof possible values of a deision variable those values that we know for sure will violatesome onstraint. More generally, onstraint propagation allows �nding in the urrentproblem some features shared by all the solutions reahable from the urrent searhnode; these features may be some domain restrition or some additional onstraintsthat must be satis�ed. Currently, in onstraint-based sheduling there are two familiesof algorithms to propagate resoure onstraints: timetabling approahes and ativityinteration tehniques.3.1 TimetablingThe �rst propagation tehnique, known as timetabling, relies on the omputationfor every date t of the minimal resoure usage at this date by the urrent ativitiesin the shedule [7℄. This aggregated demand pro�le is maintained during the searhand it allows restriting the domains of the start and end times of ativities by re-moving those dates that would neessarily lead to an over-onsumption of the re-soure. For simpliity reason, we desribe this tehnique only on disrete resouresand assuming all the time extents are FromStartToEnd. Suppose that an ativityA requires q(A) 2 [qmin(A); qmax(A)℄ units of a given resoure R and is suh thatstartmax(A) < endmin(A), then we know for sure that A will at least exeute between
207

startmax(A) and endmin(A) and thus, it will require for sure qmin(A) units of resoureR on this time interval. For eah resoure R, a urve is maintained that aggregates allthese demands that is:CR(t) = Xf<A;R;q;TE>=startmax(A)�t<endmin(A)gqmin(A)It's lear that if there exists a date t suh that CR(t) is stritly greater than themaximal apaity of the resoure Q, the urrent shedule annot lead to a solutionand the searh must baktrak. Furthermore, if there exists an ativity B requiringq(B) units of resoure R and a date t0 suh that: endmin(B) � t0 < endmax(B)and 8t 2 [t0; endmax(B)); CR(t) + qmin(B) > Q then, ativity B annot end afterdate t0 as it would over-onsume the resoure. Indeed, you must remember that, asendmin(B) � t0, B is never taken into aount in the aggregation on the time interval[t0; endmax(B)). Thus, t0 is a new valid upper bound for end(B). A similar reasoningan be applied to �nd new lower bounds on the start time of ativities as well asnew upper bounds on the quantity of resoure required by ativities. Moreover, thisapproah an easily be extended to all types of time extent and to reservoirs. The mainadvantage of this tehnique is its relative simpliity and its low algorithmi omplexity.It is the main tehnique used so far for sheduling disrete resoures and reservoirs.Unfortunately, these algorithms propagate nothing until the time windows of ativitiesbeome so small that some dates t are neessarily overed by some ativity. It meansthat unless some strong ommitments are made early in the searh on the time windowsof ativities, these approahes are not able to eÆiently propagate. Furthermore, theseapproahes do not diretly exploit the existene of preedene onstraints betweenativities.3.2 Ativity InterationsThe seond family of algorithms is based on an analysis of ativity interations.Instead of onsidering what happens at a date t, it onsiders some subsets
 of ativitiesompeting for the same resoure and performs some propagation based on the positionof ativities in
. Some lassial ativity interation approahes are summarized below.Disjuntive Constraint. The simplest example of suh an algorithm is the disjun-tive onstraint on unary resoures [8℄. This algorithm analyzes eah pair of ativities(A;B) requiring the same unary resoure and, whenever the urrent time bounds of a-tivities are so that startmax(A) < endmin(B), it dedues that as ativity A neessarilystarts before the end of ativity B is must be ompletely exeuted before B and thus,end(A) � startmax(B) and start(B) � endmin(A). Atually, the lassial disjuntiveonstraint an be generalized as follows: whenever the temporal onstraints are so thatthe onstraint start(A) < end(B) must hold, it adds the additional onstraint thatend(A) � start(B). Note that this algorithm is the exat ounterpart in sheduling ofthe disjuntive onstraint to handle unsafe ausal links in POCL planners proposed in[13℄. Unfortunately, suh a simple onstraint only works in the restrited ase of unaryresoures.Edge-Finding. Edge-�nding tehniques [3, 16℄ are available for both unary and dis-rete resoures. On a unary resoure, edge-�nding tehniques detet situations where agiven ativity A annot be exeuted after any ativity in a set
 beause there wouldnot be enough time to exeute all the ativities in
 [A between the earliest start
208

time of ativities in
 [A and the latest end time of ativities in
 [A. When suh asituation is deteted, it means that A must be exeuted before all the ativities in
and it allows to ompute a new valid upper bound for the end time of A. More formally,let
 be a subset of ativities on a unary resoure, and A =2
 another ativity on thesame unary resoure. Most of the edge-�nding tehnique an be aptured by the rule(1)) (2) where: (1) endmax(
 [A)� startmin(
) < dur(
 [A)(2) end(A) � min
0�
 (endmax(
0)� dur(
0))Similar rules allow to detet and propagate the fat that a given ativity must endafter all ativities in
 (Last), annot start before all ativities in
 (Not First) orannot end after all ativities in
 (Not Last). Furthermore, edge-�nding tehniquesan be adapted to disrete resoures by reasoning on the resoure energy required bythe ativities that is, the produt duration � required quantity. Most of the edge-�nding algorithms an be implemented to propagate on all the ativities A and all thesubsets
 with a total omplexity in O(n2).Energeti Reasoning. As for the edge-�nding tehniques, energeti reasoning [9℄analyzes the urrent time-bounds of ativities in order to adjust them by removingsome invalid values. A typial example of energeti reasoning onsists in �nding pairsof ativities A;B on a unary resoure suh that ordering ativity A before B would leadto a dead-end beause the unary resoure would not provide enough \energy" betweenthe earliest start time of A and the latest end time of B to exeute A, B and all theother ativities that neessarily needs to exeute on this time window. More formally,if C is an ativity and [t1; t2) a time window, the energy neessarily required by C onthe time window [t1; t2) is:W [t1;t2)C = min(endmin(C)� t1; t2 � startmax(C); dur(C); t2 � t1)Thus, as soon as the ondition below holds, it means that A annot be ordered beforeB and thus, must be ordered after. It allows to update the earliest start time of A andthe latest end time of B.endmax(B)� startmin(A) < dur(A) + dur(B) + XC=2fA;BgW [startmin(A);endmax(B))COther adjustments of time bounds using energeti reasoning exist that allow, for ex-ample to dedue that an ativity annot start at its earliest start time or annot end atits latest end time. Furthermore, energeti reasoning an easily be extended to disreteresoures.A good starting point to learn more about edge-�nding and energeti reasoning onunary resoures is [1℄ where the authors desribe and ompare several variants of thesetehniques. Although these tools (edge-�nding, energeti reasoning) are very eÆientin pure sheduling problems, they su�er from the same limitations as timetabling teh-niques. Beause they onsider the absolute position of ativities in time rather thantheir relative position, they will not propagate until the time windows of ativities havebeome small enough and the propagation may be very limited in ase the urrentshedule ontains many preedene onstraints. Furthermore, these tools are availablefor unary and disrete resoures only and are diÆult to generalize to reservoirs.
209

The following setions of this paper desribes two new tehniques to propagate disreteand reservoir resoures based on analyzing the relative position of ativities ratherthan their absolute position. These algorithms fully exploit the preedene onstraintsbetween ativities and propagate even when the time windows of ativities are stillvery large whih is typially the ase in least-ommitment planners and shedulers. Ofourse these new propagation algorithms an be used in ooperation with the existingtehniques we just desribed above. Both of our algorithms are based on the preedenegraph struture desribed in the setion below.4 Preedene Graph4.1 De�nitionsA resoure event x on a given resoure R is a time-point variable at whih theavailability of the resoure hanges beause of an ativity. A resoure event alwaysorresponds to the start or end point of an ativity. Let:{ t(x) denote the time-point variable of event x. tmin(x) and tmax(x) will respetivelydenote the urrent minimal and maximal value in the domain of t(x).{ q(x) denote the relative hange of resoure availability due to event x with theonvention that q > 0 denotes a resoure prodution and q < 0 a resoure on-sumption. qmin(x) and qmax(x) will respetively denote the urrent minimal andmaximal value in the domain of q(x).There is of ourse an evident mapping between the resoure onstraints on a resoureand the resoure events. Note that all time extents are assoiated a unique resoureevent exept for FromStartToEnd that is assoiated two.A preedene graph on a resoure R is a direted graph GR = (V;E�; E<) whereE< � E� and:{ V is the set of resoure events on R{ E� = (x; y) is the set of preedene relations between events of the form t(x) � t(y).{ E< = (x; y) is the set of preedene relations between events of the form t(x) < t(y).The preedene graph on a resoure aims at olleting all the preedene informationbetween events on the resoure. These preedene information may ome from: (1)temporal onstraints in the initial statement of the problem, (2) temporal onstraintsbetween ativities in the same planning operator, (3) searh deisions (e.g. ausal link,promotion, demotion, ordering deisions on resoures) or (4) may have been disoveredby propagation algorithms (e.g. unsafe ausal links handling, disjuntive onstraint,edge-�nding, et.) or simply beause tmax(x) � tmin(y). When new events or newpreedene relations are inserted, the preedene graph inrementally maintains itstransitive losure. This leads to a worst-ase omplexity of O(n2) to maintain thepreedene graph. The preedene relations in the preedene graph as well as theinitial temporal onstraints are propagated by an ar-onsisteny algorithm. Given anevent x in a preedene graph and assuming the transitive losure has been omputed,we de�ne the following subsets of events:{ S(x) is the set of events simultaneous with x that is the events y suh that (x; y) 2E� and (y; x) 2 E�{ B(x) is the set of events before x that is the events y suh that (y; x) 2 E<
210

{ BS(x) is the set of events before or simultaneous with x that is the events y suhthat (y; x) 2 E� , (y; x) =2 E< and (x; y) =2 E�{ A(x) is the set of events after x that is the events y suh that (x; y) 2 E<{ AS(x) is the set of events after or simultaneous with x that is the events y suhthat that (x; y) 2 E� , (x; y) =2 E< and (y; x) =2 E�{ U(x) is the set of events unranked with respet to x that is the events y suh that(y; x) =2 E� and (x; y) =2 E�Note that (S(x); B(x); BS(x); A(x); AS(x); U(x)) is a partition of V . An example ofpreedene graph with an illustration of these subsets is given on Figure 1 and orre-sponds to a shedule with the 6 resoure onstraints:< A1; R;�2; F romStartToEnd >,< A2; R; [�10;�5℄; AfterStart >,< A3; R;�1; AfterStart >,< A4; R; 2; AfterEnd >,< A5; R; 2; AfterEnd >, < A6; R; 2; AfterEnd > and some preedene relations. Thesubsets are relative to the event x orresponding to the start of ativity A1.
+2

[−10,−5]

−2

+2
S(x)

B(x)

x

+2 +2

A(x)

U(x)

−1AS(x)

A5�< A1A6A4
A3A2

Fig. 1. An Example of Preedene Graph4.2 Implementation and ComplexityAs we will see in next setion, our propagation algorithms often need to query thepreedene graph about the relative position of two events on a resoure so this infor-mation needs to be aessible in O(1) on our struture. It explains why we hose toimplement the preedene graph as a matrix that stores the relative position of everypair of events. Furthermore, on our struture, the omplexity of traversing any subsetof events (e.g. B(x) or U(x)) is equal to the size of this subset. Note that the preedenegraph struture is extensively used in ILOG Sheduler and is not only useful for thealgorithms desribed in this paper. In partiular, the preedene graph implementationin ILOG Sheduler allows the user to write his own omplex onstraints that rely onthis graph as for example the one involving alternative resoures and transition timesdesribed in [10℄.5 New Propagation Algorithms5.1 Energy Preedene ConstraintThe energy preedene onstraint is de�ned on disrete resoures only. As it doesnot require that the resoure be losed, it an be used at any time during the searh.The idea is as follows (for simpliity, we assume that all the resoure onstraints have
211

a time extent FromStartToEnd). Suppose that Q denotes the maximal apaity ofthe disrete resoure over time. If x is a resoure event and
 is a subset of resoureonstraints that are onstrained to exeute before x, then the resoure must provideenough energy to exeute all resoure onstraints in
 between the earliest start timesof ativities of
 and t(x). More formally:tmin(x) � min<A;R;q;TE>2
(startmin(A)) + X<A;R;q;TE>2
(qmin(A) � durmin(A))=QA very simple example of the propagation performed by this onstraint is given inFigure 2. If we suppose that the maximal apaity of the disrete resoure is 4 and allativities must start after time 0, then by onsidering
 = fA1; A2; A3; A4g, we see thatevent x annot be exeuted before time [0℄+[(2�10)+(2�8)+(2�8)+(2�2)℄=4 = 14. Ofourse, a symmetrial rule an be used to �nd an upper bound on t(x) by onsideringthe subsets
 of resoure onstraints that must exeute after x. The same idea as theenergy preedene onstraint is used in [19℄ to adjust the time-bounds of ativities ondi�erent unary resoures.
dur=8

−2 +2

dur=2

−2

x

+2

dur=10

−2 +2

dur=8

−2 +2A4 A2A1A3
Fig. 2. Example of Energy Preedene PropagationIt's important to note that the energy preedene algorithm propagates even whenthe time window of ativities is very loose (in the example of Figure 2, the latest endtimes of ativities may be very large). This is an important di�erene with respet tolassial energeti and edge-�nding tehniques that would propagate nothing in thisase. The propagation of the energy preedene onstraint an be performed for all theevents x on a resoure and for all the subsets
 with a total worst-ase time omplexityof O(n � (p + log(n)) where n is the number of the events on the resoure and p themaximal number of predeessors of a given event in the graph (p � n). Note thatwhen the disrete resoure has a maximal apaity pro�le that varies over time, thealgorithm an take into aount some fake resoure onstraints with instantiated startand end times to aommodate the maximal apaity pro�le.5.2 Balane ConstraintThe balane onstraint is de�ned on a reservoir resoure.When applied to a reservoir,the basi version of this algorithm requires the reservoir to be losed. When appliedto a disrete resoure, the resoure may still be open. The basi idea of the balaneonstraint is to ompute, for eah event x in the preedene graph, a lower and an upperbound on the reservoir level just before and just after x. The reader will ertainly �ndsome similarities between this onstraint and the Modal Truth Criterion on planningprediates �rst introdued in [6℄. Atually this is not surprising as the balane onstraint

212

an be onsidered as a kind of MTC on reservoirs that only detets some neessaryonditions1. Given an event x, using the graph we an ompute an upper bound on thereservoir level at date t(x) � � just before x assuming (1) All the prodution events ythat may be exeuted stritly before x are exeuted stritly before x and produe asmuh as possible that is qmax(y); (2) All the onsumption events y that need to beexeuted stritly before x are exeuted stritly before x and onsume as little as possiblethat is qmax(y); and (3) All the onsumption events that may exeute simultaneouslyor after x are exeuted simultaneously or after x. More formally, if Linit is the initiallevel of the reservoir, P the set of prodution events and C the set of onsumptionevents, this upper bound an be omputed as follows:L<max(x) = Linit + Xy2P\(B(x)[BS(x)[U(x))qmax(y) + Xy2C\B(x)qmax(y) (1)Applying this formula to event x on Figure 1 if with suppose Linit = 2 leads toL<max(x) = 2 + [2 + 2 + 2℄ + [�5℄ = 3. In a very similar way, it is possible to omputeL<min(x), a lower bound of the level just before x; L>max(x), an upper bound of thelevel just after x and L>min(x), a lower bound of the level just after x. For eah of thesebounds, the balane onstraint is able to disover four types of information: dead ends,new bounds for resoure usage variables and time variables and new preedenerelations. For symmetry reasons we only desribe the propagation based on L<max(x).Disovering dead ends. Whenever L<max(x) < 0, we know for sure that the level ofthe reservoir will be negative just before event x so the searh has reahed a dead end.Disovering new bounds on resoure usage variables. Suppose there exists aonsumption event y 2 B(x) suh that qmax(y) � qmin(y) > L<max(x). If y wouldonsume a quantity q suh that qmax(y) � q > L<max(x) then, simply by replaingqmax(y) by q(y) in formula (1), we see that the level of the reservoir would be negativejust before x. Thus, we an �nd a better lower bound on q(y) equal to qmax(y) �L<max(x). On the example of Figure 1, this propagation would restrit the onsumedquantity at the beginning of ativity A2 to [�8;�5℄ as any value lower than �8 wouldlead to a dead end.Disovering new bounds on time variables. Formula (1) an be rewritten asfollows: L<max(x) = (Linit +Xy2B(x)qmax(y)) + (Xy2P\(BS(x)[U(x))qmax(y))If the �rst term of this equation is negative, it means that some prodution events inBS(x) [U(x) will have to be exeuted stritly before x in order to produe at least:�<min(x) = �Linit � Xy2B(x)qmax(y)1 When the reservoir is not losed, one an imagine extending our propagation algorithm intoa real truth riterion on reservoirs that would allow justifying the insertion of new reservoirproduers or onsumers into the urrent shedule. This interesting extension learly worthto study but is out of the sope of this paper.
213

Let P (x) denote the set prodution events in BS(x) [U(x). We suppose the events(y1; � � � ; yi; � � � ; yp) in P (x) are ordered by inreasing minimal time tmin(y). Let k bethe index in [1; p℄ suh that:k�1Xi=1 qmax(yi) < �<min(x) � kXi=1 qmax(yi)If event x is exeuted at a date t(x) � tmin(yk), not enough produers will be ableto exeute stritly before x in order to ensure a positive level just before x. Thus,tmin(yk) + 1 is a valid lower bound of t(x). On Figure 1 if Linit = 2, �<min(x) = 3,and this propagation will dedue that t(x) must be stritly greater than the minimalbetween the earliest end time of A5 and the earliest end time of A6.Disovering new preedene relations. There are ases where we an perform aneven stronger propagation. Suppose there exists a prodution event y in P (x) suhthat: Xz2P (x)\(B(y)[BS(y)[U(y))qmax(z) < �<min(x)Then, if we had t(x) � t(y), we would see that again there is no way to produe�<min(x)before event x as the only events that ould eventually produe stritly before eventx are the ones in P (x) \ (B(y) [BS(y) [U(y)). Thus, we an dedue the neessarypreedene relation: t(y) < t(x). For example on Figure 1, the balane algorithm woulddisover that x needs to be exeuted stritly after the end of A4. Note that a weakerversion of this propagation has been proposed in [4℄ that runs in O(n2) and does notanalyze the preedene relations between the events of P (x).Like for timetabling approahes, one an show that the balane algorithm is sound,that is, it will detet a dead end on any fully instantiated shedule that violates thereservoir resoure onstraint. In fat, the balane algorithm does not even need theshedule to be fully instantiated: for example, it will detet a dead end on any non-solution shedule as soon as all the prodution events are ordered relatively to all theonsumption events on a resoure. Furthermore, when all events x on a reservoir ofapaity Q are so that L<max(x) � Q, L>max(x) � Q, L<min(x) � 0, and L>min(x) � 0 -in that ase, we say that event x is safe - then, any order onsistent with the urrentpreedene graph satis�es the reservoir onstraint. In other words, the reservoir issolved. This very important property allows stopping the searh on a reservoir whenall the events are safe and even if they are not ompletely ordered. Note also that,aording to the onepts introdued in [14℄, the balane onstraint an be seen as analgorithm that impliitly detets and solves some deterministi MCSs on the reservoirwhile avoiding the ombinatorial explosion of enumerating these MCSs. The balanealgorithm an be exeuted for all the events x with a worst-ase omplexity in O(n2) ifthe propagation that disovers new preedene relations is not turned on, in O(n3) fora full propagation. In pratie, there are many ways to shortut this worst ase and inpartiular, we notied that the algorithmi ost of the extra-propagation that disoversnew preedene relations was negligible. In our implementation, at eah node of thesearh, the full balane onstraint is exeuted until a �x point is reahed.
214

6 First ResultsWe implemented a omplete and relatively simple searh proedure on reservoirs thatselets pairs of unsafe events (x; y) and reates a hoie point by adding either therelation t(x) < t(y) or t(y) � t(x). The heuristis for seleting whih pair of events toorder relies on the bounds on reservoir levels L<max(x), L>max(x), L<min(x), and L>min(x)omputed by the balane onstraint. These levels an indeed be onsidered as sometexture measurements [2℄ projeted on the shedule events. Until now, few benhmarksare available on problems involving temporal onstraints and reservoirs. The only onewe are aware of is [15℄ where the authors generate 300 projet sheduling problems in-volving 5 reservoirs, min/max delays between ativities and minimization of makespan.From these 300 problems, 12 hard instanes ould not be solved to optimality by theirapproah. We tested our algorithms on these 12 open problems2. The results are sum-marized on the table below. The size of the problem is the number of ativities. Thebounds are the best lower and upper bounds of [15℄. The times in the table were mea-sured on a HP-UX 9000/785 workstation. We an see that all of the 12 open problemshave been losed in less than 1 minute CPU time. Furthermore, our approah produeshighly parallel shedules as the balane onstraint implements some suÆient ondi-tions for a partial order between events to be a solution. In the optimal solutions theremay be up to 10 ativities possibly exeuting in parallel in the partial order.Problem Size Lower bound U pper bound Optimal CPU Time (s)#10 50 92 93 92 0.21#27 50 85 +1 96 22.18#82 50 148 +1 no solution 0.15#6 100 203 223 211 1.81#12 100 192 197 197 1.61#20 100 199 217 199 1.54#30 100 196 218 204 56.64#41 100 330 364 337 1.70#43 100 283 +1 no solution 53.90#54 100 344 360 344 1.26#58 100 317 326 317 1.13#69 100 335 +1 no solution 7.36We also tested the energy preedene onstraint on unary resoures. For this purpose,we wrote a very simple least-ommitment searh proedure3 based on the preedenegraph that orders pairs of ativities on a unary resoure and aims at �nding very good�rst solutions. We benhed this searh proedure on 44 famous job-shop problems(namely: abz5-9, ft6, ft10, orb1-10, la1-30) with the energy preedene onstraint aswell as the disjuntive and the edge-�nder onstraint. In average, the makespan of the�rst solution (without using any restart or randomization) produed by our approah isonly 7.35% greater than the optimal makespan whereas the average distane to optimalof the best greedy algorithms so far [17℄ is 9.33% on the same problems.7 Conlusion and Future WorkThis paper desribes two new algorithms for propagating resoure onstraints on dis-rete resoures and reservoirs. These algorithms strongly exploit the temporal relationsin the partial shedule and are able to propagate even if the time windows of ativities2 All the other problems were easily solved using our approah.3 The C++ ode of this searh proedure is available in the distribution of ILOG Sheduler.
215

are still very large. Furthermore, on disrete resoure, they do not require the resoureto be losed. These features explain why they partiularly suit integrated approahes toplanning and sheduling. From the standpoint of pure sheduling, these algorithms arepowerful tools to implement omplete and eÆient searh proedures based on therelative position of ativities. An additional advantage of this approah is that it pro-dues partially ordered solutions instead of fully instantiated ones. These solutionsare more robust. All the algorithms desribed in this paper have been implemented andare available in the urrent version of ILOG Sheduler [12℄. As far as AI Planning isonerned, future work will mainly onsist in studying the integration of our shedulingframework into a HTN or a POP Planner as well as improving our searh proedures.Referenes[1℄ P. Baptiste and C. Lepape. A theoretial and experimental omparison of onstraintpropagation tehniques for disjuntive sheduling. In Proeedings IJCAI-95, 1995.[2℄ C. Bek, A. Davenport, E. Sitarski, and M. Fox. Texture-based heuristis for shedulingrevisited. In Proeedings AAAI-97, 1997.[3℄ J. Carlier and E. Pinson. A pratial use of Jakson's preemptive shedule for solvingthe job-shop problem. Annal of Operation Researh, 26:269{287, 1990.[4℄ A. Cesta and C. Stella. A time and resoure problem for planning arhitetures. InProeedings ECP-97, 1997.[5℄ A. Cesta, A. Oddi, and S. Smith. A onstraint-based method for projet sheduling withtime windows. Tehnial Report, CMU RI Tehnial Report, 2000.[6℄ D. Chapman. Planning for onjuntive goals. Arti�ial Intelligene, 32:333{377, 1987.[7℄ B. Drabble and A. Tate. The use of optimisti and pessimisti resoure pro�les to informsearh in an ativity based planner. In Proeedings AIPS-94, pages 243{248, 1994.[8℄ J. Ershler. Analyse sous ontraintes et aide �a la d�eision pour ertains probl�emesd'ordonnanement. PhD thesis, Universit�e Paul Sabatier, 1976.[9℄ J. Ershler, P. Lopez, and C. Thuriot. Raisonnement temporel sous ontraintes deressoures et probl�emes d'ordonnanement. Revue d'IA, 5(3):7{32, 1991.[10℄ F. Foai, P. Laborie, and W. Nuijten. Solving sheduling problems with setup timesand alternative resoures. In Proeedings AIPS-00, pages 92{101, 2000.[11℄ F. Garia and P. Laborie. New Diretions in AI Planning, hapter Hierarhisation ofthe Searh Spae in Temporal Planning, pages 217{232. IOS Press, Amsterdam, 1996.[12℄ ILOG. ILOG Sheduler 5.1 Referene Manual, 2001. http://www.ilog.om/.[13℄ S. Khambhampati and X. Yang. On the role of disjuntive representations and onstraintpropagation in re�nement planning. In Proeedings KR-96, 1996.[14℄ P. Laborie and M. Ghallab. Planning with sharable resoure onstraints. In ProeedingsIJCAI-95, pages 1643{1649, 1995.[15℄ K. Neumann and C. Shwindt. Projet sheduling with inventory onstraints. TehnialReport WIOR-572, Universit�at Karlsruhe, 1999.[16℄ W. Nuijten. Time and resoure onstrained sheduling: A onstraint satisfation ap-proah. PhD thesis, Eindhoven University of Tehnology, 1994.[17℄ D. Paiarelli and A. Masis. Job-shop sheduling of perishable items. In ProeedingsINFORMS-99, 1999.[18℄ D.E. Smith, J. Frank, and A.K. Jonsson. Bridging the gap between planning and shedul-ing. Knowledge Engineering Review, 15(1), 2000.[19℄ F. Sourd and W. Nuijten. Multiple-mahine lower bounds for shop sheduling problems.INFORMS Journal of Computing, 4(12):341{352, 2000.

216

An Extended Functional Representation inTemporal Planning: towards Continuous ChangeRomain Trinquart and Malik GhallabLAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse, France,romain.trinquart@laas.fr, malik@laas.frAbstract. This paper is concerned with temporal planning relying onCSP-based functional representations. These powerful representationsare today mostly restricted to the use of piecewise constant functionsranging over �nite domains.We are proposing here an extension that brings a signi�cant enhancementin the expressiveness of the representation, towards handling continuouschange. This extension consists mainly in allowing piecewise linear func-tions over continuous domains. We have studied this extension and weare currently implementing it in the context of the IXTET planner. How-ever this extended representation is not speci�c to that planner and itcan be useful to most temporal planners. We show how IXTET syntax,planning algorithm and control can be simply extended to this class offunctions. We then consider the more signi�cant modi�cations requiredin the two constraints managers for handling temporal and atemporalCSPs.1 IntroductionPlanning is about time; it is mainly the synthesis of a temporal projection overthe future for achieving some desired goal. Time appears to be the main com-ponent in a planning ontology. However, classical planning has abstracted awaytime in state transition systems. This restrictive assumption proved to be fruitfulin developing planning algorithms and techniques. But its well-known drawbacksin expressiveness - concurrency, duration, persistence, actions for maintainingvalues, temporally quali�ed goals and dynamics - and the lack of direct applica-tions of this technology argue more and more for pursuing the development ofexplicit temporal planning.Instead of global, still pictures of the entire world, i.e. states, and their tran-sitions, the temporal representation we are interested in here focuses on localindividual evolutions of state variables. It is a functional representation: eachstate variable is a partially speci�ed function of time, called a timeline or history.It is a CSP-based representation: these temporal functions are linked through aset of temporal and atemporal constraints into a globally consistent temporalprojection.This potentially powerful representation has been developed and used byseveral planners, among which IXTET [Laborie 95], RAX-PS[Muscettola 97] or parcPlan [El-Kholy 96]. But is has been mostly restrictedto piecewise constant functions ranging over �nite domains. The contribution ofthis paper is to extend the representation to the use of piecewise linear functions,ranging over continuous or discrete domains.
217

2 This representation requires signi�cant extension in the CSP manager ofatemporal variables, going from �nite domains to mixed �nite and continuousdomains. It further introduces an interesting coupling between atemporal andtemporal variables that were up to now managed separately. This coupling re-quires another extension of the Time-Map manager.We studied these extensions and we are currently implementing them in thecontext of the IXTET planner. The paper presents the proposed extension withinIXTET notations and construct. However the approach is not speci�c to thatplanner, it can be useful to most temporal planners. To be self-contained (andto further promote the CSP-based functional representation) we will describe itin section 2 together with the proposed extension. We will develop in section 3the required extensions in planning algorithms and control. We then focus on thetwo atemporal and temporal CSP networks, their extensions and links requiredby the new type of functions introduced. Algorithms will be described and dis-cussed, however no empirical results on the performance of the extended plannerare yet available. Similarly, we'll focus the paper on state variables without con-sidering at this stage the resource handling capabilities of IXTET. We concludeon the expressiveness of the extended representation and its relationship to otherapproaches.2 RepresentationIn IXTET, a dynamic domain is described by a set of temporally quali�ed at-tributes (multi-valued uents), each being a k-ary mapping from a �nite domaininto a �nite range. Time is considered as a linearly ordered set of instants. Weuse time-points as the elementary primitive. Conjunctions of constraints (bothsymbolic constraints of the time-point algebra and numerical ones) can be ex-pressed between time-points. As will be discussed later, the system does nothandle disjunctions. Thus numerical constraints are upper and lower bounds onthe temporal distance between two time points.To describe the dynamic of the world, a propositional rei�ed logic formalismis used, where attributes are temporally quali�ed by two predicates : hold andevent. The persistence of the value v of an attribute p during the interval [t,t'[is expressed by the assertion hold(p:v,(t,t')). The instantaneous change of thevalue of p from v to v' at time t is expressed as event(p:(v,v'),t).A partial plan, as well as a planning operator (called a task), is representedby a chronicle, that is to say a conjunction of temporal predicates (event andhold predicates) and of constraints on time-points and on atemporal variablesused as values or arguments of attributes. The constraints allowed in IXTET arebinary constraints of the form t � t0 or t � t0 2 [l; u] (where t and t0 stand fortime points) and x = y, x 6= y, x 2 D or x 2 Dx) y 2 Dy (where x and ystand for atemporal variables).Chronicles are the core of the representation from the planner's point of view.This representation o�ers considerable expressiveness by allowing to distributeevents and persistence conditions within a task at di�erent time points. Throughchronicles, we bene�t from a partial speci�cation of the world along some threadscaused by actions. Note that an event expresses, within a single proposition, botha precondition and an e�ect of an action : event(p:(v,v'),t) requires that p hasvalue v before t and causes p to be equal to v' after t ; furthermore this can beexpressed anywhere with respect to the start and end points of the action.
218

3
start’ t2’t1’ end’

Move(Object2,Robot2, L1) (start’, end’)

start t2 endt1
Move(Object1,Robot1,L2) (start, end)

Intertwining Actions For 2 Robots

 hold(Position(?Obj):?Arm2,(t2,end));
 event(Position(?Obj):(?Arm2,?To),end);

 event(Position(?Obj):(?From,?Arm2),t2);

 use(Available(?Arm2):1,(t2,end));

 event(Position(?Obj):(?From,?Arm1),start);
 hold(Position(?Obj):moving,(start,t1));
 event(Position(?Obj):(moving,?Rb),t1);
 use(Available(?Arm1):1,(start,t1));

 hold(Position(?Rb):?From,(start,t1));
 event(Position(?Rb):(?From,moving),t1);
 hold(Position(?Rb):moving,(t1,t2));
 event(Position(?Rb):(moving,?To),t2);
 hold(Position(?Rb):?To,(t2,end));

 (t2 − t1) in [00:10:00,00:11:00];
 (end − t2) in [00:03:00,00:03:30];

 (t1 − start) in [00:03:00,00:03:30];

task MOVE(?Obj,?Rb,?To)(start,end) {

}

 ?Obj in Objects;
 ?From in PLACES; ?To in PLACES;
 ?From != ?To;
 ?From in {L1} => ?Arm1 in {A1};
 ?To in {L2} => ?Arm2 in {A2}

State Variables Table

endt2t1start

?From moving ?To

?From

Position(?Rb)

?Arm1 ?Rb ?Arm2

1 1

1 0

?To

0

??

??

1

Available(?Arm1)

Available(?Arm2)

Position(?Obj)

Table 1. A Task Example in the IXTET FormalismTable 1 presents an example of a task in a simple domain, where a robot canmove an object from one place to another. It shows how two instances of thistask can be interleaved for two coordinated robots. This instance of a chronicleshows several key points in the representation, such as events occurring at di�er-ent time points and the possibility for the planner to compute constraints thatlead to interleaved actions, thus providing more e�cient and exible plans. Weshould also point out that tasks variables within a chronicle are not necessarilyinstantiated but only constrained.Proposed extension Clearly, a conjunction of event and hold predicates onsome attribute p corresponds to a partially speci�ed function of time rangingover the �nite domain of p. An event is a step of that function at some timepoint. A hold is a constant value over some time interval. Only piecewise constantfunction ranging over �nite sets can be expressed with event and hold predicatesqualifying attributes over �nite domains.Very few dynamic domains are easily approximated with piecewise constantfunctions. The position of a robot or the orientation of a satellite do not changealong a single step. Admittedly, intermediate positions or orientations are notalways of interest at the planning abstraction level. The solution here is to use anunspeci�ed attribute value, e.g.moving in the above example, between the valuesof interest. However, this makes a poor use of the exibility of the CSP-basedfunctional representation, in particular for interleaving activities and addingincrementally speci�cations and constraints on attributes while planning. The
219

4moving value cannot be combined with values of other attributes to permit orto forbid other activities at some intermediate positions or orientations. In orderto do that, one may break down the change of the corresponding attribute intoseveral steps. However this approach is not very satisfactory; it complicates thespeci�cation of planning operators. Furthermore, it can be less e�cient thanhandling directly an extended representation.We propose here to add to event and hold a third temporal predicate, calledchange. The expression change(p : (v; v0); (t; t0)) speci�es that the value of at-tribute p changes linearly from v to v0 during the interval t to t0. Predicatechange, together with event and hold, extends the representation to partiallyspeci�ed piecewise linear functions.The speci�cation of the evolution of p over [t; t0[will be completed by anexplicit constraint of the form v0�v 2 D or v0�v = a� (t0� t). This last kind ofconstraint brings about an interesting aspect of the proposed extension since itenables one to connect the e�ect of an action to its duration which is necessaryto express many real world domains.Having added predicate change, the assumption that attributes range over�nite domains cannot hold anymore. Consequently, we also added numerical at-tributes ranging over intervals in the set of real numbers. Constraints concerningnumeric variables are : x 2 D to specify an initial domain, x 2 Dx) y 2 Dyto express range dependency (these constraints might mix discrete and numericvariables) and also the two kind of constraints on di�erence mentioned above.These two extensions require some slight generalization of the planning andcontrol algorithms, but they mainly require a re-design of the atemporal CSPmanager, and, because of the coupling introduced, of the temporal constraintmanager as well.3 Planning Algorithm and control
SubGoals

with
valuated resolvants

SubGoals
with

valuated resolvants

Search for Establishers
among existing events

and new tasks

Feasability

Computation of
additional Constraints

to solve Conflicts

Satisfiability

Analysis Module

_ Computation of K Factor
_ Selection to K min.

Flaw Selection
resolvant

of the chosen
Insertion

A−eps Algorithm
Resolvant Choice

Global Search Tree

Events
and

Assertions

?x1 in {a,b,c}
?x2 in [5,10]v[15,20]

Temporal Lattice

Variables Table

Partial Plan
Analysis Module

Backtrack
Reconstruction
of partial plan

or

Search Control Module

Insertion

and

Requests Fig. 1. The Di�erent Modules in IxTeT
220

5IXTET performs a least commitment search in a space of partial plans [Weld 94].Nodes of the search space are chronicles. Edges correspond to plan re�nementssuch as adding a task or a constraint. A chronicle � is a valid solution plan i�:{ (1) For every assertion hold(Att(x1; :::; xk) : v; (t; t0)) and for every eventevent(Att(x1; :::; xk) : (v; v0); t) � contains :� an establisher E = event(Att(xest1; :::; xestk) : (w; vest); test) such that(x1 = xest1) ^ : : : ^ (xk = xestk) ^ (vest = v) ^ (test < t)� a causal link hold(Att(x1; :::; xk) : v; (test; t)).{ (2a) For every couple (E;H) where H = hold(Att(x1; :::; xk) : v1; (t1; t01))and E = event(Att(y1 ; :::; yk) : (v2; v02); t2) � contains one of the followingconstraints : (t2 < t1) _ (t01 < t2) _ (x1 6= y1) _ : : : _ (xk 6= yk){ (2b) For every couple (H1;H2) where H1 = hold(Att(x1; :::; xk) : v1; (t1; t01))and H2 = hold(Att(y1; :::; yk) : v2; (t2; t02)) � contains one of the followingconstraints : (t02 < t1) _ (t01 < t2) _ (x1 6= y1) _ : : : _ (xk 6= yk){ (3) The temporal constraints and atemporal constraints are consistent.This criteria enables us to decide why and how a chronicle should be re�ned inorder to achieve every subgoal (unexplained propositions) through the insertionof tasks and/or causal links, and in order to solve any potential conict throughthe insertion of temporal or atemporal constraints.The �rst two conditions above are used to detect aws and to de�ne resolvers.The selection of the next aw to consider and the non-deterministic choice of aresolver are the main control decisions of the planner. The third condition on theconsistency of the constraints does not direct the search process. At each stepof the search, constraints are dynamically inserted. They are locally propagatedthrough the corresponding constraint network. If the local propagation detectsan inconsistency, then the search process has to backtrack. The local propagationbeing incomplete for atemporal variables, it is completed by a global consistencychecking once a plan is found.We are going to use the same approach for the extended representation. Asan event, a change is both a precondition and an e�ect. Hence it may introducea subgoal requiring an establisher. It can also produce such an establisher. Sim-ilarly there can be threats between a change and a hold, or a between changeand an event, or with another change.Let us consider an unexplained change predicate: change(Att(x1; :::; xn) :(vi; vf); (ti; tf)). It can be established by another such predicate, already in thecurrent chronicle or to be added through some task: change(Att(x01; :::; x0n) :(v0i; v0f); (t0i; t0f)) if the following conditions are consistent with the current chron-icle:x1 = x01 and : : : and xn = x0n and v0f = viand t0f � ti:In that case, the corresponding resolver is the above conjunction togetherwith the following causal link : hold(Att(x1; :::xn) : vi; (t0f ; ti)).A threat between two predicates: hold(Att(x1; :::xn) : v; (t1; t2)) andchange(Att(x01; :::; x0n) : (v01; v02); (t01; t02)) can be solved by this disjunction ofconstraints, when consistent with the current chronicle:(x1 6= x01) or : : : or (xn 6= x0n) (separation)or (t2 < t01) (promotion)or (t02 < t1) (demotion)or (t1 = t02 and v = v02)or (t01 = t2 and v = v01)
221

6 Similarly a threat between change(Att(x1; :::; xn) : (v1; v2); (t1; t2)) andchange(Att(x01; :::; x0n) : (v01; v02); (t01; t02)) is solved by this disjunction of con-straints: (x1 6=?x01) or : : : or (xn 6= x0n) (separation)or (t2 < t01) (promotion)or (t02 < t1) (demotion)or (t1 = t02 and v1 = v02)or (t01 = t2 and v2 = v01)The various cases of threats introduced by the extended representation aresummarized in the table 2. They can all be handled in a similar way by addingto the current chronicle a conjunction of temporal and atemporal constraints.The remaining problem is how to handle these extended constraints.
SeparationPromotion

Demotion

Promotion

Demotion

SeparationAssertion versus Change proposition Change Vs Change7! 5 possible resolvants 7! 5 possible resolvantsTable 2. Identifying the new potential threats and their resolvants : roots nodes rep-resent potential conicts, branches correspond to possible resolvers.4 The Constraints ManagersIxTeT has three di�erent specialized constraints managers : one dealing withatemporal variables, one dealing with time points and a third one dealing withresources. In order to cope with the new kind of constraints needed to handle theextension to continuous change, we need to enhance the atemporal constraintsmanager and to bring about closer interactions between this manager and theTime-Map.4.1 The Atemporal Constraints ManagerThis system handles the atemporal variables which are dynamically introducedin the partial plan during the search process, as well as the related constraintswhich might be introduced to solve aws. It is actually a CSP Solver dealingwith variables over �nite domains.The manager is queried by the planning system for testing if two variablescan be uni�ed or di�erentiated, for inserting new constraints and for checking
222

7global consistency. The desired level of expressivity required by the planner isquite rich. We have to handle the following constraints : x = y, x 6= y, x 2 D,x 2 Dx) y 2 Dy .Thus the manager problem is that of a general binary CSP over �nite do-mains whose consistency checking is a NP-complete problem. Because of thelarge number of queries from the planner to the manager, IXTET maintainsan incomplete arc-consistency checking while planning. Complete consistencychecking is postponed until a plan without aws is found.The main drawback of this method is that it leads to "blind" backtrack : thesearch process might choose to develop a re�nement branch that is doomed to failbecause of an undetected inconsistency, thus loosing time. Furthermore, once theinconsistency is detected the backtrack point cannot be easily identi�ed. Howeverthis criticism should be counterbalanced by the following observation : becauseof the least commitment strategy, carrying on the search process will lead to areduction of the problem size by introducing equality constraints correspondingto postponed establishment.Dealing with continuous domains : To handle change predicates, the plan-ner needs to get information concerning variables whose domains are continuous.The constraints that might be posted on two numeric variables are : x 2 D,x� y 2 D0 and x 2 Dx) y 2 Dy.This last class of constraints leads us to consider domains that are disjunc-tions of intervals inR : given a constraint "x 2 Dx) y 2 Dy", ifDom(y)\Dy =; then the propagation yields the insertion of the constraint x =2 Dx which mightcreate "holes" in the domain associated to x.The local arc consistency algorithm can be adapted without too much trou-ble. We have to provide operators on the intervals disjunctions similar to thoseused for discrete set and also to de�ne propagation rules concerning the new"di�erence" constraints.Problems arise concerning the complete propagation algorithm. This algo-rithm performs an extensive instantiation of the variables to detect the valuesthat will necessary lead to inconsistency. It is a forward checking search . Thiscannot be directly transposed to numeric variables : it makes no sense to checkfor all the values in a continuous domain. A naive technique consists in replacingvariable instantiations by domain splitting. A dichotomy splitting can be iterateduntil a �xed minimal interval length is reached. We propose to use an analogmethod, but instead of a systematic dichotomy that does not take the constraintnetwork into account and thus might lead to unnecessary computations, we willuse the constraints to guide the splitting of intervals.Our purpose is to have a common framework to handle both discrete andnumeric variables. To achieve this goal we have got to change the notion ofinstantiation concerning numeric variables so as to obtain equivalent complex-ity. Let us point out that , in the discrete case, instantiations are performed inorder to reduce the uncertainty on the value of a variable, thus enabling thesolver to actually �re every constraint. But, hopefully, the triggering of the con-straints concerning numeric variables does not require the variables to be fullyinstantiated. Among the constraints on numeric variables, only the dependencyconstraints propagation might be postponed because of a lack of information.The equality and domain restriction constraints will be immediately propagated
223

8at insertion, respectively through the fusion of the equivalence class of the af-fected variables and through the e�ective reduction of the valuation domain.The distance constraints (x� y 2 D) will be propagated by the arc consistencypropagation. But to propagate a dependency constraint "x 2 Dx) y 2 Dy",the solver needs to know whether x (resp. y) takes its value in Dx (resp. Dy)or not. This is the kind of constraints that might stop propagation along pathsand thus prevent the detection of inconsistency. The complete propagation al-gorithm should reduce the uncertainty on the variables enough to decide how topropagate the constraint, i.e. it should decide whether x 2 Dx or not. This isthe key to our algorithm.The domain of a numeric variable x will be decomposed into disjoint intervalsIk such that for every constraint "x 2 Dx) y 2 Dy" or "z 2 Dz) x 2 Dx",the following proposition is true : (Ik � Dx)or(Ik \ Dx = ;). The completepropagation procedure will then successively try to reduce the valuation domainof x to these di�erent intervals (Ik). For each Ik it will be able to decide howthe constraints should be applied. Thus the problem of instantiating a numericvariable has been transformed into choosing subintervals in a �nite set.Since this method can also be used for discrete variables (domains will thenbe decomposed into disjoint subsets), it provides a simple algorithm to dealwith a heterogeneous CSP containing both discrete and numeric variables forthe type of constraints in a temporal planner. Table 3 presents the algorithmfor complete propagation in such a CSP. The procedure Complete Propagationcomputes minimaldomains in the CSP. For every variable, it builds a partition ofits domain according to the constraints. Then it successively shrinks the domainto every element of the partition and checks the consistency of the resulting CSP: only sub-domains leading to consistent CSP are kept in the minimal domain.If a minimal domain is found to be empty, then the CSP is inconsistent.4.2 Mixing timePoints and VariablesAmong the extensions of the representation presented above, we have insistedon the necessity to express actions whose e�ects depend on their duration. Itimplies to be able to handle "transversal" constraints binding both timepointsand atemporal variables, i.e. coupling constraints between the atemporal CSPand the Time-Map.To illustrate such a constraint let us consider a simple example dealing withthe control of a robot : an action "Move" brings a robot from one point to anotheralong an axis at constant speed. Thus the duration of the shift is proportional tothe distance between the initial and �nal position of the robot : Posf � Posi =speed � (tf � ti).The �rst observation is that this kind of constraint can be splitted, each partbeing inserted in a speci�c Constraints Manager : the di�erence T between tf andti can be introduced in the atemporal variables manager trough the constraints(Posf � Posi = speed � T) and the other way round, the di�erence D betweenPosf and Posi yields the constraints (tf � ti = D=speed) to be added to theTime-Map. Since both the Time-Map and the atemporal constraints networkare dynamically constructed, we shall iterate such constraints posting duringthe search process. It should be noted however that the resolution of constraintsproblems computes minimal valuation domain. Thus from one step to another,the domain associated to a variable will shrink : consequently if two distance
224

9Table 3. The Complete Propagation AlgorithmComplete Propagation()fn*** computes minimal domains and ***nn*** returns true if the CSP is consistent ***nFor each variable varAcceptedV alues ;Elts Partition(var)For each e in EltsIf (unify(var; e) ^Global consistency checking())AcceptedV alues:append(e)endIfendForIf AcceptedV alues = ;RETURN FalseElseDomain(var) AcceptedV aluesendIfendForRETURN TruegGlobal Consistency Checking()fn*** returns true if the CSP is consistent ***nvar Choose One Non Instanciated variableV alues Partition(var)While V alues 6= ;elt pop(V alues)If (unify(var; elt) ^Global consistency checking())n*** unify triggers local propagation ***nRETURN TrueendIfendWhileRETURN FalsegPartition(v)fn*** This function returns the set of alternative ***nn*** disjoint domains for v ***nIf there is at least one 6= constraint on v thenRETURN ffeg; e 2 Domain(v)gElsePart fDomain(v)gLDep fD;9(v0;D0); (v 2 D) v0 2 D0) _ (v0 2 D0) v 2 D)gWhile LDep 6= ;KDom pop(LDep)NewPart ;While (Part 6= ;)Elt pop(Part)NewPart NewPart [(Elt \KDom)NewPart Newpart [(Elt \ {KDom)endWhilePart NewPartendWhileRETURN PartendIfg
225

10constraints on the same variable are successively posted, the second one willdiscard its predecessors.The second point we must focus on is the di�erence in handling disjunctionsby the two constraints managers. As mentioned in the previous paragraph, do-mains associated to numeric atemporal variables are disjunctions of intervals.On the contrary the use of disjunctions in the time-map manager is forbidden.To bridge the gap between these two managers we will discuss more in-depththe time-map manager.Basically this manager handles Simple Temporal Networks [Dechter 89]. Ithas limited expressivity but complete propagation can be computed in polyno-mial time thanks to the Floyd-Warshall algorithm, for instance. On the contrary,if we extend the expressivity to disjunctions of intervals (that is to say TemporalCSP or T-CSP), we are then confronted to NP-Hard problems [van Beek 89].The solution retained in IXTET is to limit the expressivity so as to ensure com-pleteness at every step of the planning process and to deal with disjunctions atthe control level with explicit estimates and heuristics.A possible solution to the coupling between the two CSPs would be to keepsimple intervals inside of the temporal network, and to relax constraints inher-ited from the atemporal variables manager by approximating a disjunction ofintervals to its lower and upper bounds. The propagation would then be incom-plete because of the relaxation : an inconsistency may be detected only once thetime-map manager is committed to instantiate a variable to a value that was notpart of the initial disjunction on the atemporal manager's side. The handling ofsuch a situation will be achieved at the search level that should backtrack inorder to avoid the inconsistent constraint.Another solution is to accept to pay the cost of handling disjunctions of in-tervals in the temporal constraint network. This would enable the search processto rely on complete propagation between the two constraints managers and tobacktrack immediately if a constraint is introduced that gives rise to inconsis-tency.We have chosen this second solution. The use of disjunctive constraints haslong been avoided because it was known to be intractable in worse case. Butrecent experiment results prove that in most practical cases actual complexityof propagation of sets of intervals through arithmetic constraints such as theone we are concerned with is linear rather than exponential [Shapiro 99]. Fur-thermore this simpli�es the control process, gets rid of heuristic evaluation andavoid backtracking, which our experiments proved to be a real bottleneck for theplanner.5 Discussion and conclusionMost of the temporal planners that address the same goals as IXTET rely on thesame kind of representation of the world. The most spectacular application in the�eld was the Remote Agent Experiment lead by the NASA : among the di�erenttechnologies that were embedded in the remote agent architecture, the planningsystem PS had a crucial role. In RAX-PS, the world is also described througha set of temporally quali�ed state variables, some of which represent activitiesexecuted by a device : there is a strong parallel between a token associated to aliteral and the invocation of an activity to be executed by the execution super-visor. A time point represents the moment at which the activity corresponding
226

11to the new token starts executing. The representation in RAX-PS di�ers fromthe one in IXTET on the following aspects. First in RAX-PS there is no explicitrepresentation of events. The evolution of a variable (time line) is representedby a succession of temporal assertion (hold). This leads to slight di�erences inthe search process since it is then guided by completely �lling time-lines withassertions, the consistency between two successive assertions being de�ned by"compatibility rules". This brings out the second di�erence : in RAX-PS, thereare no planning operators such as the Tasks mentioned above. The system isonly concerned with attribute's value (which represent real procedures for theexecutive system) and bene�ts from rules to establish links between assertionsalong di�erent time lines. Beyond those di�erences, RAX-PS relies, as IXTETdoes, on a set of piecewise constant functions and on a CSP-based approach. Itcan bene�t from our proposed extension. 1Among temporal planners, parcPLAN presents similar expressivity, and seemsto o�er quite interesting performance [Liatsos 99]. It relies on relatively similarrepresentation and search strategy (constraint-based and least commitment).The main di�erence with IXTET is the strong separation in the search processbetween goal achievement and scheduling reasoning. Here again piecewise linearfunctions could be bene�cial.Last but not least, [Penberthy 94] presented ZENO, a temporal planning sys-tem that o�ered rich expressivity to describe the dynamic of the world. Metricpreconditions and e�ects as well as linear evolution were supported. Howeverthese features were supported without the bene�t of constraints network meth-ods that enable the search control to concentrate on establishing constraintsinstead of selecting exact values for variables. It should be noted that, as far aswe know, Zeno has only been tested on simple toy domains.Table 4. Threats concerning the extended hold predicate
Demotion

Promotion

Separation

1 Following an interesting remark from an anonymous referee, we checked out in theavailable literature to what extent the temporal features described in this paper aresupported in RAX-PS and we found no clear indication that this system handlestemporal primitive other than piece-wise constant values.
227

12 An implementation of the extension presented in this paper is currently underprocess within IXTET. We plan to compare it to the technique that approximatesa change through multiple steps in complex domains. Another extension we areconsidering is a relaxed hold predicate : hold(p : (v; v0); (t; t0)) speci�es that premains bounded within interval [v,v'] during [t,t'[. Such a predicate is neededto provide better control over continuous evolutions : it enables one to expressconditions that might be veri�ed during an evolution, thus increasing possibilitiesto interleaved actions. The search control could be developed in the same wayas for change predicate in order to cope with these new assertions. Once againthe di�culty is pushed on the constraints solver. Table 4 sums up the possiblesituations to be examined to deal with such predicates.References[Chapman 87] D. Chapman. Planning for Conjunctive Goals. Arti�cial Intelligence,vol. 32, 1987.[Dechter 89] Rina Dechter, Itay Meiri & Judea Pearl. Temporal Constraint Net-works. In KR'89: Principles of Knowledge Representation and Reason-ing, pages 83{93. Morgan Kaufmann, 1989.[El-Kholy 96] A. El-Kholy & B. Richards. Temporal and Resource Reasoning in Plan-ning: the parcPlan approach. In Proc. ECAI-96., 1996.[Ghallab 94] M. Ghallab & H. Laruelle. Representation and Control in IxTeT, aTemporal Planner. In Proceedings of the International Conference onAI Planning Systems, pages 61{67, 1994.[Kondrak 97] G. Kondrak & P. Van Beek. A theoretical evaluation of selected back-tracking algorithms. Journal of AI, vol. 89, pages 365{387, 1997.[Laborie 95] P. Laborie & M. Ghallab. IxTeT: an Integrated Approach for PlanGeneration and Scheduling. In Proceedings ETFA-95, 1995.[Liatsos 97] V. Liatsos & B. Richards. Least commitment|an optimal planningstrategy. In Proceedings of the 16th Workshop of the UK Planningand Scheduling Special Interest Group, 1997.[Liatsos 99] Vassilis Liatsos & Barry Richards. Scaleability in Planning. In Proc.ECP-99, pages 49{61, 1999.[Muscettola 97] N. Muscettola, B. Smith, S. Chien, C. Fry, G. Rabideau, K. Rajan &D. Yan. Onboard Planning for Autonomous Spacecraft. In Proceedingsof the 4th International Symposium on Arti�cial Intelligence, Roboticsand Automation for Space (i-SAIRAS 97), 1997.[Penberthy 94] J. Scott Penberthy & Daniel S. Weld. Temporal Planning with Contin-uous Change. In Proceedings of the 12th National Conference on Arti�-cial Intelligence (AAAI-94), vol. 2, pages 1010{1015. AAAI Press/MITPress, 1994.[Shapiro 99] Rony Shapiro, Yishai A. Feldman & Rina Dechter. On the Complex-ity of Interval-Based Constraint Networks. In MISC'99 Workshop onApplications of Interval Analysis to Systems and Control, 1999.[van Beek 89] Peter van Beek. Approximation Algorithms for Temporal Reasoning.In Proceedings of the International Joint Conference on Arti�cial In-telligence (IJCAI), pages 1291{1296, 1989.[Weld 94] Daniel S. Weld. An Introduction to Least Commitment Planning. AIMagazine, vol. 15, no. 4, pages 27{61, 1994.
228

Constraint-based Strategies for the DisjuntiveTemporal Problem: Some New ResultsAngelo OddiIP-CNR, Italian National Researh CounilViale Marx 15, I-00137 Rome, Italyoddi�ip.rm.nr.itAbstrat. The Disjuntive Temporal Problem (DTP) involves the sat-isfation of a set of onstraints represented by disjuntive formulas of theform x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk. DTP is a quitegeneral temporal reasoning problem whih inludes the well-known Tem-poral Constraint Satisfation Problem (TCSP) introdued by Dehter,Meiri and Pearl. This paper desribes a basi onstraint satisfation al-gorithm where several aspets of the urrent literature are integrated,in partiular the so-alled inremental forward heking. Hene, two newextended solving strategies are proposed and experimentally evaluated.The new results are both very ompetitive with respet to the urrentbest results and open further researh diretions that onerns, in par-tiular, the use of ar-onsisteny �ltering strategies.Keywords: onstraint reasoning for planning and sheduling, temporalreasoning, onstraint algorithms.1 IntrodutionIn many reent Arti�ial Intelligene appliations the need of a more expressivetemporal reasoning frame is inreasing more and more. For example, in ontinualplanning appliations [1℄ a relevant apability is the ontinuous management oftemporal plans [2, 3℄. To this purpose, the representation of temporal disjun-tion allows a leverage of systems' apability, for example, it avoids a too earlyommitment on ation orderings. Other interesting appliations of the temporalmodel proposed in this paper are disussed in the work [4℄, these appliationsrange from sheduling and planning to temporal database with inde�nite infor-mation.The Temporal Constraint Satisfation Problem (TCSP) [5℄ is a way to repre-sent temporal disjutions, it allows onstraints of the form x�y � r1_x�y � r2_: : :_x�y � rk. A further generalization of the TCSP is proposed in [6, 4℄ where aproblem has onstraints of the form x1�y1 � r1_x2�y2 � r2_: : :_xk�yk � rk.In [7℄ this last problem is referred to as Disjuntive Temporal Problem (DTP)and we use this name in the paper. DTPs have been studied in several previ-ous works: (a) in [6, 4℄ several onstraint-based (CSP) algorithms (in the lineof [8℄) are de�ned and experimentally ompared. One of them, based on for-ward heking [9℄, is shown to be the best; (b) in [7℄ DTP is modeled as apropositional satisfability (SAT [10℄) problem and solved with a state-of-the-art
229

SAT-solver plus some additional proessing. Experiments show an improvementof up to two orders of magnitude with respet to the results in [6℄. () �nallyin [11℄ the onstraint-based algorithm proposed in [6, 4℄ is improved exploitingthe quantitative temporal information in the solution \distane graph". Usingthis knowledge an inremental version of the forward heking is obtained andshown to be ompetitive with the results proposed in [7℄.Our starting point in the work [11℄ was the observation of the sharp di�erenebetween the results shown in [6℄ and [7℄ and the idea of using the \quantitativereasoning" that an ome out from a temporal onstraint network representation.We basially observe that the e�ets of quantitative temporal information toimprove global performane of DTPs has not been explored enough in previousworks. Using suh knowledge we were able to de�ne an inremental forwardheking algorithm whih has omparable performane (measured as number offorward heks) with the best SAT-based version proposed in [7℄.This paper follows the same CSP-based approah and again fous on using\quantitative reasoning" that an ome out from a temporal onstraint networkrepresentation. In partiular we propose a new heuristi strategy for variableordering used in our CSP framework and an ar-onsisteny �ltering algorithm.The rationale behind the new results is quite general and an be exploited inother solvers that rely on \quantitative temporal reasoning".The paper is strutured as follows. Setion 2 introdues the basi oneptsused in the paper. Setion 3 gives a basi CSP algorithm whih integrates resultsfrom both previous works, inluded the inremental forward heking. Setion 4introdues two additional solving algorithms for solving DTP instanes, andan experimental evaluation of the di�erent approahes is given in Setion 5.Setion 6 ends the paper with some onlusions.2 PreliminariesThe Disjuntive Temporal Problem (DTP) involves a �nite set of temporal vari-ables x1; y1; x2; y2 : : : xn; yn ranging over the reals and a �nite set of onstraintsC = f1; 2; : : : mg of the form x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk,where ri are real numbers. A DTP is onsistent if an assignment to the variablesexists suh that in eah onstraints i 2 C at least one disjunt xij � yij � rijis satis�ed. One way to hek for onsisteny of a DTP onsists of hoosing onedisjunt for eah onstraint i and see if the onjuntion of the hosen disjuntsis onsistent. It is worth observing that this is equivalent to extrating a \par-tiular" STP (the Simple Temporal Problem de�ned in [5℄) from the DTP andheking onsisteny of suh a STP. If the STP is not onsistent another one isseleted, and so on. Both previous approahes to DTP [6, 4, 7, 11℄ do this basisearh step.Previous Work. All [6, 4, 7, 11℄ share a \two layered" algorithmi struture.An upper layer of reasoning is responsible for guiding the searh that extrats theset of disjunts, a lower layer represents the quantitative information of the tem-poral reasoning problem. In [6℄ a general CSP formulation is used at the upperlevel while the quantitative information is managed by using the inremental di-
230

retional path onsisteny (IDPC) algorithm of [12℄. In [7℄ at the upper level theDTP is enoded as a SAT problem, a SAT-solver extrats an STP to be heked,a simpli�ed version of the Simplex algorithm is used at the lower level to hekfor its onsisteny. Stergiou and Kubarakis de�ne di�erent baktraking algo-rithms for managing the upper-level and experimentally verify that the versionusing forward heking is the best. Forward heking is used after eah hoie totest whih of the possible next hoies are ompatible with urrent partial STP.In the rest of the paper their best algorithm is alled SK. Armando, Castelliniand Giunhiglia fous their attention on the SAT enoding, eah disjunt is apropositional formula, and they use a state of the art SAT-solver enrihed with aform of forward heking biased by the temporal information. Their basi versionis alled TSAT and is shown to improve up to one order of magnitude with re-gard to SK. Then they add a further preproessing step alled IS that basiallyprodues a more aurate SAT enoding beause it odi�es mutual exlusiononditions among propositions that exists in the temporal information, but werelost by the �rst standard enoding.DTP Consisteny Cheking as a Meta-CSP. Before introduing our al-gorithm we undersore the possibility of representing the onsisteny hekingproblem as a meta-CSP problem, where eah DTP onstraint 2 C representsa (meta) variable and the set of disjunts represents variable's domain valuesD = fÆ1; Æ2; : : : Ækg. A meta-CSP problem is onsistent if exists at least an el-ement S (solution) of the set D1 �D2 � : : : �Dm suh that the orrespondingset of disjunts S = fÆ1; Æ2; : : : Æmg Æi 2 Di is temporally onsistent.Eah value Æi 2 Di represents an inequality of the form xi � yi � ri anda solution S an be represented as a labeled graph Gd(VS ; ES) alled \dis-tane graph" [5℄. The set of nodes VS oinides with the set of DTP variablesx1; y1; x2; y2 : : : xn; yn and eah disjunt xi � yi � ri is represented by a diretedge (yi; xi) from yi to xi labeled with ri. A path from a node xi to yj on thegraph is a set of ontiguous edges (xi; yi); (yi; yi1); (yi1; yi2); : : : ; (xil; yj) and thelength of the path is the sum of the edges' labels. The set of disjunts S or-responds to an STP. S is a solution to the meta-CSP problem if Gd does notontain losed path with negative length (negative yles) [5℄. From the graphGda numerial solution of the problem an be extrated as follows. Let dxiyi be theshortest path distane on Gd from the node xi to yi, without loss of generalitywe an assume a variable xi as referene point, for example x1, in this way thetuple (dx1x1 ; dx1x2 ; : : : dx1xn) is a solution of the original DTP problem. In fat,the previous values represent the shortest distane from the referene node x1 toall the other ones (in partiular dx1x1 = 0). For eah edge xi � yi � ri in Gd asit is well known values (dx1x1 ; dx1x2 ; : : : dx1xn) must hold the Bellman's inequal-ities: dx1xi � dx1yi + ri, that is dx1xi � dx1yi � ri. Hene (dx1x1 ; dx1x2 ; : : : dx1xn)is a solution for the DTP.This view of the onsisteny heking problem is used to de�ne our CSP ap-proah and in partiular is useful to understand our inremental forward hekingmethod.
231

CSP-DTP-SOLVER(dtp, S)1. if ChekConsisteny(dtp)2. then if IsaSolution(dtp)3. then return(S)4. else begin5. SeletVariable(dtp)6. Æ ChooseValue(dtp,)7. CSP-DTP-SOLVER(dtp, S [fÆg)8. end9. else return(Fail)10. end Fig. 1. A CSP solver for the DTP.3 A CSP Algorithm for DTPIn this work we mainly follow the onstraint-based approah of Stergiu andKubarakis [6, 4℄ for solving DTP instanes. Figure 1 shows a CSP proedurewhih starts from an empty solution S and basially exeutes three steps: (a) theurrent partial solution is heked for onsisteny (Step 1) by the funtion Chek-Consisteny. This funtion �lters also the searh spae from inonsistent states.If the partial solution is a omplete solution (Step 2) the algorithm exits. If thesolution is still inomplete the following two steps are exeuted; (b) a (meta)variable (a onstraint i) is seleted at Step 5 by a variable ordering heuristi;() a disjunt xi � yi � ri is hosen (Step 6) from the domain variable Di andadded to S (represented at the lower level as a Gd graph). Hene the solver isreursively alled on the partial updated solution S [fÆg.The ChekConsisteny funtion is the ore of the CSP algorithm, it both up-dates the set of distanes dxiyj and the domain variablesDi by forward heking.In partiular it exeutes two main steps:Temporal propagation. every time a new inequality xi � yi � ri is addedto the Gd graph, the set of distanes dxixj is updated by a simple O(n2)algorithm.Forward heking. After the previous step, for eah not assigned meta-variablethe domain Di is heked for onsisteny (forward heking). Given the ur-rent solution represented by Gd, eah value xi � yi � ri belonging to a notassigned variable and whih indues a negative yles on Gd is removed. Inother words, eah time a value Æi � xi�yi � ri satis�es the test ri+dxiyi < 0,then Æi is removed from the orresponding domain Di. In the ase that onedomain Di beomes empty, the funtion ChekConsisteny returns false.The ChekConsisteny step ontributes to avoid investigation of searh statesproved inonsistent and the other two steps (Steps 5 and 6 of Figure 1) are usedto guide the searh aording to heuristi estimators.SeletVariable. It applies the simple and e�etive Minimum Remaining Values(MRV) heuristi: variables with the minimum number of values are seleted�rst. It is worth noting that the heuristi just ranks the possible hoies
232

deiding whih one to do �rst but all the hoies should be done (it is not anon deterministi searh step).ChooseValue. This represents a non deterministi operator whih starts a dif-ferent omputation for eah domain values. Obviously in our implementationwe use a depth-�rst searh strategy, where there is no partiular values order-ing heuristi. However, in the ase a onstraint (variable) is always satis�edby the urrent partial solution Sp, that is, a onstraint disjunt xi � yi � riexists suh that holds the ondition dyixi < ri, no branhing is reated. Infat, the urrent onstraint is impliitly \ontained" in the partial solutionand it will be satis�ed in all the solution reated from Sp.3.1 Integrating SAT FeaturesThe urrent version of our CSP solver integrates also the so-alled semantibranhing [7℄. This is a feature that in the SAT approah omes for free andthat in the CSP temporal representation is to be expliitly inserted. It avoidsto test again ertain onditions previously proved inonsistent. The idea behindsemanti branhing is the following, let us suppose that the algorithm builds apartial solution Sp = fÆ1; Æ2; : : : Æpg and a not assigned meta-variable is seletedwhih has a disjunt set of two elements fÆ0 ; Æ00g. Let us suppose that the disjuntÆ0 is seleted �rst and no feasible solution exists from the partial solution Sp [fÆ0g. In other words, eah searh path from the node Sp [fÆ0g arrives to aninfeasible state. In this ase the depth-�rst searh proess removes the deisionÆ0 from the urrent solution and tries the other one (Æ00). However, even if theprevious omputation is not able to �nd a solution, it demonstrates that withregard to the partial solution Sp no solution an ontain the disjunt Æ0 . If wesimply try Æ00 we lose the previous information, hene, before trying Æ00 , we addthe ondition :Æ0 (that is x0�y0 > ri) to the partial solution. It is worth nothingthat in this ase it is important to make expliit the semanti branhing byadding the negation beause the values in the domains Di are not self-exlusive.In other ases, for example a sheduling problem, where branhing is done withregard to the temporal ordering of pairs of ativitiesA and B, semanti branhingis not useful. In fat when A before B is hosen the ase B before A is impliitlyexluded.In this setion we have desribed our basi algorithm that integrates some ofthe previous analysis in a meta-CSP searh framework. From now on we all thisalgorithm CSP and it is the base for the desription of the inremental forwardheking of the next setion.3.2 Inremental Forward ChekingThe algorithms for solving DTP introdued at the beginning of this setion isbased on the meta-CSP shema with some additional features. In partiular,it uses the enrihed baktraking shema alled semanti branhing. To furtherimprove the performane of the CSP approah we have investigated aspets on-neted to the quantitative temporal information. This aspet has reeived lessattention in [6, 7, 4℄. In partiular in this setion we introdue a method to
233

signi�antly derease the number of forward heks by using the temporal infor-mation. Its general idea is relatively simple.Rationale. When a new disjunt Æ is added to a partial solution, the temporalpropagation algorithm inside ChekConsisteny updates only a subset of the dis-tanes dxixj (usually a \small" subset). The forward heking test on disjuntsis performed w.r.t. the distanes in the graph Gd. It is of no use to performa forward heking test of the form dxiyi + ri < 0 on a disjunt Æi when thedistane dxiyi has not been hanged w.r.t. the previous state.This basi observation an be niely integrated in CSP with the additional ostof a stati preproessing needed to reate for eah pair of nodes hxi; yji the setof a�eted meta values AMV (xi; yj).A�eted meta-values w.r.t. a pair hxi; yji. Given a distane dxiyj on Gdthe set of a�eted meta values disriminates whih subset of disjunts are af-feted by an update of dxiyj . The set AMV (xi; yj) assoiated to the distanedxiyj (or the pair hxi; yji) is de�ned as the set of disjunts x � y � r whosetemporal variables x and y respetively oinide with the variables yj and xi(AMV (xi; yj) := fx� y � r : x = yj ; y = xig).Given a DTP, the set of its AMV s is omputed one for all with a preproessingstep with a spae omplexity O(m + n2) and a time omplexity O(n3 lnn) (asexplained below eah set AMV is represented as a sorted list aording to thevalues r). The information stored in the AMV s an be used in a new versionof CSP we all \inremental forward heking"(CSPi). It requires a modi�-ation of the ChekConsisteny funtion. The new inremental version of theChekConsisteny works in two main steps:1. The distanes dxiyj are updated and the set of distanes that have beenhanged is olleted.2. given suh set, for eah dxiyj the orresponding AMV (xi; yj) is taken, andits values are forward heked. In partiular, all the set AMV (xi; yj) arerepresented as a list of disjunts sorted aording to the value of r and theforward heking test dxiyj + r < 0 is performed from the disjunt with thesmallest value of r. In this way, when a test fails on the list element Æ, it willfail also on the rest of the list and the forward heking proedure an stopon AMV (xi; yj).In the experimental setion we show that the algorithm CSPi (onstraint-basedsolver with inremental forward heking) strongly improves with respet tothe basi CSP and beomes ompetitive with the best results available in theliterature.4 New Constraint-based Solving Strategies for DTPIn this setion we propose two additional solving strategies for DTP based onthe work [11℄. In partiular we propose: (1) a new variable ordering heuristi;(2) an ar-onsisteny �ltering strategy.
234

The rational behind the �rst method is based on the observation that given aDTP problem, and onsiderd a value Æi � xi�yi � ri, during the solving proessÆi is removed by forward heking from its domain Di when indues negativeyles in the urrent solution represented by the Gd graph. On the basis of theprevious observation we propose the following variable ordering strategy: seletthe subset of variables with minimum number of remaining values xi�yi � ri andwithin this subset, the variable with maximal number of negative oeÆients ri.The values Æi with negative oeÆients ri are ruial to the existene of a solutionto a DTP. In fat, it is simple to see that a DTP instane without negative rivalues has always a solution. On the other hand, the presene of negative rivalues generate negative yles on the graph Gd and indues inonsistent partialsolutions. This strategy has the main purpose of pruning the searh tree in itsearly stages, trying to reate as many as possible negative yles, in this waythe strategy maximizes the probability of �nding negative yles at the earlysteps of the searh tree. As we will see in the experimental setion this strategyis e�etive in the transistion phase of a DTP problem where the probability of�nd a solution is very low.The seond solving method an be explained by giving a new version of theChekConsisteny algorithm used in the general algorithmi template desribedin Figure 1. The aim of this solving method is reduing the dimension of thesearh tree by the appliation of a more e�etive �ltering strategy and to ex-plore the possibility of �nding tradeo�s among number of onsisteny heks,number of visited searh nodes, and CPU time. In partiular, we propose anar-onsisteny �ltering algorithm suh that, among the set of �ltering methodsanalyzed during our experimentation, is the one whih gave the better per-formane both in CPU time and number of onsisteny heks. The proposed�ltering algorithm works in two main steps.1. It applies the inremental forward heking method desribed in Setion 3.2.When at least one variable domain beames empty, ChekConsisteny re-turns false, otherwise the following seond step is exeuted.2. The set of not assigned variables whih are modi�ed by the appliation ofthe �rst step is onsidered, and used to inizialize the propapagation queueQ of an ar-onsisteny �ltering method. The �ltering method is exeutedto remove further values, in the ase at least one variable domain beamesempty, ChekConsisteny returns false, otherwise returns true.Figure 2 shows the ar-onsisteny �ltering algorithm. It takes as an input theset Qinit of modi�ed variables and applies the 2-onsisteny �ltering startegy bythe Revise operator whih is the ore of the method. In this ase the operator hasthe following de�nition: Revise(i, j) removes from the domains Di and Djeah value xi�yi � ri whih does not have support. That is, a value xi�yi � riis removed from the domain Di when there is no value xj � yj � rj in the setDj suh that ri + dxiyj + rj + dxjyi � 0 holds. When the proedure stops, itreturns the set of variables with redued domain of values.In the experimental setion we ompare this strategy with the other ones,trying to �nd some onlusions about the relations among the number of on-sisteny heks (we onsider the test ri+ dxiyj + rj + dxjyi � 0 performed inside
235

Ar-onsisteny(Qinit)1. Q Qinit2. while (Q 6= ; and 6 9Di = ;) do begin3. i Pop(Q)4. foreah not assigned variable j 2 C do5. Q Q [Revise(i, j)6. end Fig. 2. Ar-onsisteny �ltering algorithm.the Revise operator as equivalent to a forward heking test) the total CPU timeand the number of visited searh nodes.5 Experimental EvaluationWe adopt the same evaluation proedure used in [6, 7℄ and use the randomDTP generator de�ned by Stergiou. DTP instanes are generated aording tothe parameters hk; n;m;Li (k: number of disjunts per lause, n: number ofvariables, m: number of disjuntion (temporal onstraints); L: a positive integersuh that all the onstants ri are sampled in the interval [�L;L℄). In partiular,aording to [6, 7℄ experimental sets are generated with k = 2, L = 100 and thedomain of ri is on integers not on reals as in the general de�nition of DTP.Experimental results are plotted for n 2 f10; 12; 15; 20; 25; 30g, where eahurve represents the number of onsisteny heks versus the ratio � = m=n (inboth the results of Figures 3 and 4 � = m=n is an integer value whih ranges from2 to 14). The median number of heks over 100 random samples for di�erentvalues of � is plotted in Figures 3(a)-3(f) where three di�erent type of resultsare ompared: (1) the performane of the best algorithm proposed in [6℄ andlabeled with SK; (2) the results of the SAT-based solving methods, there aretwo methods: the �rst one labeled with TSATIS(2), whih orresponds to thebest results laimed in the work [7℄, and a seond one, labeled with TSATIS(3),whih represents some new results only published on the TSAT web page (see thereferene [7℄ for the URL); (3) the performane of our onstraint-based approah,in partiular the urve labeled with CSPi orresponds to the best results inthe paper [11℄, and the one labeled with CSPineg represent the new resultsobtained with the heuristi strategy de�nited in Setion 4. Figure 4(d) plots theperentage of problems solvable by CSPineg on di�erent n. The algorithms areimplemented in Common Lisp and the reported results are obtained on a SUNUltraSpar 10 (440MHz). All the results are obtained setting a timeout of 1000seonds of CPU time.There are several omments on the CSPineg performane: (a) all the urveshave the same behavior of the previous results. It is on�rmed that the harder in-stanes are obtained for � 2 f6; 7g and for suh values the perentage of solvableproblems beomes < 10%. When the number of variables n inreases the hardestregion narrows; (b) the median number of forward heks show that CSPinegsigni�antly improves over CSPi. This fat shows that the new seletion vari-able strategy is very e�etive, and indiretly on�rms that there ould be further
236

spae for investigating improvements of the CSP approah; () the CSPinegompares very well with the pre-existing approahes, it outperforms the othersfor n 2 f10; 12; 15; 20g and it is ompetitive with TSATIS(3) for n 2 f25; 30g.However, further work will be needed to learly outperform TSATIS(3) on all n.One possible diretion of researh is the use of more e�etive �ltering strategiesto redue the dimension of the searh tree. However, the use of a more powerful�ltering strategy has a prie of an higher omputational time. Hene, the realproblem is �nd a good tradeo� among number of onsisteny heks, number ofsearh nodes and CPU time.Figure 4(a) shows a omparison between the performane of our onstraint-based algorithm CSPineg and the other one whih uses the ar-onsisteny�ltering strategy (labeled with CSPia) introdued in Setion 4. With respetto number of forward heks CSPia performs about one order of magnituteworse than CSPineg, where in the ase of the ar-onsisteny algorithm weonsider the test ri+ dxiyj + rj + dxjyi � 0 as equivalent to a forward hek. Onthe other hand, if we onsider the CPU time performane (Figure 4()), the ratiobetween the CSPia and CSPineg CPU times is less than 3 in the transitionphase. The analysis is ompleted by the results in Figure 4(d), whih show thatthe CSPia strategy is able to redue about 25% the number of searh nodesrespet to the CSPineg performane.About the results of Figure 4 we have the following observations: (a) thear-onsisteny strategy performs an higher number of onsisteny heks re-spet to the forward heking strategy and many of the performed heks areunneessary, in fat, after eah solution modi�ations, many distanes on the Gdgraph remain unhanged, hene many tests of the form ri+dxiyj +rj+dxjyi � 0are unneessarily performed; (b) in our approh a onsisteny hek has O(1)time omplexity (in the TSAT approah is at least O(n)) and this explain thedi�erene in performane between number of onsisteny heks and CPU timeshows in Figure 4.The experimental results on�rm that the CSP approh ontains good ideas,in fat our results are omparable with the ones obtained by the TSAT approahwhih uses one of the best SAT-solver available, in addition, for lower values ofthe ratio � = m=n (� 5) the CSPineg is signi�antly better with respet to allthe others (it is to be noted also that in many pratial appliations the ondi-tion � � 5 is likely to be veri�ed). On the other hand, further investigation isneeded to realize a ompetitive ar-onsisteny solving algorithm, in this exper-imentation some useful observations about tradeo�s among number of forwardheks, number of searh nodes explored, and CPU time are pointed out, andrepresent a good starting point for future researh diretions.6 ConlusionThis paper has extended the onstraint-based approah, initially introdued in[6℄ and later improved in [11℄, to solving the DTP temporal problem. As it ispointed out in the short disussion at the begining of the paper, DTP is goingto beome very relevant in many planning appliation. We propose two newadditional solving methods for DTP. The �rst one is an heuristi strategy for
237

10

100

1000

10000

100000

2 4 6 8 10 12 14

SK
TSATis(2)

CSPi
CSPineg

(a) n = 10 10

100

1000

10000

100000

2 4 6 8 10 12 14

SK
TSATis(2)

CSPi
CSPineg

(b) n = 12
10

100

1000

10000

100000

1e+006

2 4 6 8 10 12 14

SK
TSATis(2)

CSPi
CSPineg

() n = 15 100

1000

10000

100000

1e+006

1e+007

2 4 6 8 10 12 14

SK
TSATis(2)

CSPi
CSPineg

(d) n = 20
100

1000

10000

100000

1e+006

1e+007

2 4 6 8 10 12 14

TSATis(2)
TSATis(3)

CSPi
CSPineg

(e) n = 25 100

1000

10000

100000

1e+06

1e+07

2 4 6 8 10 12 14

TSATis(2)
TSATis(3)
CSPineg

(f) n = 30Fig. 3. Median number of forward heks for n 2 f10; 12; 15; 20; 25; 30g.

238

100

1000

10000

100000

1e+006

1e+007

2 4 6 8 10 12 14

CSPineg
CSPiac

(a) Median number of forward heks forn = 25 10

100

1000

10000

100000

2 4 6 8 10 12 14

CSPineg
CSPiac

(b) Average number of searh nodes forn = 25
0.1

1

10

100

2 4 6 8 10 12 14

CSPineg
CSPiac

() Average CPU time in seonds forn = 25 0

20

40

60

80

100

2 4 6 8 10 12 14

n=10
n=12
n=15
n=20
n=25
n=30

(d) Perentage of solvable problemsFig. 4. Other experimental results.

239

variable ordering whih improves forward heking performane up to an order ofmagnitude respet to the results laimed in [11℄ and allowing a real ompetitionwith the best SAT approah. An interesting area where CSPineg onstantlyoutperforms all other approahes (when � � 5) emerges from an experimentalevaluation. The seond solving method uses a more sophistiated ar-onsisteny�ltering algorithm. In this ase the aim of the method is reduing the dimensionof the searh tree by the appliation of a more e�etive �ltering strategy and toexplore the possibility of �nding tradeo�s among number of onsisteny heks,number of visited searh nodes, and CPU time. The results proposed in thepaper suggest that an useful researh diretion is the de�nition of an inrementalversion of the ar-onsisteny �ltering algorithm.AknowledgmentsThis work is supported by ASI (Italian Spae Ageny) under ASI-ARS-99-96ontrat and by the Italian National Researh Counil.Referenes[1℄ DesJardin, M., Durfee, E., Ortiz, C., Wolverton, M.: A Survey of Researh inDistributed, Continual Planning. AI Magazine 20 (1999) 13{22[2℄ Pollak, M., Horty, J.: There's More to Life Than Making Plans: Plan Manage-ment in Dynami Multiagent Environment. AI Magazine 20 (1999) 71{83[3℄ Tsamardinos, I., Pollak, M.E., Horty, J.F.: Merging Plans with QuantitativeTemporal Constraints, Temporally Extended Ations, and Conditional Branhes.In: Proeedings of the 5th International Conferene on AI Planning Systems(AIPS-2000. (2000)[4℄ Stergiou, K., Koubarakis, M.: Baktraking Algorithms for Disjuntions of Tem-poral Constraints. Arti�ial Intelligene 120 (2000) 81{117[5℄ Dehter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Arti�ial Intel-ligene 49 (1991) 61{95[6℄ Stergiou, K., Koubarakis, M.: Baktraking Algorithms for Disjuntions of Tem-poral Constraints. In: Proeedings 15th National Conferene on AI (AAAI-98).(1998)[7℄ Armando, A., Castellini, C., Giunhiglia, E.: SAT-based Proedures for TemporalReasoning. In: Proeedings 5th European Conferene on Planning (ECP-99).(1999) (available at http://www.mrg.dist.unige.it/~drwho/Tsat).[8℄ Prosser, P.: Hybrid Algorithms for the Constraint Satisfation Problem. Compu-tational Intelligene 9 (1993) 268{299[9℄ Haralik, R., Elliott, G.: Inreasing Tree Searh EÆieny for Constraint Satis-fation Problems. Arti�ial Intelligene 14 (1980) 263{313[10℄ Cook, S., Mithell, D.: Finding Hard Instanes of the Satis�ability Problem: aSurvey. In: Satis�ability Problems: Theory and Appliations. DIMACS Series inDisrete Mathematis and Computer Siene N.35 (1998)[11℄ Oddi, A., Cesta, A.: Inremental Forward Cheking for the Disjuntive TemporalProblem. In Horn, W., ed.: ECAI2000. 14th European Conferene on Arti�ialIntelligene, IOS Press (2000) 108{111[12℄ Chleq, N.: EÆient Algorithms for Networks of Quantitative Temporal Con-straints. In: Proeedings of the Workshop CONSTRAINTS'95 (held in onjun-tion with FLAIRS-95). (1995) 40{45
240

September 14

Improvements to SAT-based conformant planning?
Claudio Castellini1;2, Enrico Giunchiglia2, and Armando Tacchella31 Division of Informatics — Univ. of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK2 DIST — Università di Genova, Viale Causa 13, 16145, Genova,Italia3 Dept. of Computer Science — Rice University, 6100 Main St. MS132, 77005 Houston, Texas

Abstract. Planning as satisfiability is an efficient technique for classical plan-
ning. In previous work by the second author, this approach has been extended to
conformant planning, that is, to planning domains having incomplete informa-
tion about the initial state and/or the effects of actions. In this paper we present
some domain independent optimizations to the basic procedure described in the
previous work. A comparative experimental analysis shows that the resulting pro-
cedure is competitive with other state-of-the-art conformant planners on domains
with a high degree of parallelism.

1 Introduction

Planning as satisfiability [1] is an efficient technique for classical planning. In the classi-
cal setting, the idea behind planning as satisfiability is simple: For any action descriptionD, it is possible to compute a propositional formulatrDi whose satisfying assignments
correspond to the possible transitions caused by the execution of an action inD. In trDi
there is a propositional variableAi for each ground action symbolA, and two propo-
sitional variablesFi andFi+1 for each ground fluentF in D. Intuitively,Fi represents
the value ofF in the initial state of the transition, andFi+1 represents the value ofF
in the resulting state, after having performed the action. Then, the problem of finding a
plan of lengthn leading from an initial stateI to a goal stateG corresponds to finding
an assignment satisfying I0 ^ ^n�1i=0 trDi ^Gn (1)

(see [2] for more details). This simple idea had a lot of impact in the classical plan-
ning community, mainly because it led to very impressive results (see, e.g., [2]). In [3],
the planning as satisfiability approach has been extended toconformant planning, that
is, to planning problems having incomplete information about the initial state and/or
the effects of actions. Some preliminary experimental results reported in [4] show that
the approach can be competitive w.r.t.CGP [5], a conformant planner based on plan
graphs [6].? A special thank to Paolo Ferraris for many fruitful discussions on the topic of this paper. Paolo

has also participated to the design of the architecture ofC-PLAN, and has developed the first
version ofC-PLAN. Norman McCain has made possible to integrate the Causal Calculator inC-PLAN. The first two authors are supported by ASI, CNR and MURST. Thethird author is
partially supported by NSF grants CCR-9700061 and CCR-9988322, BSF grant 9800096, and
a grant from the Intel Corporation.

241

In this paper we present some domain independent optimizations to the basic proce-
dure described in [3]. Some of these optimizations have beenincorporated inC-PLAN,
a SAT-based system for planning in domains whose action description component is
specified using the highly expressive action languageC [7]. As a consequence,C-PLAN

allows for conformant planning in domains with constraints, concurrent actions, and
nondeterminism. A comparative experimental analysis shows thatC-PLAN is competi-
tive with other state-of-the-art conformant planners on domains with an high degree of
parallelism.

The paper is structured as follows. In Section 2 we briefly review the conformant
planning via SAT approach. In Section 3 we discuss the weaknessesof and optimiza-
tions to the basic procedure. In Section 4 we perform the experimental comparative
analysis. We end the paper in Section 5 with some conclusions.

The material here presented is part of [8]. In [8], we give theprecise definitions,
statements, proofs, and we also present some additional experimental analysis.

2 Conformant planning via SAT

This Section introduces some terminology and notation thatwill be used in the rest of
the paper. Precise definitions are not given for lack of space. See [3] or [8].

We start with a set of atoms partitioned into a set offluent symbolsand a set of
action symbols. A formula is a propositional combination of atoms. Anaction is an
interpretation of the action symbols. Intuitively, to execute an action� means to execute
concurrently the “elementary actions” represented by the action symbols satisfied by�.
In the rest of the paper, an action� is represented by the set of action symbols satisfied
by�.

An action descriptionD is a finite set of expressions describing how actions change
the state of the world, i.e., describing their preconditions and (possibly nondeterminis-
tic) effects. Regardless of howD is specified, we assume to have a formulatrDi whose
satisfying assignments correspond to the transitions ofD, as in the classical planning
as satisfiability framework outlined in the introduction.1

A planning problemfor D is characterized by two formulasI andG in the fluent
signature, i.e., is a triple� = hI;D;Gi, whereI andG encode the initial and goal
state(s) respectively. Aplan(of lengthn � 0) is a finite sequence�1; : : : ;�n of actions.

Consider a planning problem� = hI;D;Gi. A plan �1; : : : ;�n is possiblefor� if, starting from an arbitrarily chosen initial state, the consecutive execution of the
actions�1; : : : ; �n can lead to a goal state. According to the results in [9, 7], possible
plans of lengthn correspond to the assignment satisfying (1), as in the classical setting.
However, if we have incomplete information about the initial state and/or actions are
non deterministic, then possible plans are not guaranteed to be valid. As pointed out
in [9], in order for a plan�1; : : : ;�n to be valid we have to check

– that the plan is “always executable” in any initial state, i.e., executable for any initial
state and any possible outcome of the actions in the plan, and

– that any “possible result” of executing the plan in any initial state is a goal state.

1 In [3], we use the term “causally explained transition”: here we simply say transition.

242

P := I0 ^ ^n�1i=0 trDi ^ Gn; V := I0 ^ StateD0 ^ :Z0 ^ ^n�1i=0 trtDi ^ :(Gn ^ :Zn);
function C-SAT() return C-SAT GENDLL (cnf(P), fg).

function C-SAT GENDLL (', �)
if ' = fg then return C-SAT TEST(�);
if fg 2 ' then return False;
if f a unit clausefLg occurs in' g then return C-SAT GENDLL (assign(L; '),� [fLg);L := f a literal occurring in' g;
return C-SAT GENDLL (assign(L; '),� [fLg) or C-SAT GENDLL (assign(L; '),� [fLg).

function C-SAT TEST(�)� := f the set of literals in� corresponding to action literalsg;
foreachfplan�1; : : : ;�n s.t. each element in� is a conjunct in̂ n�1i=0 �i+1i g

if not SAT(̂ n�1i=0 �i+1i ^ V) then exit with �1; : : : ;�n;
return False.

Fig. 1.C-SAT, C-SAT GENDLL andC-SAT TEST.

As shown in [3], we can check if a plan�1; : : : ;�n is valid for� by verifying whetherI0 ^ StateD0 ^ :Z0 ^ ^n�1i=0 �i+1i ^ ^n�1i=0 trtDi j= Gn ^ :Zn: (2)

where

– StateD0 is a formula representing the set of “possible initial states”,
– Z is a newly introduced fluent symbol, and
– trtDi is a formula defined on the basis oftrDi .

Thus, we may divide the problem of finding a valid plan for� into two parts:

1. generatepossible plans�1; : : : ;�n by finding assignments satisfying the formula
(1), and

2. testwhether each generated plan�1; : : : ;�n is valid by verifying whether (2) holds.

This is the idea behind the procedureC-SAT in Figure 1. In the Figure,cnf(P) is a
set of clauses corresponding toP ,L is the literal complementary toL and, for any literalL and set of clauses', assign(L;') is the set of clauses obtained from' by deleting
the clauses in whichL occurs as a disjunct, and eliminatingL from the others. As it
can be seen,C-SAT is the Davis-Logemann-Loveland (DLL) procedure [10], except
that, as soon as one assignment satisfyingcnf(P) is found, the procedureC-SAT TEST

is invoked. Indeed, each assignment satisfyingcnf(P) corresponds to a set of possible
plans, andC-SAT TEST checks whether any of these are valid. Since all the possible
assignments satisfyingcnf(P) are potentially generated and tested,C-SAT is correct
and complete for�; n: Any returned plan is valid for� (correctness); and, if False is
returned, there is no valid plan of lengthn for � (completeness). However,C-SAT only
checks the existence of valid plans of lengthn. Indeed, even assuming that a plan is
returned, we are not guaranteed of its optimality (we say that a plan of lengthn is
optimal if it is valid and there is no valid plan of length< n). Thus, if we are looking
for optimal plans, we have to considern = 0; 1; 2; 3; 4; : : :, and for each value ofn, callC-SAT. This is the idea behind the systemC-PLAN [4, 8].

243

1 2 3 4 5

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

1

2

3

4

5

Fig. 2. A robot navigation problem

3 Improvements to SAT-Based conformant planning

In order to understand how the basic procedure above described works consider the
following robot navigation problem: We are given a5� 5 grid, and1 robot is moving
in it. It starts from the bottom-left corner of the grid and its goal is to reach the right
side. The robot can movenorth; east; south; west, and its duty is not trivial because
there can be some objects in some locations of the grid. In order to have some nonde-
terminism, we assume to have one object in locations(1; 4); (2; 2); (4; 3), and also that
either locations(3; 1); (5; 5) or (3; 5); (5; 1) are occupied. Figure 2 depicts the resulting
scenario. The initial position of the robot is indicated by acircle and occupied locations
are marked with a black square. A dashed line outlines the goal locations. Squares filled
with a pattern indicate that the corresponding locationsmaybe occupied.

According to our definitions in the previous Section, we see that the shortest possi-
ble plans are of length5: Bothfeastg; feastg; feastg; fnorthg; feastg
and feastg; feastg; fnorthg; feastg; feastg
are possible. On the other hand, any optimal valid plan, e.g.,fnorthg; fnorthg; feastg; feastg; fsouthg; feastg; feastg
is at least7 steps long. However, before finding a valid plan,C-PLAN will generate and
test all the possible plans of length 5, 6, and it may generatealso some of the possible
plans of length 7. (The possible plans of length 6 are those inwhich a robot does not
move for one time step). Indeed, the main weaknesses ofC-PLAN are that, at eachn,

1. it generates and testsall the possible plans. Indeed, in many cases we can generate
only a subset of the possible plans, at the same time keeping completeness of the
procedure, and

2. there is no interaction between generation and testing: This may lead to explore
huge portions of the search space without finding a solution because of some wrong
choices at the beginning of the search tree.

In the following Subsections we describe two domain independent optimizations which
alleviate the first two weaknesses.

244

3.1 Eliminating possible plans

The basic idea is to consider only plans which are possible ina “deterministic version”
of the original planning problem. In a deterministic version, all sources of nondeter-
minism (in the initial state and/or in the effects of the actions) are eliminated. This is
possible without losing completeness, and it is a consequence of the following fact.

Consider two planning problems� = hI;D;Gi and�0 = hI 0; D0; G0i in the same
fluent and action signatures, and such that

1. every initial state ofD0 is also an initial state ofD, (i.e.,I 0 � I is valid),
2. for every action�, the set of states ofD in which� is executable is a subset of the

set of states ofD0 in which� is executable,
3. every transition ofD0 is also a transition ofD, (i.e.,trD0 � trD is valid),
4. every goal state of� is also a goal state of�0 (i.e.,G � G0 is valid).

If a plan is not possible for�0 then it is not valid for�. Then, inC-PLAN we can:

– generate possible plans for�0, and
– test whether each of the generated possible plans is indeed valid.

The result is still a correct and complete planning procedure (for the given planning
problem� and lengthn). Indeed, in choosing�0, we want to minimize the set of possible
plans generated and then tested. Hence, we want�0 to be a deterministic version of�.
A planning problem�0 = hI 0; D0; G0i is a deterministic version of� if it also satisfies
the following conditions:

1. I 0 is satisfied by a single state,
2. for each action�, the set of states in which� is executable inD is equal to the set

of states ofD0 in which� is executable,
3. for any action� and state�, there is at most one state�0 such thath�; �; �0i is a

transition ofD0,
4. G is equal toG0.

Of course, unless the planning problem� is already deterministic, there are many
deterministic versions (possibly exponentially many). The obvious question is whether
there is one which is “best” according to some criterion. Going back to our robot navi-
gation problem, we have two deterministic versions:

– If locations(3; 1); (5; 5) are occupied, the shortest plan (in the deterministic do-
main) has lengthN1 = 7,

– If locations(3; 5); (5; 1) are occupied, the shortest plan has lengthN2 = 5.

Indeed, any valid plan for the original nondeterministic planning problem has length
greater or equal to7, i.e., to the max betweenN1 andN2. This is not by chance. In fact,
let S be the set of deterministic versions of�. For each planning problem�0 in S, letN(�0) be the length of the shortest plan for�0. Then, the length of any valid plan for�
is greater or equal to

max�02SN(�0):
On the basis of this fact, we can introduce an order onS according to which�0 2 S is
better than�00 2 S if N(�0) � N(�00): (3)

245

In other words, we prefer the deterministic versions which start to have solutions (each
corresponding to a possible plan for the original planning problem) for the biggest pos-
sible value ofn. In our robot navigation problem, this would lead us to choose the
deterministic version in which the locations(3; 1); (5; 5) are the ones which are occu-
pied.

Determining the setS of deterministic versions of� is in general not an easy task.
Even assuming that determiningS is possible, finding the�0 2 S such to satisfy (3)
for each�00 2 S seems impractical at best. What we propose is the following.For
simplicity, we assume to have nondeterminism only in the initial state: Analogous con-
siderations hold for actions with nondeterministic effects. Under this assumption, we
modify ourC-SAT GENDLL procedure in Figure 1 in order to do the following:

– once an assignment� satisfyingcnf(P) is found, we determine the assignment�0 � � to the fluent variables at time0,
– if the possible plan corresponding to� is not valid, and the planning problem is not

already deterministic, then we disallow future assignments extending�0, by adding
to I the clause consisting of the complement of the literals satisfied by�0.

In this way, we progressively eliminate some initial statesfor which there is a determin-
istic version having a possible plan of lengthn. Given that some initial states have not
yet been eliminated, the corresponding deterministic versions of the original planning
problem have length� n. At the end, i.e., when we get to a deterministic planning
problem�0, �0 is a deterministic version of� and it satisfies (3) for each�00 2 S.

In the example of Figure 2, this optimization has the effect of eliminating the initial
state in whichf(3; 5); (5; 1)g are occupied. This elimination occurs immediately after
the first possible but not valid plan (e.g.,feastg; feastg; feastg; fnorthg; feastg) is
found.

3.2 Incorporating Backjumping and Learning

We do not enter into the details about how backjumping and learning are implemented
in SAT, and assume that the reader is familiar with the topic (see, e.g., [11–13]). Here we
do the same as in [12, 13], except that we have to extend the procedure there described in
order to account for the rejection of assignments corresponding to possible but not valid
plans. Indeed, what we can simply do — assuming� is an assignment corresponding to
a possible but not valid plan� = �1; : : : ;�n — is to returnFalseand set_n�1i=0 :�i+1i
as the initial working reason. However, are there any other (better) choices? According
to the definition of valid plan, there are two possible causeswhy� is not valid:

1. executing�1; : : : ;�k in some initial state can lead to a state�k, and�k+1 is not
executable in�k, or

2. � is always executable in any initial state, but one of the possible outcomes of
executing� in an initial state is not a goal state.

In both cases,C-SAT TEST determines an assignment�0 satisfying^n�1i=0 �i+1i ^ V ,
and thus returnsFalse. Also notice that in the first case,�0 satisfies:Z0; : : : ;:Zk; Zk+1; : : : ; Zn

246

GPT CMBP CplanjP j-jT j Total #s Total #s #pp Last Tot.searchTotal
2-1 0.03 2 0.00 1 1 0.00 0.00 0.00
4-1 0.03 4 0.01 1 1 0.00 0.00 0.00
6-1 0.04 6 0.02 1 1 0.00 0.00 0.00
8-1 0.15 8 0.08 1 1 0.00 0.00 0.00
10-1 0.27 10 0.61 1 1 0.00 0.00 0.00
15-1 17.05 15 42.47 1 1 0.00 0.00 0.00
20-1 MEM � MEM 1 1 0.00 0.00 0.00

Table 1.Bomb in the toilet: Classic version

with k < n. Then we can set_ki=0:�i+1i as the initial working reason for rejecting�:
Any assignment satisfyinĝki=0�i+1i corresponds to a not valid plan. Of course, setting_ki=0:�i+1i as working reason for rejecting� is better than setting_n�1i=0 :�i+1i : sincek < n each disjunct in_ki=0:�i+1i is also in_n�1i=0 :�i+1i , and, if k < n � 1, the
viceversa is not true.

In the example of Figure 2, this optimization has the following effect: If the possible
planfeastg; feastg; feastg; fnorthg; feastg is tried, then it is rejected with a reason
which inhibits the further generation of possible plans beginning withfeastg; feastg.

4 Experimental Analysis

The ideas presented in Section 2 and the optimizations described in Section 3 have
been implemented inC-PLAN. C-PLAN accepts action descriptions specified inC, and
thus it naturally allows for, e.g., concurrency, constraints and nondeterminism. Our cur-
rent version (ver. 2) ofC-PLAN has been implemented on top ofSIM, an efficient SAT
checker developed by our group [13].

To evaluateC-PLAN’s effectiveness we consider an elaboration of the traditional
“bomb in the toilet” problem from [14]. There is a finite setP of packages and a fi-
nite setT of toilets. One of the packages is armed because it contains abomb. Dunking
a package in a toilet disarms the package and is possible onlyif the package has not been
previously dunked. We first consider planning problems withjP j = 2; 4; 6; 8; 10; 15; 20,
andjT j = 1. We compare our system with Bonet’s and Geffner’sGPT [15], and Cimatti’s
and Roveri’sCMBP [16, 17] planners. These are two among the most recent conformant
planners, and according to the results presented in [17], also the most effective to date.
We remark that bothCMBP andGPT are sequential planners: they try to execute at most
one action at each step. Furthermore,CMBP computes all the valid plans, not just one
like GPT andC-PLAN. The results for these three systems are shown in Table 1. In the
table, we show

– for GPT, the total time the system takes to solve the problem,
– for CMBP, the number of steps (column “#s”) (i.e., the number of elementary ac-

tions) and the total time needed to solve the problem (column“Total”),
– for C-PLAN,� the number of steps (i.e., the number of parallel actions) (column “#s”);

247

� the number of possible plans generated before finding a validone (column
“#pp”);� the search time taken by the system at the last step (column “Last”);� the total search time, being the sum over all steps of the timetaken byC-SAT GENDLL andC-SAT TEST (column “Tot.search”); and� the total time taken by the system to solve the problem, excluding the off-line
time necessary to computetrDi andtrtDi (column “Total”). This total time does
not coincide with “Tot.search” because it includes also thetimes necessary for
expanding the formula, and for doing some other computationinternal to the
system.

Times are in seconds, and all the tests have been run on a Pentium III, 850MHz,
512MBRAM running Linux SUSE 7.0. For practical reasons, we stopped the execu-
tion of a system if its running time exceeded 1200s of CPU timeor if it required more
than the 512MB of available RAM. In the table, the first case isindicated with “TIME”
and the second with “MEM”.

As it can be seen from Table 1,C-PLAN takes full advantage of its ability to execute
actions concurrently. Indeed, it solves the problem in onlyone step, by dunking all
the packages at the same time. Furthermore, the time taken byC-PLAN is always not
measurable.CMBP and GPT have comparable performances, withCMBP being better
of a factor of 2-3. However, the most interesting data about these systems is that whenjP j = 20 they both run out of memory. Indeed, bothGPT andCMBP can require huge
amounts of memory:GPT for storing the set of belief states visited, andCMBP for storing
(as Binary Decision Diagrams, BDD [18]) the transition relation and the set of belief
states visited.

We also consider the elaboration of the “bomb in the toilet” in which dunking a
package clogs the toilet. There is the additional action of flushing the toilet, which
is possible only if the toilet is clogged. The results are shown in Table 2 forjP j =2; 4; 6; 8; 10 and jT j = 1; 5; 10. With one toilet, these problems are the “sequential
version” of the previous. With multiple toilets they are similar to the “BMTC” problems
in [17]. As we can see from Table 2, when there is only one toilet C-PLAN “Total” time
increases rapidly compared to the other solvers. Indeed,jT j = 1 represents the purely
sequential case in which the only valid plan consists in repeatedly dunking a package
and flushing the toilet till all the packages have been dunked. On the other hand, we
see, e.g., forjP j = 6 andjT j = 1, that most ofC-PLAN time is not spent in the search.
By analysing these numbers and profilingC-PLAN code, we discovered that

– most of the search time is spent byC-SAT GENDLL : on all the experiments we tried,
each call ofC-SAT TEST takes an hardly measurable time,

– the time taken by the system to expand the formula at each stepcan be consider-
able, but (since the expansion is done once for each step) does not account for the
possible big differences between “Tot.search” and “Total”. This is evident if we
compare row 6-1 in Table 2 with row 6-1 in Table 3: The formulasto expand in the
two cases are equal, and the number of expansion is the same. However, the “Total”
time in Table 2 is significantly bigger than the “Total” time in Table 3,

– the possible big differences are due to the fact that, in our current version, each timeC-SAT TEST is invoked byC-SAT GENDLL , we pay a cost linear in the size of theV formula. This cost is due to the copying of theV formula from one data-structure

248

GPT CMBP CplanjP j-jT j Total #s Total #s #pp Last Tot.searchTotal
2-1 0.10 3 0.00 3 6 0.00 0.00 0.01
2-5 0.04 2 0.01 1 1 0.00 0.00 0.00
2-10 0.05 2 0.03 1 1 0.00 0.00 0.00
4-1 0.04 7 0.00 7 540 0.12 0.15 0.65
4-5 0.23 4 0.79 1 1 0.00 0.00 0.00
4-10 2.23 4 11.30 1 1 0.00 0.00 0.01
6-1 0.09 11 0.04 11 5256115.39 49.39 221.55
6-5 3.29 7 16.80 3 9834656.92 57.34 419.53
6-10 74.15 � MEM 1 1 0.00 0.00 0.01
8-1 0.41 15 0.20 � � � � TIME
8-5 32.07 11 112.48 � � � � TIME
8-10 MEM � MEM 1 1 0.00 0.00 0.01
10-1 2.67 19 1.55 � � � � TIME
10-5 MEM 15 974.45 � � � � TIME
10-10 MEM � MEM 1 1 0.00 0.00 0.04

Table 2.Bomb in the toilet: Multiple toilets, clogging, one bomb.

to another internal ofSIM. This linear cost, multiplied by the number of timesC-
SAT TEST is invoked, accounts for the difference between “Tot.search” and “Total”
in the example 6-1 of Table 2.

We remark that the potentially exponential cost of verifying a plan does not arise in
practice, at least on all the experiments we tried. As a matter of fact, each time a plan
is verified, the corresponding set of unit clauses is added totheV formula and (if the
plan is not valid) the empty set of clauses is generated aftervery few splits. This was
expected (see the Section on implementation in [3]): what weunderestimated is the cost
paid because of copying theV formula. We believe that this cost is also responsible for
many ofC-PLAN’s timeouts, and that a better engineering of the system, meant to solve
this particular problem, will allowC-PLAN to be even more competitive. In any case,C-PLAN’s performances are not too bad compared to the ones of the other solvers:C-
PLAN, CMBP, GPT do not solve 4, 3, 3 problems respectively.

Finally, we consider the same problem as before, except thatwe do not know how
many packages are armed. These problems, with respect to theones previously consid-
ered, present a higher degree of uncertainty. We consider the same values ofjP j andjT j
and report the same data as before. The results are shown in Table 3.

Contrarily to what could be expected,C-PLAN performances are much better on the
problems in Table 3 than on those in Table 2. This is most evident if we compare the
number of plans generated and tested byC-PLAN before finding a solution. For example,
if we consider the four packages and one toilet problem,

– with one bomb, as in Table 2,C-PLAN generates 540 possible plans and takes 0.65s
to solve the problem (0.15s of search time),

– with possibly multiple bombs, as in Table 3,C-PLAN generates 15 possible plans
and takes 0.02s to solve the problem (0.02s is also the searchtime).

249

GPT CMBP CplanjP j-jT j Total #s Total #s #pp Last Tot.search Total
2-1 0.03 3 0.00 3 3 0.00 0.00 0.00
2-5 0.04 2 0.00 1 1 0.00 0.00 0.00
2-10 0.24 2 0.02 1 1 0.00 0.00 0.02
4-1 0.17 7 0.01 7 15 0.01 0.02 0.02
4-5 0.06 4 0.54 1 1 0.01 0.00 0.01
4-10 0.38 4 7.13 1 1 0.02 0.00 0.02
6-1 0.08 11 0.03 11 117 0.25 1.39 2.01
6-5 0.33 7 10.71 3 48 0.62 0.66 1.36
6-10 7.14 � MEM 1 1 0.00 0.00 0.00
8-1 0.06 15 0.17 15 119512.23 147.25 184.29
8-5 2.02 11 90.57 3 268114.84 15.60 317.13
8-10 MEM � MEM 1 1 0.00 0.00 12.68
10-1 0.21 19 1.02 � � � � TIME
10-5 12.51 15 591.33 � � � � TIME
10-10 MEM � MEM 1 1 0.00 0.00 0.06

Table 3.Bomb in the toilet: Multiple toilets, clogging, possibly multiple bombs.

To understand why, consider for simplicity the case in whichthere is only one toilet and
two packagesP1 andP2. Forn = 0

– there are no possible plans if we know that there is one bomb, and
– there is the possible plan consisting of the empty sequence of actions, correspond-

ing to assuming that neitherP1 norP2 is armed, in the case we know nothing. This
plan is not valid, and, because of the determinization,C-PLAN adds a clause to the
initial state saying that at least one package is armed.

Forn = 1, C-PLAN in both cases tries 2 possible plans. If we assume that it generates
first the plan in whichP1 is dunked

– if we further assume that there is one bomb, it rejects it, and—because of the
determinization— it adds a clause to the initial state whichallows to conclude that
the bomb is inP2. Then, forn = 2 andn = 3, any plan in whichP2 is dunked is
possible.

– in the other case, it rejects it, and —because of the determinization— it adds a
clause to the initial state saying that the bomb is not inP1 or is in P2. Then, it
generates the other plan in which onlyP2 is dunked. Also this plan is rejected and
a clause saying that a bomb is inP1 or not inP2 is added to the initial state. Thus,
there is now only one initial state satisfying all the constraints: namely the one in
which bothP1 andP2 are armed. This allowsC-PLAN to conclude that there are no
possible plans forn = 2, and to immediately generate a valid plan atn = 3.

The optimizations described in Section 3 help a lot. Indeed,if we consider the four
packages and one toilet problem, and disable the optimizations,

– if we have one bomb, as in Table 2,C-PLAN generates 2145 possible plans and
takes 0.54s to solve the problem (0.24s in the last step),

250

– if we have possibly multiple bombs, as in Table 3,C-PLAN generates 3743 possible
plans and takes 0.93s to solve the problem (0.72s in the last step).

BesidesC-PLAN’s performances, alsoCMBP and GPT seem to get benefits by the
added nondeterminism. Overall,C-PLAN, CMBP andGPT do not solve respectively2,3 and2 of the considered problems. On the ones they solve, we get roughly the same
picture that we had before:C-PLAN takes full advantage of its ability to concurrently
execute actions, and thus behaves better on problems with multiple toilets.

Overall,GPT, CMBP andC-PLAN do not solve 6, 7, 6 respectively of the 37 examples
that we tried.

5 Conclusions and related work

We have presented some optimizations to the basic procedurefor conformant planning
described in [3]. The procedure and the optimizations have been implemented inC-
PLAN ver. 2, a SAT-based conformant planner based on theSIM SAT library.C-PLAN

incorporates the Causal Calculator [9], and is thus able to reason about action descrip-
tions specified inC. C allows for, e.g., concurrency, constraints, and nondeterminism.
This causesC-PLAN to be one of most expressive conformant planners among the cur-
rently available. From the experimental analysis we get that GPT, CMBP andC-PLAN do
not solve 6, 7, 6 respectively of the 37 examples that we tried. Most important, whileC-
PLAN runs out of time,CMBP andGPT run out of memory. This seems to point out thatC-PLAN range of applicability is different from the range of applicability of CMBP and
GPT. Analogous results supporting this fact are reported in [19] where it is shown that
for classical, highly parallel domains the planning as satisfiability approaches appear to
do best. The fact that SAT-based approaches and BDD-based approaches have different
range of applicability is also confirmed by

– previous work comparing BDD and DLL as SAT procedures, see [20],
– recent work in symbolic reachability in formal verification, see [21, 22].

Beside the already cited [15, 16], two other works on conformant planning are [5]
and [24]. In [5], the authors propose an approach based on plan graphs. The underlying
idea is to construct a planning graph for every possible deterministic version of the
original planning problem. Constraints over planning graphs ensure conformance. The
main weakness of the approach is that there can be exponentially many deterministic
version, causing the creation of exponentially many planning graphs. In [24], Rintanen
reduces the problem of conformant and conditional planningto the problem of deciding
the satisfiability of a Quantified Boolean Formula (QBF). Ourapproach is similar to
Rintanen’s: The search performed by our generate and test procedure resembles the one
of a QBF solver if run on formulas corresponding to conformant planning problems. On
the other hand, by dealing with the original planning problem, we are able to introduce
optimizations —like the ones described in Section 3— which take into account the
nature of the original problem.

In [23], a new algorithm for conformant planning based on “heuristic-symbolic
search”, is proposed and the experimental results are impressive. A detailed analysis
of the paper and the results is in our agenda.

251

References

1. Henry Kautz and Bart Selman. Planning as satisfiability. In Proc. ECAI-92, pages 359–363.
2. Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional logic and

stochastic search. InProc. AAAI-96, pages 1194–1201.
3. Enrico Giunchiglia. Planning as satisfiability with expressive action languages: Concurrency,

constraints and nondeterminism. InProc. KR-2000.
4. Paolo Ferraris and Enrico Giunchiglia. Planning as satisfiability in nondeterministic do-

mains. InProc. AAAI-2000.
5. David Smith and Daniel Weld. Conformant graphplan. InProc. AAAI-98, pages 889–896.
6. Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. InProc. of

IJCAI-95, pages 1636–1642, 1995.
7. Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explanation:

Preliminary report. InProc. AAAI-98, pages 623–630.
8. Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. SAT-based planning in

complex domains: Concurrency, constraints and nondeterminism, 2001. Unpublished.
9. Norman McCain and Hudson Turner. Fast satisfiability planning with causal theories. In

Proc. KR-98.
10. M. Davis, G. Logemann, and D. Loveland. A machine programfor theorem proving.Journal

of the ACM, 5(7), 1962.
11. Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational

Intelligence, 9(3):268–299, 1993.
12. Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to solve

real-world SAT instances. InProc. AAAI-97, pages 203–208.
13. Enrico Giunchiglia, Marco Maratea, Armando Tacchella,and Davide Zambonin. Evaluating

search heuristics and optimization techniques in propositional satisfiability. InProc. of the
International Joint Conference on Automated Reasoning (IJCAR’2001), 2001.

14. Drew McDermott. A critique of pure reason.Computational Intelligence, 3:151–160, 1987.
15. Blai Bonet and Hector Geffner. Planning with incompleteinformation as heuristic search in

belief space. InProc. AIPS, 2000.
16. Alessandro Cimatti and Marco Roveri. Conformant planning via model checking. InProc.

ECP-99.
17. Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic model checking.

Journal of Artificial Intelligence Research, 13:305–338, 2000.
18. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3):293–318, September 1992.
19. Patrick Haslum and Hector Geffner. Admissible heuristics for optimal planning. In

Proc. AIPS-2000, pages 140–149.
20. T. E. Uribe and M. E. Stickel. Ordered Binary Decision Diagrams and the Davis-Putnam

Procedure. InProc. of the 1st International Conference on Constraints inComputational
Logics, 1994.

21. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
Proc. TACAS-99.

22. Fady Copty, Limor Fix, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella, and Moshe
Vardi. Benefits of bounded model checking at an industrial setting. In Proc. CAV-2001.

23. A. Cimatti, E. Giunchiglia, M. Pistore, E. Roveri, R. Sebastiani, and A. Tacchella. NuSMV
Version 2: BDD-based + SAT-based symbolic model checking, 2001. Unpublished.

24. Jussi Rintanen. Constructing conditional plans by a theorem prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

252

Symbolic Techniques for Planning with Extended Goals
in Non-Deterministic Domains

Marco Pistore, Renato Bettin, and Paolo Traverso

ITC-IRST
Via Sommarive 18, 38050 Povo, Trento, Italyfpistore,bettin,traversog@irst.itc.it

Abstract. Several real world applications require planners that dealwith non-
deterministic domains and with temporally extended goals.Recent research is
addressing this planning problem. However, the ability of dealing in practice with
large state spaces is still an open problem. In this paper we describe a planning al-
gorithm for extended goals that makes use of BDD-based symbolic model check-
ing techniques. We implement the algorithm in the MBP planner, evaluate its ap-
plicability experimentally, and compare it with existing tools and algorithms. The
results show that, in spite of the difficulty of the problem, MBP deals in practice
with domains of large size and with goals of a certain complexity.

1 Introduction

Research in classical planning has focused on the problem ofproviding algorithms that
can deal with large state spaces. However, in some application domains (like robotics,
control, and space applications) classical planners are difficult to apply, due to restric-
tive assumptions on the planning problem they are designed (and highly customized)
for. Restrictive assumptions that result from practical experiences are, among others,
the hypotheses about the determinism of the planning domainand the fact that goals
are sets of final desired states (reachability goals). Several recent works address either
the problem of planning for reachability goals innon-deterministic domains(see for
instance [7, 15, 3, 10]), or the problem of planning fortemporally extended goalsthat
define conditions on the whole execution paths (see for instance [8, 1]). Very few works
in planning relax both the restrictions on deterministic domains and on reachability
goals, see, e.g., [11, 14]. These works show that planning for temporally extended goals
in non-deterministic domains is theoretically feasible ina rather general framework.
However, they leave open the problem of dealing in practice with the large state spaces
that are a characteristic of most real world applications. Indeed, the combination of
the two aspects of non-determinism and temporally extendedgoals makes the problem
of plan generation significantly more difficult than considering one of the two aspects
separately. From the one side, planning for temporally extended goals requires gen-
eral synthesis algorithms that cannot be customized and optimized to the special case
of reachability goals. From the other side, compared to planning for extended goals in
deterministic domains, the planner has to take into accountthe fact that temporal prop-
erties must be checked on all the execution paths that resultfrom the non-deterministic
outcomes of actions. These two factors makepractical planning for extended goals in
largenon-deterministic domains an open and challenging problem.

In this paper we address this problem. The starting point is the work presented
in [14], which provides a theoretical framework for planning in non-deterministic do-
mains. In [14], goals are formulas in the CTL temporal logic [9]. CTL provides the abil-
ity to express goals that take into account the fact that a plan may non-deterministically

253

result in many possible different executions and that some requirements can be enforced
on all the possible executions, while others may be enforcedonly on some executions.
In order to show that planning for CTL goals is feasible theoretically, [14] presents a
planning algorithm that searches through an explicit representation of the state-space.
This however limits its applicability to trivial examples.In this paper we describe in
detail a novel planning algorithm based on symbolic model checking techniques, and
evaluate it experimentally. The algorithm is a major departure from that presented in
[14], both theoretically and practically. Theoretically,while [14] is an explicit-state
depth-first forward search, the algorithm presented here isformulated directly by us-
ing symbolic model checking techniques. Starting from the goal formula, it builds an
automaton that is then used to control the symbolic search onsets of states. From the
practical point of view, the algorithm opens up the possibility to scale-up to large state
spaces. We implement the algorithm in the MBP planner [2], and provide an extensive
experimental evaluation. The experiments show that planning in such a general setting
can still be done in practice in domains of significant dimensions, e.g., domains with
more than108 states, and with goals of a certain complexity. We compare MBP with
SIM PLAN [11], a planner based on explicit-state search, and show thesignificant bene-
fits of planning based on symbolic model checking w.r.t. explicit-state techniques. We
also compare the algorithm for extended goals with the MBP algorithms presented in
[6, 7], that have been customized to deal with reachability goals. The general algorithm
for extended goals introduces a rather low overhead, in spite of the fact that it deals with
a much more general problem.

The paper is structured as follows. Section 2 presents the basic definitions on plan-
ning for extended goals in non-deterministic domains. The core of the paper are Sec-
tions 3 and 4. The former presents the planning algorithm, while the latter describes its
implementation in the MBP planner and shows the experimental evaluation. Finally,
Section 5 draws some conclusions and discusses related work.

2 Non-Deterministic Domains, Extended Goals and Plans

In this section we recall briefly the basic definitions for planning with extended goals
in non-deterministic domains. See [14] for examples and further explanations.

Definition 1. A (non-deterministic) planning domainD is a tuple(B;Q;A;!), whereB is the finite set of (basic) propositions,Q � 2B is the set of states,A is the finite
set of actions, and! � Q � A � Q is the transition relation. We writeq a! q0 for(q; a; q0) 2 !.

The transition relation describes how an action leads from one state to possibly many
different states. We require that relation! is total, i.e., for everyq 2 Q there is somea 2 A andq0 2 Q such thatq a! q0. We denote withAt(q) �= fa : 9q0: q a! q0g the

set of the actions that can be performed in stateq, and withExe(q; a) �= fq0 : q a! q0g
the set of the states that can be reached fromq performing actiona 2 At(q).
Definition 2. LetB be the set of basic propositions of a domainD and letb 2 B. The
syntax of an(extended) goalg for D is the following:g ::= > j ? j b j :b j g ^ g j g_g j AX g j EX g jA(gU g) j E(gU g) j A(gW g) j E(gW g):
We define the following abbreviations:AF g = A(>U g), EF g = E(>U g), AG =A(gW?), andEF = E(gW?).

254

Extended goals are expressed with CTL formulas. CTL allows us to express goals that
take into account non-determinism. For instance, it is possible to express the different
forms of reachability goals considered in [6, 7]: the goalEF b requires plans to have
a chance of reaching a set of final desired states whereb holds (“weak” planning),AF b requires plans that are guaranteed to achieve the goal (“strong” planning), andA(EF bW b) requires plans that try to achieve the goal with iterative trial-and-error
strategies (“strong-cyclic” planning). We can express also different kinds of maintain-
ability goals, e.g.,AG g (“maintaing”), AG:g (“avoid g”), EG g (“try to maintaing”),EG:g (“try to avoid g”), andAGEF g (“always maintain a possibility to reachg”).
Moreover, reachability and maintainability requirementscan be combined, like in the
cases ofAFAG g (“reach a set of states whereg can be maintained”). See [14] for a
larger set of examples of extended goals that can be expressed in CTL.

In order to satisfy extended goals, we need to consider plansthat are strictly more
expressive than plans that simply map states of the world to actions to be executed, like
universal plans [16], memory-less policies [3], and state-action tables [6, 7]. In the case
of temporally extended goals, actions to be executed may also depend on the “internal
state” of the executor, which can take into account, e.g., previous execution steps. More
precisely, a plan can be defined in terms of anaction functionthat, given a state and
anexecution contextencoding the internal state of the executor, specifies the action to
be executed, and in terms of acontext functionthat, depending on the action outcome,
specifies the next execution context.

Definition 3. A plan for a domainD is a tuple� = (C; 0; act; ctxt), whereC is a set
of (execution) contexts,0 2 C is the initial context, act: Q � C * A is the action
function, and ctxt: Q� C �Q* C is the context function.

If we are in stateq and in execution context, thenact(q;) returns the action to be
executed by the plan, whilectxt(q; ; q0) associates to each reached stateq0 the new
execution context. Functionsactandctxtmay be partial, since some state-context pairs
are never reached in the execution of the plan.

The execution of a plan results in a change in the current state and in the current
context. It can therefore be described in terms of transitions between state-context pairs,
like (q;) a! (q0; 0). Due to the non-determinism of the domain, a plan may lead to
an infinite number of different executions. In [14] a finite presentation of all possible
executions is obtained by defining anexecution structure. It is a Kripke structure [9]
whose set of states is the set state-context pairs, and whosetransitions are the transitions
of the plan. According to [14], a plan satisfies a goalg if CTL formula g holds on the
execution structure corresponding to the plan.

3 The Symbolic Planning Algorithm

A planning problem requires to build a plan that satisfies thegoal and is compatible with
the given domain (i.e., it is executable). The algorithm we propose works by building an
automaton, called thecontrol automatonthat is used to guide the search of a plan. The
states of the control automaton are the contexts of the plan that is being built, and the
transitions represent the possible evolutions of the contexts when actions are executed.
Control automata are strictly related to the tree automata proposed in [12] as the basic
structure for performing CTL synthesis. The outline of the symbolic planning algorithm
is the following:

255

function symbolic-plan(g0) : Plan
aut := build-aut(g0)
assoc:= build-assoc(aut)
plan := extract-plan(aut; assoc)
return plan

It works in three main steps. In the first step,build-aut constructs the control automa-
ton for the given goal. In the second step,build-assocexploits the control automaton
to guide the symbolic exploration of the domain, and associates a set of states in the
planning domain to each state in the control automaton. Intuitively, these are the states
for which a plan exists from the given context. In the third step,extract-planconstructs
a plan by exploiting the information on the states associated to the contexts.
Control automata.Control automata are the key element for the definition of theplan-
ning algorithm.

Definition 4. A control automatonis a tupleA = (C; 0; T; R), where:
– C is the set of control states (or contexts), and0 2 C is the initial control state.
– T : C ! P(Prop(B) � P(C) � C) is the transition function, where Prop(B) is

any propositional formula constructed from basic propositionsb 2 B.
– R = fB1; : : : ; Bng, withBi � C, is the set of thered blocksof the automaton.

The transitions inT () describe the different valid evolutions from context. For each(P;Es;A) 2 T (), componentP constrains the states where the transitions is appli-
cable, while componentsEs andA describe the contexts that must hold in the next
states, according to the transition. More precisely, each contextE 2 Es must hold for
“some” of the next states, whileA defines the context that must hold for “all the other”
next states. The distinction between contextsEs and contextA is necessary in the case
of non-deterministic domain, since it permits to distinguish between behaviors that the
plan should enforce on all next states, or only on some of them.

ComponentR defines conditions on the valid infinite executions of a plan.These co-
incide with the so called “acceptance conditions” of automata theory [13]. Acceptance
conditions are necessary to distinguish the control statesof a plan where the execution
can persist forever from the control states that should be left eventually in order to allow
for a progress in the fulfillment of the goal. More precisely,a given red blockB 2 R
is used to represent all the control states in which the execution is trying to reach or
achieve a given condition. If an execution of a plan persistsinsideB, then the condition
is never reached, the execution is not accepted and the plan is not valid. If a control state
does not appear in any red block, then it corresponds to a situation where only safety or
maintainability goals have to be fulfilled, so no progress isrequired.
Construction of the control automata.We now define how the control automaton is
constructed from the goal.

Definition 5. The control automatonA = build-aut(g0) is built according to rules:

– 0 = [g0℄ 2 C.

– If [g1; : : : ; gn℄ 2 C then, for each(P;EX;AX) 2 progr(g1 ^ � � � ^ gn) and for
each partitionfEX1; : : : ; EXng ofEX :(P ; forder-goals(AX [EXi) : i = 1::ng ; order-goals(AX)) 2 T ():
Moreover,order-goals(AX [EXi) 2 C for i = 1::n andorder-goals(AX) 2 C.

– For each strong until subgoalg of g0, letBg = f 2 C : head() = gg; if Bg 6= ;,
thenBg 2 R.

256

Each state of the control automaton corresponds to an ordered list of subgoals, rep-
resenting those subgoals that the executor should currently achieve. The order of the
subgoals represents their priorities. Indeed, there are situations in which it is necessary
to distinguish control states that correspond to the same subgoals according to their pri-
orities. Consider for instance the case of goalgAG = AG(AF p ^ AF q), that requires
to keep achieving both conditionp and conditionq. Two different contexts generated
in the construction of the control automaton for this goal are [AF p;AF q; gAG ℄ and[AF q;AF p; gAG ℄. They have the same subgoals, but the first one gives priorityto goalAF p, while the second one gives priority to goalAF q. By switching between the two
contexts, the plan guarantees that both the conditionsp andq are achieved infinitely of-
ten. In general, the first goalhead() in a context is the goal with the highest priority,
and it is the goal that the planning algorithm is trying to achieve first.

In order to be able to define the priority of the subgoals we need to distinguish three
categories of formulas: thestrong untilgoals (A(U) andE(U)), the weak until
goals (A(W) andE(W)), and thetransientgoals (AX , EX , _ , and ^). A
transient goal is “resolved” in one step, independently from their priority: prefixesAX
andEX , for instance, express conditions only on the next execution step. Weak until
goals are allowed to hold forever, without being resolved. Therefore, we assign a low
priority to transient and weak until goals. Strong until goals must be instead eventually
resolved for the plan to be valid. We assign a high priority tothese goals, and, among
the strong until goals, we give priority to the goals that areactive since more steps.
Namely, the longer a strong until goal stays active and unresolved, the “more urgent”
the goal becomes. In Definition 5 the ordering of subgoalssg is performed by function
order-goals(sg;). The input context represents the list of the subgoals in the old
context; it is necessary to determine the priority among thestrong until goals that are
already active in the old context.

One of the key steps in the construction of the transition function of a control au-
tomaton is the functionprogr. It associates to each goalg the conditions thatg defines
on the current state and on the next states to be reached, according to the CTL seman-
tics. This is obtained by unrolling the weak and strong untiloperators, as shown by the
following rules:

– progr(A(gU g0)) = (progr(g) ^ AXA(gU g0)) _ progr(g0) and
progr(E(gU g0)) = (progr(g) ^ EXE(gU g0)) _ progr(g0);

– progr(A(gW g0)) = (progr(g) ^ AXA(gW g0)) _ progr(g0) and
progr(E(gW g0)) = (progr(g) ^ EXE(gW g0)) _ progr(g0).

Functionprogr commutes with the other operators: e.g.,progr(g ^ g0) = progr(g) ^
progr(g0). For instance,progr(AG p) = p^AXAG p, progr(EF q) = q_EXEF p, and
progr(AG p^EF q) = (p^q^AXAG p)_(p^AXAG p^EXEF q). We can assume
that formulaprogr(g) is written in disjunctive normal form, as in the examples above.
Each disjunct corresponds to an alternative evolution of the domain, i.e., to alternative
plans we can search for. Each disjunct consists of the conjunction of three kinds of
formulas, the propositional onesb and:b, those of the formEX f , and those of the
formAXh. In the algorithm, we make this structure explicit and representprogr(g) as
a set of triples

progr(g) = f(Pi; EXi; AXi) j i 2 Ig:
wherep 2 Pi are the propositional formulas of thei-th disjunct ofprogr(g), andf 2EXi (h 2 AXi) if EX f (AXh) belongs to thei-th disjunct.

257

In the case the componentEX of a disjunct(P;EX;AX) contains more than one
subgoal, the generation of the control automaton has to takeinto account that there are
different ways to distribute the subgoals inEX to the set of next states. For instance,
if set EX contains two subgoals, then we can require that both the subgoals hold in
the same next state, or that they hold in two distinct next states. In the general case,
any partitionEX1; : : : ; EXn of the subgoals inEX corresponds to a possible way to
associate the goals to the next states. Namely, for eachi = 1::n, there must be some
next state where subgoalsAX [EXi hold. In all the other states, subgoals inAX must
hold.

A plan for a given goal is not valid if it allows for executionswhere a strong until
goals becomes eventually active and is then never resolved.In order to represent these
undesired behaviors, the construction of the automaton generates a red blockBg for
each set of contexts that share the same “higher-priority” strong until goalg.

Associating states to contexts.Once the control automaton for a goalg0 is built, the
planning algorithm proceeds by associating to each contextin the automaton a set of
states in the planning domain. The association is built by functionbuild-assoc:

1 function build-assoc(aut) : Assoc
2 foreach 2 aut:C do assoc[℄ := Q
3 green-block:= f 2 C : 8B 2 aut:R : 62 Bg
4 blocks := aut:R [fgreen-blockg
5 while (9B 2 blocks : need-refinement(B)) do
6 if B 2 aut:R then foreach 2 B do assoc[℄ := ;
7 while (9 2 B : need-update()) do
8 assoc[℄ := update-ctxt(aut; assoc;)
9 return assoc

The algorithm starts with an optimistic association, that assigns all the statesQ in the
domain to each context (line 2). The association is then iteratively refined. At every
iteration of the loop (lines 5-8), a block of contexts is chosen, and the corresponding
associations are updated. Those states are removed from theassociation, from which
the algorithm discovers that the goals in the context are notsatisfiable. The algorithm
terminates when a fixpoint is reached, that is, whenever no further refinement of the
association is possible: in this case, functionneed-refinement(B) at line 5 evaluates
to false for eachB 2 blocks and the guard of thewhile fails. The chosen block of
contexts may be either one of the red blocks, or the block of states that are not in any
red block (this is the “green” block of the automaton). In thecase of the green block,
the refinement step must guarantee only that all the states associated to the contexts are
“safe”: that is, they never lead to contexts where the goal cannot be achieved anymore.
This refinement (lines 7-8) is obtained by choosing a contextin the green block and by
“refreshing” the corresponding set of states (functionupdate-ctxt). Once the fixpoint
is reached and all the refresh steps on the states inB do not change the association
(i.e., no context inB needs updates), the loop at lines 7-8 is left, and another block is
chosen. In the case of a red block, not only does the refinementguarantee that the states
in the association are “safe”, but also that the contexts in the red block are eventually
left. Indeed, as we have seen, executions that persist forever in the control states of a
red block are not valid. To this purpose, the sets of states associated to the red-block
are initially emptied (line 6). Then, iteratively, one of the control states in the red-
block is chosen, and its association is updated (lines 7-8).In this way, a least fixpoint is
computed for the states associated to the red block.

258

The core step ofbuild-associs functionupdate-ctxt(aut; assoc;). It takes as input
the automaton,aut = (C; 0; T; R), the current association of statesassocand a context 2 C, and returns the new set of states to be associated to.

update-ctxt(aut; assoc;) �= �q 2 Q :9a 2 A; 9(P;Es;A) 2 T ()q 2 states-of(P) ^(q; a) 2 strong-pre-image(assoc[A℄) ^(q; a) 2 multi-weak-pre-image(fassoc[E℄ : E 2 Esg)	:
For a state to be associated to the context, the next states corresponding to the execution
of some actiona 2 A should satisfy the transition conditions of the automaton.Let us
consider an actiona and an element(P;Es;A) 2 T (). FormulaP describes condi-
tions on the current states. Only those states that satisfy propertyP are valid (conditionq 2 states-of(P)).A is the context that should be reached for “all the other” nextstates,
i.e., for all the next states not associated with any contextin Es. Since all the contexts
in Es contain a superset of the goals in contextA, we check, without loss of generality,
thatall the next states are valid for contextA. In order to satisfy this constraint, function
strong-pre-imageis exploited on the setassoc[A℄ of states that are associated to contextA. Functionstrong-pre-image(Q) returns the state-action pairs that guarantee to reach
states inQ:

strong-pre-image(Q) �= f(q; a) : a 2 At(q) ^ Exe(q; a) � Qg:
SetEs contains the contexts that must be reached for some next states. To satisfy this
constraint, functionmulti-weak-pre-imageis called on the setfassoc[E℄ : E 2 Esg
whose elements are the sets of states that are associated to the contexts inEs. Function
multi-weak-pre-imagereturns the state-action pairs that guarantee to cover all the sets
of states received in input:

multi-weak-pre-image(Qs) �=f(q; a) : a 2 At(q) ^ 9i : Qs 7! Exe(q; a) : 8Q 2 Qs : i(Q) 2 Qg:
This function can be seen as a generalization of functionweak-pre-image(Q), that
computes the state-action pairs that may lead to a state inQ: weak-pre-image(Q) =f(q; a) : Exe(q; a) \ Q 6= ;g. Indeed, in functionmulti-weak-pre-image(Qs) an in-
jective map is required to exist from theQs to the next states obtained by the execution
of the state-action pair. This map guarantees that there is at least one next state in each
set of states isQs. We remark that functionupdate-ctxtis the critical step of the algo-
rithm, in terms of performance. Indeed, this is the step where the domain is explored to
compute pre-images of sets of states. BDD-based symbolic techniques [4] are exploited
in this step to obtain a compact representation of the sets ofstates associated to the
contexts, and to allow for an efficient exploration of the domain.

Extracting the planOnce the associationassocfrom contexts to sets of states is built
for automatonaut, a plan can be easily obtained. The set of contexts for the plan coin-
cides with the set of contexts of the control automatonaut. The information necessary
to define functionsactandctxt is implicitly computed during the execution of the func-
tion build-assoc. Indeed, functionsupdate-ctxtandmulti-weak-pre-imagedetermine,
respectively, the actionact(q;) to be performed from a given stateq in a given context, and the next execution contextctxt(q; ; q0) for any possible next stateq0. A plan can
thus be obtained from a given assignment by executing one more step of the refinement
function and by collecting these information.

259

4 Experimental Evaluation

We have implemented the planning algorithm inside the MBP planner. MBP [2] is built
on top of a state-of-the-art symbolic model checker, NUSMV [5]. Further information
on MBP can be found athttp://sra.itc.it/tools/mbp/.

The experimental evaluation is designed to test the scalability of the approach, both
in terms of the size of the domain and in terms of the complexity of the goal. In the
experiments we also draw a comparison with planning algorithms for extended goals
based on an explicit-state exploration of the domain, and inparticular with SIM PLAN .
SIM PLAN [11] implements different approaches to planning in non-deterministic do-
mains. We focus on the logic-based planning component, where extended goals can be
expressed in (an extension of) Linear Temporal Logic (LTL).LTL formulas can be used
in SIM PLAN to describe user-defined, domain- and goal-dependent control strategies,
that can provide aggressive pruning of the search space. In the experiments we test the
performance of SIM PLAN with and without strategies. Another important comparison
term are the algorithms provided by MBP for the specific case of reachability goals
[6, 7]. Some of the experiments are designed to evaluate the overhead of the general
algorithm for extended goals w.r.t. the optimized algorithms.

We consider the “robot delivery” planning domain, first described in [11]. This do-
main describes a building, composed by 8 rooms connected by 7doors. A robot can
move from room to room, picking up and putting down objects. Some rooms in the
domain may be designed as “producer” and as “consumer” rooms: an object of a cer-
tain type can disappear if positioned in the corresponding consumer room, and can then
reappear in one of the producer rooms. Furthermore, in orderto add non-determinism
to the system, some of the doors may be designed to close without intervention of the
robot: they are called “kid-doors” in [11].

The experiments have been performed on a Pentium III 700 MHz with 4 Gb RAM
of memory running Linux. The time limit was set to 1 hour (3600seconds). All the
experiments have been run on 5 random instances. In the tables, we report the average
time required to complete. In the case of MBP, the reported times include also the pre-
processing time necessary in MBP to build the symbolic representation of the planning
domain. In the case only some of the instances terminate in the time limit, we report
the average on the instances that terminate and the numbert of terminated instances as[t=5℄. If all the instances of an experiment do not terminate, the corresponding cell is
left empty.

The first two experiments coincide with the experiments proposed in [11].Experi-
ment 1 consists in moving objects into given rooms and then maintain them there. No
producer and consumer rooms are present in this experiment.We fix the number of ob-
jects present in the domain to 5. The numbern of objects to be moved ranges from 1 to
5, while the numberk of kid-doors ranges from 0 to 7. The CTL goal is the following:AFAG(in(obj1; room1) ^ � � � ^ in(objn; roomn)):
Experiment 2 consists in reactively delivering produced objects to the corresponding
consumer room. The numberp of producer and consumer rooms ranges 1 to 4, while
the numberk of kid-doors ranges form 0 to 7. The CTL goal is the following:AG �^i=1::p in(obji; prodi) ! AF (in(obji; consi))�
The results of these two experiments are reported in Tables 1and 2 for MBP, for SIM -
PLAN with control strategies (SIM PLAN with CS), and for SIM PLAN without control
formulas (SIM PLAN w/o CS). MBP and SIM PLAN exhibit complementary behaviors

260

MBP SIM PLAN with CS SIM PLAN w/o CS
n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3

k = 0 0.7 3.4 22.1 143.9 1094.6 0.5 0.7 1.2 1.6 1.7 311.9 1145.8 -
[1/5]

k = 1 0.7 4.5 33.7 195.3 1219.6 1.0 1.9 6.3 4.8 9.1 106.5 0.5 -
[2/5] [1/5]

k = 2 0.8 5.0 38.9 275.1 1648.2 8.4 11.4 11.5 116.7 128.6 - - -
[4/5]

k = 3 0.8 6.4 41.2 276.9 2163.2 16.0 40.1 378.9 727.0 - - - -
[2/5] [4/5] [3/5] [3/5]

k = 4 1.0 5.6 45.7 336.9 2185.3 22.2 1478.5 275.7 - - - - -
[3/5] [3/5] [2/5]

k = 5 1.2 7.8 43.4 350.2 1866.1 680.5 352.8 420.1 - - - - -
[3/5] [2/5] [1/5]

k = 6 1.2 8.8 52.1 426.2 2505.1 1143.2 - - - - - - -
[3/5] [4/5]

k = 7 1.4 9.4 42.7 303.3 2886.1 - - - - - - - -
[2/5]

Table 1.Results of Experiment 1.

MBP SIM PLAN with CS SIM PLAN w/o CS
p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4

k = 0 0.0 6.4 124.6 2053.6 0.3 2.4 28.7 303.6 33.2 721.1 - -
[4/5] [1/5]

k = 1 0.0 6.1 137.6 2426.9 0.8 15.1 360.2 309.8 9.2 17.8 - -
[3/5] [2/5] [1/5]

k = 2 0.0 6.3 112.5 2684.1 15.0 63.0 918.0 - - - - -
[4/5] [1/5]

k = 3 0.0 5.6 123.1 2063.1 245.7 3289.8 - - - - - -
[1/5]

k = 4 0.1 12.8 130.6 2325.5 12.2 - - - - - - -
[3/5]

k = 5 0.1 11.3 140.6 2944.9 1386.9 - - - - - - -
[1/5]

k = 6 0.1 7.9 130.3 2940.2 1104.6 - - - - - - -
[3/5] [1/5]

k = 7 0.1 12.4 140.8 2703.2 1.8 - - - - - - -
[1/5]

Table 2.Results of Experiment 2.

in these tests. The performance of MBP is left rather unaffected when kid-doors are
added, but the time required to find a plan grows exponentially in the numbern of
objects to be moved and in the numberp of producer rooms. SIM PLAN with control
strategies scales linearly with respect to the numbern of objects, and behaves better
than MBP also when the numberp of producer rooms grows. SIM PLAN , however, suf-
fers remarkably when kid-doors are added to the domain.

Some remarks are in order on the different behaviors of the two systems in the first
experiment in the case the numbern of objects to be moved grows. The number of steps
that the robot must perform grows linearly in the number of objects, while the number of
interesting states of the planning domain grows exponentially. MBP searches for a plan
for all the states in the domain. This explains its exponential grow. The search control
strategies in SIM PLAN , instead, prune most of the search space, at least in the caseno
kid-doors are present. The plan is therefore built in lineartime w.r.t. its length. When
the search control strategies are disallowed in SIM PLAN , a larger portion of the state
space should be explored, and the performance becomes much worse. Indeed, plans are
found in the time limit only for very small values of parametersk, n, andp.

Experiment 3 is designed to compare the performance of the general extended-
goals planning algorithm of MBP with the optimized algorithms provided by MBP
for reachability goals. In this case, the robot is required to reach a state where a goal
condition is satisfied. The goal conditions have the following form:p = in(obj1; room1) ^ � � � ^ in(objn; roomn):

261

k = 0 k = 7
n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5AF p 0.7 3.8 26.9 160.2 1316.3 0.3 0.3 0.4 0.4 0.4

Strong 0.4 2.3 16.1 139.5 766.8 0.3 0.3 0.3 0.4 0.4
SIM PLAN with CS 0.4 0.7 1.2 1.6 2.1 - - - - -
SIM PLAN w/o CS - - - - - - - - - -A(EF pW p) 1.3 9.9 46.1 601.6 2547.3 2.3 12.9 75.0 589.8 -
SC-Global 0.6 3.6 26.0 266.6 1253.3 1.1 5.0 39.9 238.6 1880.6
SC-Local 0.2 1.3 9.3 111.1 615.1 2.1 15.3 152.8 1525.8 -

Table 3.Results of Experiment 3.

We consider three optimized algorithms for reachability goals. The first algorithm tries
to buildStrongplans, i.e., plans that reach conditionp despite non-determinism. It cor-
responds to temporally extended goalAF p. The other algorithms try to buildStrong-
Cyclicplans by exploiting two different approaches, theGlobaland theLocalapproach
described in [6]. We recall from Section 2 that a strong-cyclic plan defines a trial-and-
error strategy, corresponding to the temporally extended goal A(EF pW p). Strong-
cyclic plans cannot be expressed in SIM PLAN : indeed, SIM PLAN is not able to express
those goals that require a combination of universal and existential path quantifiers.

Strong-cyclic plans are interesting in the cases where strong plans do not exist due
to the non-determinism in the domain. In order to allow for such situations, in this
experiment we use a variant of the robot delivery domain, where the robot may fail to
open a kid-door. (In the original domain, the robot always succeeds in opening a door;
kid can close it again only from the next round.) If a kid-dooris on the route of the
robot, no strong plan exists for that problem: the robot can only try to open the door
until it succeeds.

The results of this experiment are shown in Table 3. We reportonly the case of 0
kid-doors (where strong plans always exist), and the case of7 kid-doors (where strong
plans never exist). In all the cases, the numbern of objects to be moved ranges from
1 to 5. The upper part of the table covers the “strong” reachability planning problem
and compares the optimized MBP algorithm (Strong), the general algorithm on goalAF p, and, for completeness, SIM PLAN . In the casek = 7, the times in Table 3 are
those required by MBP to report that no strong plan exists. The lower part of the ta-
ble considers the “strong-cyclic” reachability planning problem and compares the two
strong-cyclic algorithms of MBP (SC-Global and SC-Local) and the general MBP al-
gorithm on goalA(EF pW p). The experiment shows that the generic algorithm for
temporally extended goals compares quite well with respectto the optimized algorithms
provided by MBP. Indeed, the generic algorithm requires about twice the time needed
by the optimized algorithm in the case of the strong plans andabout2:5� the time
of the optimized “global” algorithms for the strong-cyclicplanning. The “local” algo-
rithm behaves better than the generic algorithm (and than the “global” one) in the case
a strong plan exists, i.e.,k = 0; it behaves worse in the case no plan exists, i.e.,k = 7.
This difference in the performances of the MBP algorithms derives from the overhead
introduced in the generic algorithm by the need of managing generic goals, and from
the optimizations present in the specific algorithms. For instance, the Strong and SC-
Local algorithms stop when a plan is found for all the initialstates, while the generic
algorithm stops only when a fixpoint is reached.

Experiment 4 tests the scalability of the algorithm w.r.t. the complexity of the goal.
In particular, we consider the case of sequential reachability goals in the modified do-
main of Experiment 3. Given a sequencep1; : : : ; pt of conditions to be reached, withpi = in(obji;1; roomi;1) ^ � � � ^ in(obji;n; roomi;n);

262

k = 0 k = 7
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6AF 35.1 97.5 158.7 196.1 197.9 290.4 0.3 0.5 0.4 0.6 0.6 0.8

SIM PLAN with CS 1.2 2.9 4.2 6.8 7.8 11.5 - - - - - -
SIM PLAN w/o CS - - - - - - - - - - - -A(EF W) 128.1 195.1 307.7 358.0 583.0 632.4 151.3 279.8 342.8 544.0 642.9 799.4

Table 4.Results of Experiment 4.

we consider the “strong” sequential reachability planningproblemsAF (p1 ^AF (p2 ^ � � �AF (pt)))
and the “strong-cyclic” sequential reachability planningproblemA(EF (p1 ^ � � �A(EF ptW pt))W(p1 ^ � � �A(EF ptW pt))):
In Table 4 we present the outcomes of the experiment. In the strong case, we present
the results also for SIM PLAN . In the strong-cyclic case a comparison is not possible,
as SIM PLAN is not able to represent this kind of goals. The numbern of objects is set
to 3, while the nesting levelt ranges from 1 to 6. The cases of 0 and of 7 kid-doors
are considered. The experiment shows that MBP scales about linearly in the number
of nested temporal operators, both in the case of strong and in the case of strong-cyclic
multiple reachability. In the case of 0 kid-doors and strongreachability, also SIM PLAN
with search control strategies scales linearly, and the performance is much better than
MBP. Without search strategies, SIM PLAN is not able to complete any of the tests in
this experiment.

The experimental evaluation shows that MBP is able to deal with relatively large do-
mains (some of the instances of the considered experiments have more than108 states)
and with high non-determinism, and that the performance scales well with respect to
the goal complexity. In terms of expressiveness, CTL turns out to be an interesting lan-
guage for temporally extended goals. With respect to LTL (used by SIM PLAN), CTL
can express goals that combine universal and existential path quantifiers: this is the
case, for instance, of the strong-cyclic reachability goals. On specific planning prob-
lems, (e.g., reachability problems) the overhead w.r.t. optimized state-of-the-art algo-
rithms is acceptable. The comparison with SIM PLAN shows that the algorithms based
on symbolic techniques outperform the explicit planning algorithms in the case search
control strategies are not allowed. With search control strategies, SIM PLAN performs
better than MBP in the case of domains with a low non-determinism. The possibility
of enhancing the performance of MBP with search strategies is an interesting topic for
future research.

5 Conclusions and Related Work

In this paper, we have described a planning algorithm based on symbolic model check-
ing techniques, which is able to deal with non-deterministic domains and goals as CTL
temporal formulas. This work extends the theoretical results presented in [14] by devel-
oping a symbolic algorithm that fully exploits the potentiality of BDDs for the efficient
exploration of huge state spaces. We implement the algorithm in MBP, and perform
a set of experimental evaluations to show that the approach is practical. We test the
scalability of the planner depending on the dimension of thedomain, on the degree of
non-determinism, and on the length of the goal. The experimental evaluation gives pos-
itive results, even in the case MBP is compared with hand-tailored domain and goal
dependent heuristics (like those of SIM PLAN), or with algorithms optimized to deal
with reachability goals.

263

Besides SIM PLAN , very few attempts have been made to build planners that work
in practice in such a general setting like the one we propose.The issue of “temporally
extended goals” is certainly not new. However, most of the works in this direction re-
strict to deterministic domains, see for instance [8, 1]. Most of the planners able to deal
with non-deterministic domains, do not deal with temporally extended goals [7, 15, 3].

Planning for temporally extended goals is strongly relatedto the “synthesis prob-
lem” [12]. Indeed, the planner has to synthesize a plan from the given goal specification.
We are currently investigating the applicability of the proposed algorithm to synthesis
problems.

In this paper we focus on the case of full observability. An extension of the work to
the case of planning for extended goals under partial observability is one of the main
objectives for future research.

References

1. F. Bacchus and F. Kabanza. Using temporal logic to expresssearch control knowledge for
planning.Artificial Intelligence, 116(1-2):123–191, 2000.

2. P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a Model Based Planner.
In Proc. of IJCAI’01 workshop on Planning under Uncertainty and Incomplete Information,
2001.

3. B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief
space. InProc. AIPS 2000, 2000.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model
Checking:1020 States and Beyond.Information and Computation, 98(2):142–170, 1992.

5. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV : a reimplementation ofSMV.
In Proc. STTT’98, pages 25–31, 1998.

6. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic Planning
via Symbolic Model Checking. Technical report, IRST, Trento, Italy, 2001.

7. A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of Universal
Plans in Non-Deterministic Domains. InProc. AAAI’98, 1998.

8. G. de Giacomo and M.Y. Vardi. Automata-theoretic approach to planning with temporally
extended goals. InProc. ECP’99, 1999.

9. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen,editor,Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics, chapter 16, pages
995–1072. Elsevier, 1990.

10. R. Jensen and M. Veloso. OBBD-based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intellegence Research, 13:189–226, 2000.

11. F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for reactive agents.Artifi-
cial Intelligence, 95(1):67–113, 1997.

12. O. Kupferman and M. Vardi. Synthesis with incomplete informatio. InProc. Int. Conf. on
Temporal Logic, 1997.

13. O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. InProc. CAV’94, 1994.

14. M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in Non-
deterministic Domains. InProc. IJCAI’01. AAAI Press, August 2001.

15. J. Rintanen. Constructing conditional plans by a theorem-prover.Journal of Artificial Intel-
legence Research, 10:323–352, 1999.

16. M. J. Schoppers. Universal plans for Reactive Robots in Unpredictable Environments. In
Proc. IJCAI’87, 1987.

264

OBDD-Based Optimistic and Strong Cyclic
Adversarial Planning

Rune M. Jensen, Manuela M. Veloso and Michael H. Bowling
Computer Science Department,

Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh,

PA 15213-3891, USA
Email: frunej,mmv,mhbg@cs.cmu.edu
Tel.: +1 (412) 268-f3053,1474,3069g

Fax: +1 (412) 268-4801

Abstract

Recently, universal planning has become feasible through the use of efficient
symbolic methods for plan generation and representation based on reduced ordered
binary decision diagrams (OBDDs). In this paper, we address adversarial universal
planning for multi-agent domains in which a set of uncontrollable agents may be
adversarial to us (as in e.g. robotics soccer). We present two newOBDD-based uni-
versal planning algorithms for such adversarial non-deterministic finite domains,
namelyoptimistic adversarial planningand strong cyclic adversarial planning.
We prove and show empirically that these algorithms extend the existing family of
OBDD-based universal planning algorithms to the challenging domains with adver-
sarial environments. We further relate adverserial planning to positive stochastic
games by analyzing the properties of adversarial plans whenthese are considered
policies for positive stochastic games. Our algorithms have been implemented
within the Multi-agentOBDD-based Planner,UMOP, using the Non-deterministic
Agent Domain Language,NADL.

Keywords: adversarial universal planning, multi-agent planning, non-deterministic do-
mains, stochastic games.

1 Introduction
Universal planning, as originally developed by Schoppers (1987), is anapproach for
handling environments with contingencies. Universal planning is particularly appeal-
ing for active environments causing actions to be non-deterministic. A universal plan
associates each possible world state with actions relevant in that state forachieving the
goal. Due to the non-deterministic outcome of actions, a universal plan is executed by
iteratively observing the current state and executing an action in the plan associated
with that state.

In the general case the non-determinism forces a universal plan to cover all the
domain states. Since planning domains traditionally have large state spaces, this con-
straint makes the representation and generation of universal plans nontrivial. Recently,

265

reduced ordered binary decision diagrams (OBDDs,[1]) have been shown to be efficient
for synthesizing and representing universal plans [2, 3, 6]. OBDDs are compact repre-
sentations of Boolean functions that have been successfully applied insymbolic model
checking[7] to implicitly represent and traverse very large state spaces. Using simi-
lar techniques, a universal plan represented as anOBDD can be efficiently synthesized
by a backward breadth-first search from the goal to the initial states in theplanning
domain.1

There are threeOBDD-based planning algorithms:strong, strong cyclicandopti-
mistic planning. Strong and strong cyclic planning were contributed within theMBP
planner [2, 3]. MBP specifies a planning domain in the action description languageAR
[4]. The strong planning algorithm tries to generate a strong plan, i.e., a plan where all
possible outcomes of the actions in the plan change the state to a new state closer to
the goal. The strong cyclic planning algorithm returns a strong plan, if one exists, or
otherwise tries to generate a plan that may contain loops but is guaranteed toachieve
the goal, given that all cyclic executions eventually terminate.

Optimistic planning was contributed within theUMOP planner [6]. UMOP spec-
ifies a planning domain in the non-deterministic agent domain language,NADL , that
explicitly defines a controllable system and an uncontrollable environment as two sets
of synchronous agents. Optimistic planning tries to generate a relaxed plan where the
only requirement is that there exists an outcome of each action that leads to a state
nearer the goal.

None of the previous algorithms are generally better than the others. Their strengths
and limitations depend on the structure of the domain [6]. However, alimitation of the
previous algorithms is that they can not reason explicitly about environment actions,
due to their usage of animplicit representation of the effect of these actions.2 This is
an important restriction for adversarial domains, as for the strong cyclic and optimistic
algorithms, an adversarial environment may be able to prevent goal achievement.

In this paper we contribute two new planning algorithms robust foradversarial en-
vironments:optimistic adversarial planningandstrong cyclic adversarial planning.
These algorithms explicitly represent environment actions. The plannercan then rea-
son about these actions and take adversarial behavior into account. We provethat, in
contrast to strong cyclic plans, strong cyclicadversarialplans guarantee goal achieve-
ment independently of the environment behavior. Similarly, we provethat optimistic
adversarial plans improve the quality of optimistic plans by guaranteeing that a goal
state can be reached from any state covered by the optimistic adversarial plan inde-
pendently of the behavior of the environment. The results are verified empirically in
a scalable example domain using an implementation of our algorithms in the UMOP
planning framework.

Adversarial planning is related to game theory. The main difference is that the goal
is represented in terms of a set of states instead of a utility function. Unlike strong
cyclic adversarial planning, game tree algorithms, such as alpha-beta mini-max [5],
can only guarantee goal achievement if the search is complete and the opponent uses a
strict mini-max strategy. In practice, though, the explicit-state search has to be depth-
bounded which reduces the approach to heuristic action selection. Matrix gamesare
stateless and therefore strictly less expressive. The game-theoretic framework that is
closest in relation to adversarial planning is stochastic games (SGs). Stochastic games
extend Markov decision processes (MDPs) to multiple agents. An MDP has transition
probabilities and is thus more expressive than the non-deterministic transition model
of adversarial planning. However, by translating an adversarial planning problem into
an SG problem by adding non-zero transition probabilities, we prove that an optimistic
adversarial plan exists if and only if the solution to the corresponding positive stochas-
tic game has a positive expected reward. Moreover, if a strong cyclic adversarial plan

1This work assumes that the non-deterministic domain definition is known and the focus is on the devel-
opment of effective universal planning algorithms under this assumption.

2Figure 1(b) illustrates this restricted representation for an example domain introduced in next section.

266

exists, then the solution to the corresponding stochastic game has amaximum expected
reward.

The restricted domain model of adversarial planning is suitable for problems where
transition probabilities are irrelevant (e.g. worst case analysis). The advantage of this
domain model compared to the MDP model of SGs is that it allows the application of
efficient OBDD-based symbolic solution methods that potentially scale to much larger
domains than can be handled by the explicit-state value iteration methods(e.g. [9])
used for solving stochastic games.

The remainder of the paper is organized as follows. Section 2 defines our repre-
sentation of adversarial domains and introduces an example domain used throughout
the paper. Section 3 defines the optimistic and strong cyclic adversarial planning al-
gorithms and proves their key properties. In Section 4 we define and prove properties
of the stochastic game representation of the adversarial planning problems. Finally,
Section 5 draws conclusions and discusses directions for future work.

2 Adversarial Plan Domain Representation

An NADLdomain3 description consists of: a definition ofstate variables, a description
of systemandenvironment agents, and a specification ofinitial andgoal conditions.
The set of state variable assignments defines the state space of the domain.An agent’s
description is a set ofactions. An action has a precondition and an effect defining
in which states the action is applicable and what states the action can lead to. At
each step, all of the agents perform exactly one action, and the resulting action tuple
is a joint action.4 The system agents model the behavior of the agents controllable
by the planner, while the environment agents model the uncontrollableenvironment.
There are two causes of non-determinism inNADLdomains: (1) actions having multiple
possible outcomes, and (2) uncontrollable concurrent environment actions. System and
environment actions are assumed to be independent, such that an action chosen bythe
system in some state can not influence the set of actions that can be chosen by the
environment in that state and vice versa. No assumptions are made about thebehavior
of environment agents. They might beadversarial, trying to prevent goal achievement
of the system agents.

We represent the transition relation of anNADLdomain with a Boolean function,T (S; as; ae; S0). S is the current state,as andae are system and environment actions
andS0 is a next state.T (S; as; ae; S0) is true if and only ifS0 is apossiblenext state
when executing(as; ae) in S.

A planning problemis a tuple(T; I;G), whereT is a transition relation, andI andG are Boolean functions representing the initial and goal states, respectively. A uni-
versal plan, U , is a partial mapping from the domain states to the power set of system
actions. A universal plan would beexecutedby the system agents by iteratively observ-
ing the current state and executing one of the actions in the universal plan associated to
that state.

As an example, consider the domain shown in Figure 1. This domain has a single
system agent that can execute the actions+s and�s, and a single environment agent
that can execute the actions+e and�e. Edges in the figure are labeled with the cor-
responding joint action. There are 5 states, namelyI; F;D;U andG. I andG are the
only initial and goal states, respectively.D is a dead end state, as the goal is unreach-
able fromD. This introduces an important difference betweenF andU , that captures
a main aspect of the adversarial planning problem. We can view the two statesF andU as states in which the system and the environment have different opportunities. Ob-
serve that the system “wins”, i.e., reaches the goal, only if the signs of the two actions

3The reader is referred to [6] for a formal definition ofNADL.
4In the remainder of the paper we will often refer to joint-actions as simply actions.

267

in the joint action are different. Otherwise it “loses”, as there is no transition to the
goal with a joint action with actions with the same sign. The goal is reachable from
both statesF andU . However the result of a “losing” joint action is different forF andU . In F , the system agent remains inF . Thus, the goal is still reachable for a possible
future action. InU , however, the agent may transition to the dead end stateD, which
makes it impossible to reach the goal in subsequent steps.

I D G

−s

+s

+s

−s

U

F

+s

−s

+s −s

+s

−s

I D G

(−s,+e)

(+s,−e)
(+s,−e)

(−s,−e)

(+s,−e)

(−s,+e)

(−s,−e)

(+s,+e)

(+s,+e) (−s,−e)

U

F

(a) (b)

Figure 1: An adversarial planning domain example with initial stateI and goal stateG.
There is a single system and environment agent with actionsf+s;�sg andf+e;�eg,
respectively. (a) shows the explicit representation of environment actions used by our
adversarial planning algorithms, while (b) shows the implicit representation used by
previous algorithms, where the effect of environment actions is modeledby the non-
determinism of system actions.

Now consider how an adversarial environment can take advantage of the possibility
of the system reaching a dead end fromU . Since the system may end inD, when
executing�s in U , it is reasonable for the environment to assume that the system will
always execute+s in U . But now the environment can prevent the system from ever
reaching the goal by always choosing action+e, so the system should completely avoid
the path throughU .

This example domain is important as it illustrates how an adversarial environment
can act purposely to obstruct the goal achievement of the system. We will use it in the
following sections to explain our algorithms. A universal plan, guaranteeing thatG is
eventually reached, isf(I; f+sg); (F; f+s;�sg)g. In contrast to any previous univer-
sal planning algorithm, the strong cyclic adversarial planning algorithm can generate
this plan as shown in Section 3.3.

3 Adversarial Planning

We introduce a generic functionPlan(T; I;G) for representingOBDD-based universal
planning algorithms. The algorithms, including ours, only differ by definition of the
function computing the precomponent (PreComp(T; V)).

The generic function performs a backward breadth-first search from the goalstates
to the initial states. In each step the precomponent,Up, of the visited states,V , is

268

computed. The precomponent is a partial mapping from states to the power set of
system actions. Each state in the precomponent is mapped to a set of relevant system
actions for reachingV .

function Plan(T; I;G)U := ;; V := G
while I 6� VUp := PreComp(T; V)

if Up = ; then return failure
elseU := U [UpV := V [states(Up)

return U
If the precomponent is empty a fixpoint ofV has been reached that does not cover the
initial states. Since this means that no universal plan can be generated that covers the
initial states, the algorithm returnsfailure. Otherwise, the precomponent is added to
the universal plan and the states in the precomponent are added to the set of visited
states. All sets and mappings in the algorithm are represented byOBDDs. In particular,
the universal plan and the precomponent are represented by the characteristic function
of the set of state-actions pairs in the mapping.

3.1 The Optimistic Adversarial Precomponent
The core idea in adversarial planning is to be able to generate a plan for thesystem
agents that ensures that the environment agents, even with complete knowledge of the
domain and the plan, are unable to prevent reaching the goals. We formalizethis idea
in the definition of afair state. A states is fair with respect to a set of states,V , and
a universal plan,U , if, for each applicable environment action, there exists a system
action inU such that the joint action may lead intoV . Let AT (s) denote the set of
applicable environment actions in states for transition systemT . We then formally
have:

Definition 1 (Fair State) A state,s, is fair with respect to a set of states,V , and a
universal plan,U , if and only if 8ae 2 AT (s) : 9as 2 U(s) : T (s; as; ae; s0) ^ s0 2 V .

For convenience we define anunfair state to be a state that is not fair. The optimistic
adversarial precomponent is an optimistic precomponent pruned for unfairstates. In
order to use a precomponent forOBDD-based universal planning, we need to define it as
a boolean function represented by anOBDD. The optimistic adversarial precomponent
(OAP) is the characteristic function of the set of state-action pairs in the precomponent:

Definition 2 (OAP) Given a transition relation,T , the optimistic adversarial precom-
ponent of a set of states,V , is the set of state-action pairs given by the characteristic
function:OAP(T; V)(s; as) = �8ae : A(T)(s; ae)) J(T; V)(s; ae)� ^ (1)�9ae; s0 : T (s; as; ae; s0) ^ s0 2 V ^ s =2 V �

(2)J(T; V)(s; ae) = 9as; s0 : T (s; as; ae; s0) ^ s0 2 V (3)A(T)(s; ae) = 9as; s0 : T (s; as; ae; s0): (4)

Line (1) ensures that the state is fair. It says that, for any state in theprecomponent,
every applicable environment action (defined byA(s; ae)) must also be included in a
joint action leading toV (defined byJ(s; ae)). Line (2) says that every system actionas relevant for a states =2 V must have at least one next state inV .

Figure 2 shows the optimistic adversarial precomponent of stateG for the example
domain (OAP(T;G) = f(F;+s); (F;�s); (U;+s); (U;�s)g). For clarity we include
the transitions of the actions in the precomponent.

269

G

(+s,-e)
(-s,+e)

(+s,-e)
(-s,+e)

(+s,+e)

(-s,-e)
(+s,+e)

(-s,-e)

F

U

Figure 2: The OAP ofG for the example of Figure 1.

3.2 The Strong Cyclic Adversarial Precomponent
A strong cyclic adversarial plan is a strong cyclic plan where every stateis fair. Thus, all
the actions in the plan lead to states covered by the plan. In particular, it isguaranteed
that no dead ends are reached. The strong cyclic adversarial precomponent (SCAP)
consists of a union of optimistic precomponents where each state in oneof the opti-
mistic precomponents is fair with respect to all states in the previous precomponents
and the set of visited states.

The algorithm for generating an SCAP adds one optimistic precomponentat a time.
After each addition, it first prunes actions with possible next states not covered by the
optimistic precomponents and the set of visited states. It then subsequently prunes all
the states that are no longer fair after the pruning of outgoing actions.If all the states
are pruned from the precomponent, the algorithm continues adding optimistic precom-
ponents until no actions are outgoing. Thus, in the final SCAP, we mayhave cycles
due to loops and transitions crossing the boundaries of the optimistic precomponents.
Again, we define the precomponent as the characteristic function of a set of state-action
pairs:

Definition 3 (SCAP) Given a transition relation,T , the strong cyclic adversarial pre-
component of a set of states,V , is the set of state-action pairs given by the character-
istic functionSCAP(T; V)(s; as).

function SCAP(T; V)i := 0; OA0 := OAP(T; V)
while OAi 6= ;SCA := PruneSCA(T; V;OA; i)

if SCA 6= ; then
return SCA

else i := i+ 1OAi := OAP�T; V [(Si�1k=0 states(OAk))�
return ;

270

G

(+s,+e)

(-s,-e)
(+s,+e)

F

U

(+s,-e)

(-s,+e)
(+s,-e)

G

(-s,-e)
(+s,+e)

F

(+s,-e)
(-s,+e)

(a) (b)

Figure 3: (a) The OAP pruned for actions with outgoing transitions; (b) The SCAP ofG, for the example of Figure 1.

function PruneSCA(T; V;OA; i)
repeatSCA := [ik=0OAkVC := V ; VT := V [�Sik=0 states(OAk)�

for j = 0 to iP := PruneOutgoing(T; VT ;OAj)OAj := PruneUnfair(T; VC ; P)VC := VC [states(OAj)
until SCA = [ik=0OAk
return SCAPruneOutgoing(T; V;OA) = OA(s; as) ^ �8ae; s0 : T (s; as; ae; s0)) V (s0)�PruneUnfair (T; V;OA) = OA(s; as) ^ �8ae : A(T)(s; ae)) J(T; V)(s; ae)�SCAP(T; V) adds an optimistic adversarial precomponent until the pruning func-

tion PruneSCA(T; V;OA; i) returns a non-empty precomponent. The pruning func-
tion keeps a local copy of the optimistic adversarial precomponents in an arrayOA.SCA is the precomponent found so far. The pruning continues untilSCA reaches a fix
point. VT is the set of states in the current precomponent. In each iteration transitions
leading out ofVT are pruned. States turning unfair with respect toVC , because of this
pruning, are then removed.VC is the union of all the states in the previous optimistic
precomponents and the set of visited statesV .

For an illustration, consider again the OAP ofG (see Figure 2). Action�s would
have to be pruned fromU since it has an outgoing transition. The pruned OAP is shown
in Figure 3(a). Now there is no action leading toG in U when the environment chooses+e. U has become unfair and must be pruned from the precomponent. Since the
precomponent is non-empty no more optimistic precomponents have tobe added. The
resulting precomponent,SCAP(G) = f(F;+s); (F;�s)g, is shown in Figure 3(b).

271

3.3 Properties of the Algorithms
Optimistic and strong cyclic adversarial planning extend the previousOBDD-based uni-
versal planning algorithms by pruning unfair states from the plan. For example, for
the domain of Figure 1, the strong cyclic planning algorithm would generate the planf(I; f+s;�sg); (F; f+s;�sg); (U; f+sg)g, while the strong cyclic adversarial plan-
ning algorithm, as introduced above, generates the planf(I; f+sg); (F; f+s;�sg)g. It
is capable of pruningU from the plan, since it becomes unfair. Also note that the plan
is not a plain strong plan since progress towards the goal is not guaranteed in every
state. It is easy to verify that there actually is no strong plan for this domain.

In order to state formal properties of adversarial planning, we define thelevelof a
state to be the number of optimistic adversarial precomponents from the goal states to
the state. We can now prove the following theorem:

Theorem 1 (SCA Termination) The execution of a strong cyclic adversarial plan even-
tually reaches a goal state if it is initiated in some state covered bythe plan and actions
in the plan are chosen randomly.

Proof: Since all unfair states and actions with transitions leading out of the strong
cyclic adversarial plan have been removed, all the visited states will be fairand cov-
ered by the plan. From the random choice of actions in the plan it then follows that
each execution of a plan action has a non-zero probability of leading to a stateat a
lower level. Letm be the maximum level of some state in the strong cyclic adversarial
plan (m exists since the state space is finite). Letp denote the smallest probability of
progressing at least one level for any state in the plan. Then, from everystate in the
plan, the probability of reaching a goal state inm steps is at leastpm. Thus, the proba-
bility of reaching a goal state inmn steps is at least1� (1� pm)n, which approaches1 for n!1 . Thus, a goal state will eventually be reached. 2

The termination theorem makes strong cyclic adversarial plans more powerful than
strong cyclic plans since termination of strong cyclic plans only can be guaranteed by
assuming no infinite looping (i.e. a “friendly” environment). For optimistic adversarial
plans, termination can not be proved since dead ends may be reached. However, since
optimistic plans only consist of fair states, there is a chance of progressing towards the
goal in each state:

Theorem 2 (OA Progress)The execution of an optimistic adversarial plan has a non-
zero probability of eventually reaching the goal from each state covered by the plan if
the actions in the plan are chosen randomly.

Proof: This follows directly from the fact that each state in the plan is fair. 2
Optimistic plans do not have this property since unfair states may beincluded in the
plans. Thus, it may be possible for the environment to prevent the system from pro-
gressing towards the goal either by forcing a transition to a dead end or by making
transitions cyclic.

3.4 Empirical Results
The adversarial and previousOBDD-based universal planning algorithms have been
implemented in the publicly availableUMOP planning framework. In order to illustrate
the scalability of our approach, we use a general version of the example domain of
Figure 1, as shown in Figure 4.

The domain has a single system and environment agent with actionsf+s;�s; lg
andf+e;�eg, respectively. The system progresses towards the goal if the signs of the
two actions in the joint action are different. At any time, it can switch from the lower

272

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,−e)

(−s,+e)

(+s,−e)

(−s,+e)

(l,+e)
(l,−e)

(l,+e)
(l,−e)

(l,+e)
(l,−e)

(l,+e)
(l,−e)

...

...

GI

(+s,−e) (+s,−e)

(+s,+e) (+s,+e) (+s,+e) (+s,+e)

G

Figure 4: A general version of the domain shown in Figure 1.

to the upper row of states by executingl. In the upper row, the system can only execute+s. Thus, in these states an adversarial environment can prevent further progress by
always executing+e.

Figure 5 shows, in a double logarithmic scale, the running time andthe plan size as
a function of the number of domain states when finding strong cyclic andstrong cyclic
adversarial plans.5 In this domain both algorithms scale well. The experiment indicate
a polynomial time complexity for both algorithms. For the largestdomain with 65,536
states the CPU time is less than 32 seconds for generating the strong cyclic adversarial
plan. The results also demonstrate the efficiency ofOBDDs for representing universal
plans in structured domains. The largest plan consists of only 38 OBDDnodes.

The strong cyclic adversarial plans only consider executing�s and+s, while the
strong cyclic plans consider all applicable actions. Hence, the strong cyclic adversarial
plans have about twice as manyOBDD nodes and take about twice as long time to
generate. But this slightly higher cost of generating a strong cyclic adversarial plan
pays off well in plan quality. The strong cyclic adversarial plan is guaranteed to achieve
the goal when choosing actions in the plan randomly. In contrast, the probability of
achieving the goal in the worst case for the strong cyclic plan is less than(23)N=2�1,
whereN is the number of states in the domain. Thus, for an adversarial environment
the probability of reaching the goal with a strong cyclic plan is practically zero, even
for small instances of the domain.

4 Relation to Stochastic Games
A stochastic gameis a tuple(n; S;A1:::n; T; R1:::n), wheren is the number of agents,S is the set of states,Ai is the set of actions available to playeri (andA is the joint
action spaceA1 � : : : � An), T is the transition functionS � A � S ! [0; 1], andRi is a reward function for theith agentS ! R. A solution to a stochastic game
is a stationary and possibly stochastic policy,� : S ! PD(Ai), for an agent in this
environment that maps states to a probability distribution over its actions. The goal is to
find such a policy that maximizes the agent’s future discounted reward. In a zero-sum
stochastic game, two agents have rewards adding up to a constant value, in particular,
zero. The value of a discounted stochastic game with discount factor is a vector of

5The experiment was carried out on a 500 MHz Pentium III PC with512 MB RAM running Red Hat
Linux 5.2.

273

0.01

0.1

1

10

100

4 16 64 256 1024 4096 16384 65536
Number of States

SCAP CPU Time/sec.
SCP CPU Time/sec.

SCAP Plan Size/OBDD nodes
SCP Plan Size/OBDD nodes

Figure 5: CPU time and plan size of strong cyclic and strong cyclic adversarial plans
as a function of domain size.

values, one for each state, satisfying the equation:V(s) = max�2PD(As) minae2Ae Xas2As �(as) Xs02S T (s; as; ae; s0) (R(s0) + V(s0))!
For positive stochastic games, the payoffs are summed without a discount factor, which
can be computed asV (s) = lim!1� V(s).

The derived stochastic game from a universal planning problem is given by the
following definition:

Definition 4 A derived stochastic gamefrom a planning problem,(T; I;G), is a zero-
sum stochastic game with states and actions identical to those ofthe planning problem.
Reward for the system agent is one when entering a state inG, zero otherwise. Transi-
tion probabilities,�T , are any assignment satisfying,�T (s; as; ae; s0) 2 (0; 1] if T (s; as; ae; s0)�T (s; as; ae; s0) = 0 otherwise

We can now prove the following two theorems:

Theorem 3 An optimistic adversarial plan exists if and only if, foranyderived stochas-
tic game, the value at all initial states is positive.

Proof: ()) We prove by induction on the level of a state. For a state,s, at level
one, we know the state is fair with respect to the goal states. So, for every action of
the environment, there exists an action of the system that transitionsto a goal state
with some non-zero probability. IfTmin is the smallest transition probability, then if
the system simply randomizes among its actions, it will receive a reward of one with
probability TminjAsj . Therefore,V (s) � TminjAsj > 0. Consider a state,s, at leveln. Sinces
is fair, we can use the same argument as above that the next state will be at alevel less
thann with probability TminjAsj . With the induction hypothesis, we get,V (s) � TminjAsj V (s0) > 0

274

Therefore, all states in the setV have a positive value. Since the algorithm terminates
with I � V , then all initial states have a positive value.(() Assume for some derived stochastic game that the value at all initial states is
positive. Consider running the optimistic adversarial planning algorithm and for, the
purpose of contradiction, assume the algorithm terminates withI 6� V . Consider the
states� =2 V that maximizesV(s�). We know that, since the algorithm terminated,s� must not be fair with respect toV . So there exists an action of the environment,ae,
such that, for allas, the next state will not be inV . So we can bound the value equation
by assuming the environment selects actionae,V(s�) � max� Xas2As �(as) Xs0 =2V T (s�; as; ae; s0) (V(s0))!

Notice that we do not have to sum over all possible next states since weknow the
transition probabilities to states inV are zero (by the selection ofae). We also know
that immediate rewards for states not inV are zero, since they are not goal states.
By our selection ofs� we know thatV(s0) must be smaller than the value ofs�. By
substituting this into the inequality we can pull it outside of the summations which now
sum to one. SoV (s�) = 0, as we need to satisfy:V(s�) � V(s�) � 1
Since any initial state is not inV , V (s�) must have value equal to zero, which is a
contradiction to our initial assumption. So, the algorithm must terminate withI � V ,
and therefore an optimistic adversarial plan exists. 2
Theorem 4 If a strong cyclic adversarial plan exists, then forany derived stochastic
game, the value at all initial states is 1.

Proof: Consider a policy� that selects actions with equal probability among the un-
pruned actions of the strong cyclic adversarial plan. For states not in the adversarial
plan select an action arbitrarily. We will compute the value of executing this policy,V � .

Consider a states in the strong cyclic adversarial plan such thatV � (s) is minimal.
LetL(s) = N be the level of this state. We know that this state is fair with respect tothe
states at level less thanN , and therefore (as in Theorem 1) the probability of reaching
a states0 with L(s0) � N � 1 when following policy� is at leastp = TminjAsj > 0. This
same argument can be repeated fors0, and so after two steps, with probability at leastp2, the state will bes00 whereL(s00) � L(s0) � 1 � N � 2. Repeating this, afterN
steps with probabilitypN , the state will besN whereL(sN) � L(s) �N � 0, sosN
must be a goal state and the system received a reward of one.

So we can consider the value at states when following the policy�. We know afterN steps if it has not reached a goal state it must be in some state still in the adversarial
plan due to the enforcement of the strong cyclic property. In essence, all actions with
outgoing transitions are pruned and therefore are never executed by�. The value of
this state by definition must be larger thanV � (s). Therefore,V � (s) � pNN � 1 + (1� pN)NV � (s)� NpN1� (1� pN)Nlim!1V � (s) � pN1� (1� pN) � 1

275

SoV �(s) = 1 and sinces is the state with minimal value, for any initial statesi,V �(si) = 1. SinceV (si) maximizes over all possible policies,V (si) = 1. 2
5 Conclusion
This paper contributes two newOBDD-based universal planning algorithms, namely
optimistic and strong cyclic adversarial planning. These algorithmsnaturally extend
the previous optimistic and strong cyclic algorithms to adversarial environments. We
have proved that, in contrast to optimistic plans, optimistic adversarial plans always
have a non-zero probability of reaching a goal state. Furthermore, we have proved
and shown empirically that, in contrast to strong cyclic plans, a strong cyclic adversar-
ial plan always eventually reach the goal. Finally, we introduced and proved several
relations between adversarial universal planning and positive stochastic games. An in-
teresting direction for future work is to investigate if adversarial planning can be used
to scale up the explicit-state approaches for solving stochastic games bypruning states
and transitions irrelevant for finding an optimal policy.

Acknowledgments
We wish to thank Scott Lenser for early discussions on this work. The research is sponsored in
part by the Danish Research Agency and the United States Air Force under Grants Nos F30602-
00-2-0549 and F30602-98-2-0135. The views and conclusionscontained in this document are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force, the Danish Research Agency, or the US Government.

References
[1] R. Bryant. Graph-based algorithms for boolean functionmanipulation.IEEE Transactions

on Computers, 8:677–691, 1986.

[2] A. Cimatti, M. Roveri, and P. Traverso. OBDD-based generation of universal plans in non-
deterministic domains. InProceedings of AAAI-98, pages 875–881. AAAI Press, 1998.

[3] A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic domains via
model checking. InProceedings of the 4th International Conference on Artificial Intelli-
gence Planning System (AIPS’98), pages 36–43. AAAI Press, 1998.

[4] E. Giunchiglia, G. Kartha, and Y. Lifschitz. Representing action: Indeterminacy and ramifi-
cations.Artificial Intelligence, 95:409–438, 1997.

[5] T. P. Hart and D. J. Edwards. The tree prune (TP) algorithm. Technical report, MIT, 1961.
Artificial Intelligence Project Memo 30.

[6] R. Jensen and M. Veloso. OBDD-based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intelligence Research, 13:189–226, 2000.

[7] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[8] M. Schoppers. Universal planning for reactive robots inunpredictable environments. In
Proceedings of IJCAI-87, pages 1039–1046, 1987.

[9] L. S. Shapley. Stochastic games.PNAS, 39:1095–1100, 1953.

276

Multi-Agent Off-line Coordination:
Structure and Complexity

Carmel Domshlak and Yefim Dinitz

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israelfdcarmel,dinitzg@cs.bgu.ac.il

Abstract. Coordination between processing entities is one of the mostwidely
studied areas in multi-agent planning research. Recently,efforts have been made
to understand the formal computational issues of this important area. In this paper,
we make a step toward this direction, and analyze a restricted class of coordina-
tion problems for dependent agents with independent goals acting in the same
environment. We assume that a state-transition description of each agent is given,
and that preconditioning an agent’s transitions by the states of other agents is the
only considered kind of inter-agent dependence. Off-line coordination between
the agents is considered. We analyze some structural properties of these prob-
lems, and investigate the relationship between these properties and the complex-
ity of coordination in this domain. We show that our general problem is provably
intractable, but some significant subclasses are inNP and even polynomial.

1 Introduction

Coordination between processing entities is one of the mostwidely studied areas in
multi-agent planning research. Recently, efforts have been made to understand the for-
mal computational issues in this important area. In this paper, we make a additional step
toward this direction. We describe a restricted class of coordination problems for agents
with independent goals acting in the same environment, thatis the strategy of each
agent should be planned while taking into account strategies of other agents as plan-
ning constraints. In these problems, (i) the set of feasibleplans for each agent is defined
by a state-transition graph, and (ii) preconditioning an agent’s transitionsby thestates
of other agents is the only considered kind of inter-agent dependence. For this problem
class, off-line coordination is considered: structural and computational properties are
investigated, and both tractable and intractable subclasses are presented. Although the
examined class of problems can be seen as significantly restricted, its place in multi-
agent systems was already discussed in AI literature, e.g. [6, 14, 22]. We believe that
the formal model we suggest for the presented problem class can serve as a basis for
further extensions toward a representation of richer multi-agent worlds yet preserving
convenience for computational analysis.

In the area of multi-agent coordination, we identify two main research directions:
multi-agent collaborationandsynthesizing multi-agent plans. In multi-agent collabora-
tion, goal achievement is a team activity, i.e., multiple agents collaborate towards the

277

achievement of an overarching goal. During the last decade,various theories for multi-
agent collaboration, e.g. [9, 18, 20], and several generic approaches for corresponding
planning, e.g. [11, 25], were proposed; for an overview of this area see [17]. In addi-
tion, a few formal computational results concerning the coalition formation are found
for both benevolent [24] and autonomous [12] agents.

Synthesizing multi-agent plans addresses synchronization between agents that work
on independent goals in the same environment. In [16], centralized merging of precon-
structed individual agent plans is presented, and it is based on introducing synchro-
nization actions. In [15], a heuristic approach that exploits decomposed search space
is introduced. Whereas in [15, 16] methods for merging plansat the primitive level are
described, in [8] a strategy for plan merge on different levels of hierarchical plans is pre-
sented. In [1, 2], a generic approach for distributed, incremental merging of individual
plans is suggested: the agents are considered sequentially, and the plan for the currently
processed agent is synchronized with the plans chosen for the previously processed
agents. Besides, a few more algorithmic approaches to an application-specific plan syn-
chronization are proposed in [7, 23, 26]. Note that all theseapproaches for inter-agent
synchronization assume that the personal plans are alreadyconstructed, and that the
merging operation is considered only on this fixed set of individual plans (possibly, cer-
tain local modifications of the plans may be allowed). This essentially restricts not only
the quality, but even the ability to find a coordinated plan.

A wider formal model for multi-agent systems that concerns both determining per-
sonal agent plans and their synchronization, is suggested in [22]. With respect to this
model, the cooperative goal achievement problem is defined.It can be roughly stated
as follows: Given a set of benevolent agents in the same environment, each one with
its own, independent goal, does there exist a satisfying system of coordinated personal
plans? In [22], this problem is shown to bePSPACE-complete.

In this paper, we concentrate on a particular class of the cooperative goal achieve-
ment problem. In this problem class, which we denote to assts (state-transition sup-
port), an action (transition) of an agent can be constrainedby the states of other agents.
Following [6, 22], each agent is assumed to be representableas a finite automaton. As in
[8, 15, 16], the coordination process is assumed to be off-line and centralized. Note that
we are not dealing here with many complementary issues of multi-agent systems such
as determining agent behavior, collaboration establishing, decision process distributing,
etc.

We suggest to represent ansts problem domain using a graph language. The two
interrelated graphical structures of our model are as follows:

1. Thestrategy(di)graph: the state-transition graph describing behavior of an agent.
2. Thedependence(di)graph: description of the dependence between the agents.

The strategy graph compactly captures all alternative personal plans for the corre-
sponding agent: its strategies correspond to thepathsfrom the source node to the target
node in its strategy graph. Transition of an agent along an edge is conditioned by the
statesof the agents on which it depends, i.e., their locations at certain nodes in their
strategy graphs. The reader can find some relation between our strategy graphs and the
interactive automata of [21]. The main differences are thatwe (i) address precondition-
ing, not interaction between agents, and (ii) consider off-line planning.

278

p //

��

q
))SSSSSSSs 55jjjjjjj

**TTTTTTT tr ;;vvvvvvvv
22eeeeeeeeeeeeeee(a) P //___ Q

((P
P

P
P

P
Pp P //P

��
S

��

q QPP

((PPS 66nnnnnnn

((QQQQQQQ s Snnn

66nnSQQQ

((QQQ
t Tr R{{{ =={{{ Rffffff

22ffffff(b) R 44iiiiiiiiii

Fig. 1. Examples of strategy graphs for: (a) single agent, (b) two-agent group: transitions ofX
depend on states ofY .

The nodes of the dependence graph correspond to the agents. An edge(p; q) appears
in the dependence graph if some action of the agentq depends on the state of the agentp. We define subclasses ofsts, mainly with respect to structural properties of the de-
pendence graph, and analyze their complexity. The complexity is measured in terms of
the total size of the strategy graphs and the size of the dependence graph (which is ac-
tually the number of agents). We show that our general problem is provably intractable,
but some significant subclasses are inNP and even polynomial. As far as we know, such
an analysis of the relation between the structural and the computational properties of
a multi-agent coordination problem was not done in previousresearch. Note that this
paper presents only first results of our ongoing research, thus, in particular, we do not
discuss relative significance of the presented problem classes, and we do not provide
wide final conclusions.

The rest of the paper is organized as follows: Section 2 presents and discusses our
model. Section 3 is devoted to the basic case of two agents. Section 4 introduces a clas-
sification ofsts’s subclasses, and presents additional complexity results. For the proofs
and some of the detailed algorithms we refer to the technicalreport [13]. Concluding
remarks are given in Section 5, together with some discussion of related issues and
future work.

2 Graphical Model for STS
In this section we define two graphical structures of thests problem domain. The
strategy graphGA captures the alternative personal strategies of an agentA. The agent’s
states are represented by the nodes ofGA. Each (directed) edge represents a possible
transition between the two corresponding states. Multipletransitions between two states
are possible. If a transition is conditioned, then the corresponding edge has alabel
which describes the condition; when a transition can be doneunder several alternative
conditions, this is modeled by multiple edges, each labeledby a single condition. There
are two unique nodes inGA, the source node and the target node, which represent the
initial and goal states ofA, respectively. The possible agent’s strategies are represented
by the paths from the source node to the target node. For an illustration see Fig. 1(a),
where the possible strategies are:spqt, sprt, sprqt, srt, srqt.

The size of this structure is linear in the length of the problem description. Observe
that in general, the number of different, potentially applicable, strategies may be expo-
nential in the size of the problem even for an acyclic structure; for a general structure,
this number can, formally, be infinite.

279

Consider a pair of agentsX andY so thatX depends onY in the following sense:
each transition ofX is preconditioned by a certain state ofY . In graph terms, each
edge inGX is labeled by the name of a node inGY . An example is given in Fig. 1(b),
where the inner graph modelsX and the outer one modelsY . Note that there are two
transitions ofX from the statep to the stater which are preconditioned by different
states ofY . The following pair of strategies forX andY is coordinated: The agentX
begins from states andY begins from stateS. Subsequently, (i)X moves top, (ii)Y moves toP , while X is in p, (iii) X moves toq, (iv) Y moves toQ, (v) X moves
to t, and finally, (iv)Y moves toT . We denote this coordinated multi-agent strategy
by the sequenceh(s; p)(S; P)(p; q)(P;Q)(q; t)(Q;T)i. The other possible coordinated
plans forX andY areh(s; p)(p; r)(S;R)(r; t)(R; T)i andh(s; r)(S;R)(r; t)(R; T)i.
No other coordinated pair of strategies exists. For example, if the agents begin withh(s; p)(S; P)(p; r)i, thenX cannot leaver, since it is impossible forY to reachR after
being inP .

In general, there are several agentsA1; A2; : : : ; An with strategy graphsGi = GAi ,1 � i � n. We say that an agentAi depends on an agentAj if transitions ofAi have
states ofAj as preconditions. Note that a few agents may depend on the same agent, and
an agent may depend on a few other agents. Hence, a transitionof Ai is preconditioned
by states of agents thatAi depends on; in general, a transition can depend on a part of
them.

Thedependence graphG is a digraph whose nodes areAi, 1 � i � n, and there is
an edge fromAj toAi if agentAi depends on agentAj . In what following, we identify
nodes ofG with the corresponding agents. Likewise, we identify the nodes and edges
of Gi with the states and transitions ofAi, respectively. An edge ofGi has a compound
label, each component of which is a state of an immediate predecessor ofAi in G (i.e.,
a node in the strategy graph of this predecessor).

Both the strategy graph and the dependence graph can be constructed straightfor-
wardly, given ansts problem. Likewise, the structural properties of the dependence
graph, which are investigated in this paper, can be verified in low polynomial time in
the size of the graph.

In this paper,eachtransition of an agent is preconditioned by the states ofall agents
that this agent depends on, if the opposite is not declared explicitly. We consider only
connected dependence graphs. The reason is that otherwise the set of agents can be
divided into disjoint subsets that can be considered independently.

A natural motivation for a pair of agentsX andY as above is thatX fulfills some
mission, whileY supports it. In practice, the mission ofX may be a movement towards
a target, whileY either watchesX from certain observation points, or feeds it from
certain warehouses, or protects it from some fortified positions. Such a support is usual
in military and is wide-spread in various other activities.For example, a workerX as-
sembles some compound product, while a mobile craneY moves the (half-assembled)
product from one working place ofX to another. In general, when there are several
agents, each agent is supported by a few agents, and in turn, supports a few other agents.

Having read this far the reader may argue that it is possible that we never know
an agent’s behavior in complete detail, and even if we do, thenumber of states that

280

represent an agent’s behavior may be very large. In this case, exploiting and even con-
structing strategy graphs seems to be infeasible.

Indeed, it is not realistic to present detailed models of many real-life systems as
finite state machines. However, as it is argued in [22], the representation an agent uses
need not present the world in sufficient detail to require more expressive description
language. Intuitively, it is possible to distinguish between the physical state of agents
and their computational state. It is the computational state that we have difficulty in
modeling by finite-state machines. However, the computational state of an agent is not
accessible to the other agents. On the other hand, a finite-state description can serve
well as a representation of the physical state. A wider discussion of these and other
issues of finite-automata-based knowledge representationand reasoning can be found
in [22]. Likewise, number of finite-automata-based architectures are discussed in the AI
literature, e.g., see [6].

In case that the number of parameters describing the physical state (and thus the size
of the state space) is still large, it is often possible to take advantage of the structure of
an agent in order to derive a concise description of its state. In particular, an agent may
be viewed as being composed of a number of largely independent components, each
with its own state. Each such component (such as robot’s hand, motor, wheel, etc.) can
be represented by an agent, whose physical state is relatively simple, since it describes
a particular feature of a complex system. In this case, the strategy graphs of the agents
are expected to be of reasonable size.

3 The Basic Case of Two Agents

In the rest of the paper, we study the complexity of various multi-agent coordination
problems based on the model suggested above. In this sectionwe demonstrate our tech-
niques on solving the basic case of agentX depending on agentY . Given the strategy
graphs ofX andY , we build a new graph describingX restricted byY . As a result,
our problem is reduced to the known problem of finding a source-to-target path in this
new graph. Such a reduction becomes possible because of the locality of the original
restrictions.

We describe a solution of our problem as an interleaved sequence of transitions of
agentsX andY , as was shown in Section 2. Let us analyze the structure of a general
coordinated plan� for these agents. As mentioned above, private strategies for X andY are source-to-target paths inGX andGY respectively, and we denote them by�X
and�Y . Let us divide�X into intervals�X1 , �X2 , : : :, �Xm of constancy of labels: all
edges (transitions) in�Xi are labeled (preconditioned) by the same node (state)Ni ofY . TheY ’s path�Y is also divided by the nodesNi into some parts. The considered
plan is as follows: (1) IfN1 6= sY , then agentY moves fromsY to stateN1 along the
initial part of�Y ; (2) AgentX moves along�X1 to its end; (3)Y moves fromN1 toN2
along the next part of�Y ; (4)X moves along�X2 , etc. Finally, ifNm 6= tY , then agentY moves fromNm to tY along the final part of�Y . For illustration see Figure 2.

Let see what “degrees of freedom”� has. For simplicity of notation, we denotesY
by N0 andtY by Nm+1. Observe that the replacement of part of�Y betweenNi toNi+1, 0 � i � m, by any other path fromNi toNi+1 retains the plan feasible. That is,

281

�sY �tY� � �N1 � �N2 �Nm �. . .

:::GY
sX tX�X1 �X2 �Xm: : :� �� � � � � � � �:::GX

Fig. 2. Relation between personal strategies ofX andY
the only requirement for feasibility of�X is theexistenceof such a path for each label
change along�X . Moreover, replacement of any�Xi by another path between its ends
such that all its edges are labeled byNi retains the plan feasible.

Lets now consider building such a coordinated plan� . We take as a central issue
finding an appropriate path�X . As mentioned above, the only critical points in its build-
ing are the moments of label change along�X : if the label changes fromNi to Ni+1,
then a “connecting” path fromNi to Ni+1 in GY must exist. In order to include into
the same framework the cases in which the label of the first edge is notsY and the label
of the last edge is nottY , we extendGX as follows. We add toGX a dummy source~sX , with an edge(~sX ; sX) labeledsY , and a dummy target~tX , with an edge(tX ; ~tX)
labeledtY , and consider path~�X from ~sX to ~tX in this extended graph~GX . It is easy
to see that existence of connecting paths inGY for all critical points in~�X is necessary
and sufficient for the feasibility�X . Indeed, the twin path�Y is the concatenation of
all connecting paths, for0 � i � m. Therefore, the only information we need in order
to build an appropriate path in~GX is whether two edges may be consequent on a path~�X in the above sense, for all pairs of adjacent edges in~GX .

Information on existence of a path between any pair of nodesN 0 andN 00 of GY
(reachabilityof N 00 from N 0) can be obtained by a preprocessing ofGY . Appropri-
ate algorithms are widely known and are very fast; the paths themselves, if any, are
provided by these algorithms as well, e.g. see [10]. Hence, we can form the following
database for all pairs of consequent edges in~GX : If an edgee0 labeledN 0 enters some
node and an edgee00 labeledN 00 leaves the same node, then the pair(e0; e00) is marked
“permitted” if eitherN 0 = N 00 or N 00 is reachable fromN 0 in GY . For example see
Figure 3, where dotted lines show the permitted edge pairs.p P //P

S
��

q QKK
KK

%%KKKK~s S // s Sssss

99ssssSLLLL

%%LLLL

t T // ~tr R������� BB������ Riiiiiiiii

44iiiiiiiii

��

$$

..

""

00

44

BB

,, �� 77

00

Fig. 3. Illustration of ~GX with the correspondingGXjY .

282

In fact, the suggested construction provides a reduction ofthe problem of finding a
path~�X as defined above to a known problem of finding a path in a graph. Let the new
graphGXjY have theedgesof ~GX as nodes, and let its edges be defined by the permitted
pairs of edges in~GX .1 Now, all we need is a path from the source node(~sX ; sX) to the
target node(tX ; ~tX) in GXjY . Clearly, such a path defines the corresponding path in~GX immediately.

Figure 4 summarizes the algorithm for finding a coordinated plan for agentX de-
pending on (“supported by”) agentY . This algorithm is, evidently, polynomial. The
reader can “execute” it by himself on the example given in Figure 3. This example is
the same as the one in Section 2, and any of the three feasible coordinated plans listed
there can be obtained as the result of such an execution. Thuswe have achieved our
first result, and in what following, we use the presented approach for analyzing other
variants ofsts.

1. Extending strategy graphGX to ~GX .
2. Preprocessing of strategy graphGY : finding a path from any node to any other node (in fact,

it is sufficient to do this for the node pairs needed in the nextphase only).
3. Constructing permitted-edge graphGXjY .
4. Finding a source-to-target path inGXjY , if any, or reporting on non-existence of a coordi-

nated plan, otherwise.
5. Reconstructing from the path found in phase 4 a path~�X in ~GX and its abridged variant�X

in GX .
6. Building a path�Y in GY as the concatenation of paths found at phase 2, for all label

changes along~�X .
7. Outputting properly interleaved strategies�X and�Y .

Fig. 4. Algorithm for the basicsts problem.

Theorem 1. There exists a polynomial time algorithm that, given a pair of agentsX;Y ,
in whichX depends onY , determines existence of a coordinated plan and finds such a
plan, if exists.

This result can be easily generalized to finding anoptimalcoordinated plan. Assume
that the cost function is the sum or the product of weights of states and/or transitions
used in the plan. Since in step 4 of the algorithm, an arbitrary path can be chosen, let us
choose an optimal path; this suffices for global optimality.Any algorithm for finding a
cheapest path in a graph can be used, e.g. see [10].

Now let us require, in addition,simplicityof Y ’s strategy, i.e., let us forbidY to visit
the same state twice. A motivation for this can be that each state ofY relates to some
consumable resources. It turns out that this seemingly non-essential change in the prob-
lem definition, change the problem to beNP-complete. Informally, the reason for this
complexity worsening is that the locality of precondition is thus broken. This result is
mainly interesting from the theoretical point of view, since it points on a computational
sensitivity of our original problem.1 Such a construction is a variant of the so called “edge graph”known in graph theory; the

addition in our case is the exclusion of non-permitted edgesfrom it.

283

4 Results for Some Other Subclasses ofSTS
In this section we discuss various additional complexity results forsts. Problem classes
are defined mainly by the structure of their dependence graph. Moreover, both results
and methods depend crucially on the number and size of possible agent strategies: if
both of them are polynomial in the size of problem domain, then we distinguish such a
class asbounded. Figure 5 summarizes the achieved results, and each box in the figure
denotes ansts’s subclass.

The notation is as follows: First, eachsts subclass is denoted with respect to the
form of the dependence graph:C stands fordirected chain, F^ for directed fork(graph
with exactly one node with a non-zero outdegree),F_ for directed inverse fork(graph
with exactly one node with a non-zero indegree),P for polytree(digraph whose un-
derlying undirected graph is a tree), andS for singly-connected DAG(directed acyclic
graph with at most one directed path between any pair of nodes). Second, the subscript
denotes the number of agents:k stands for a constant bound, andn indicates no bounds.

By default, we assume that each transition of an agent is preconditioned by the
states ofall agents that this agent depends on. Alternatively,� in a superscript denotes
a possibility ofpartial dependence.� in a superscript denotes the requirement that
all strategies chosen aresimple. Note that casesC 2 and C �2 have been discussed in
Section 3. Provably Intratable C nNP�ompleteS�n F_�n Fn̂ C �2Polynomial C �kC k

OO

C �2OOP�n
OO

F_n
OO

C 2__??

OO

??��Bounded General�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 5. Complexity results forsts
Coordinating General Agents A natural generalizationC n of the classC 2 (as in
Section 3) occurs when there is a dependence chain: agentsAi, 1 � i � n, withAi dependent onAi�1, i � 2. For simplicity of notation, let us abridgeAi to i in
superscripts (e.g.,Gi instead ofGAi).

Our approach forC n is to iterate the analysis and the algorithm forC 2 along the
dependence chain. A naive scheme is as follows. For processing pairA3; A2, we need a
database oncoordinatedreachability inG2. Observe that our algorithm forC 2 applied
to pairA2; A1 provides such an information for nodess2; t2; clearly, this can be done

284

for any pair of nodes ofG2. Considering pairA2; A1, lets check reachability and store
paths, if any, forall pairs of nodes inG2, as required. Now, we are as if sure that if
we would determine a coordinated plan for pairA3; A2 based on the above reachability
relation forA2, a corresponding strategy forA1 will be obtained easily. Hence, the
situation withA3; A2 is similar to that withA2; A1, and thus we can iterate up toAn.
Personal coordinated strategies can be consequently reconstructed, fromAn�1 to A1.

However, this scheme turns to be inconsistent. The point is that, in fact, the coor-
dinated reachability relation inG2 is on itsedges, not on its nodes, and it is captured
by the edge graphG2j1. Therefore, informally, the right approach is to create an edge
graph forG3 basing onG2j1, not onG2. This idea of recursive edge graph creating can
be generalized for dependence chain of arbitrary length. Using this method, we never
arrive at a deadend as in the naive scheme, and we can obtain any coordinated plan for
this problem. For the detailed algorithm forC n , together with an illustrating example
of its execution and a counterexample for the naive approachwe refer to the technical
report [13].

Theorem 2. (I) There exists an algorithm forC n that determines existence of a coor-
dinated plan and finds such a plan, if exists. This algorithm is polynomial in the total
size of strategy graphs and exponential inn; thusC k is proved to be polynomial.
(II) C n has instances with exponentially sized minimal solutions.

The proof of the exponential lower bound is by the following example. Each agentAi, 2 � i � n, has the strategy graph as follows:si ti�1 ** qi si�1 **si�1jj titi�1jj

The strategy graph forA1 looks the same, except that its edges are unlabeled. This prob-
lem instance has a unique minimal coordinated plan of total length2n+1�2 transitions.

By showing thatC n is provably intractable, theorem 2 emphasizes our motivation
for exploiting various structural restrictions onsts in order to find problem classes
which are polynomial, e.g.,C k , or at least belong toNP. In particular, the subclass ofC n strategy graphs of which are acyclic can be easily shown to belong toNP. However,
the question of its exact hardness is still an open question.The same question is open
for the decision version ofC n .

Theorem 3 summarizes the complexity results for some other classes ofsts (for
notations see Section 4).

Theorem 3. (I) There exists a polynomial time algorithm forF_n that determines exis-
tence of a coordinated plan and finds such a plan, if exists.(II) There exists a polynomial
time algorithm forC �2 that determines existence of a coordinated plan and finds such a
plan, if exists.(III) Fn̂ is NP-complete.(IV) F_�n is NP-complete.

Proof sketch. (I)In F_n , a single agentA1 depends on a group of independent
supporting agentsA2; : : : ; An. The algorithm is similar to that forC 2 . The idea is that
several preconditions on the same transition can be checkedindependently.(II) C �2 is
an extension ofC 2 in which onlysomeof transitions of the supported agent depend on
the state of the supporting agent. The algorithm forC �2 is similar to that forC 2 , except
that a certain modification of the permitted-edge graphGXjY is used.(III),(IV) In Fn̂ , a

285

Main
RepeatPruningwhile strategy sets are changing.
If all strategy sets are empty, then report that no coordinated plan exists.

Otherwise, performConstruction.
Pruning

For all edges(Aj ; Ai) in G do:
For each�i 2 Si do:

If Compatibility-Check(�i; �j) returns false for all�j 2 Sj then remove�i from Si.
For each�j 2 Sj do:

If Compatibility-Check(�i; �j) returns false for all�i 2 Si then remove�j from Sj.
Compatibility-Check(�i; �j)

If l(�i)[j℄ with neighboring repetitions removed is a subsequence of�j ,
then return true, else return false.

Construction
Pick any agentA and any strategy for it.
TraverseG undirectly from the nodeA. For each visited nodeA0, choose any strategy ofA0

that is compatible with the strategy chosen for the node fromwhich we came toA0.
Fig. 6. Algorithm for P�n.

single agentA1 supports a group of agentsA2; : : : ; An. The membership inNP can be
easily shown for bothFn̂ andF_�n . In turn, the proofs of hardness forFn̂ andF_�n are
by polynomial reductions from 3-SAT andPATH WITH FORBIDDEN PAIRSproblems,
respectively.

Remarks:The algorithm forC n can be extended forC �n , similarly to the extension
of the C 2 algorithm forC �2 . Results presented for the cases of chain and inverse fork
dependence graphs can be generalized to the case of dependence graph being a tree
directed to its root.

Coordinating Bounded Agents In this section we consider the class of problems for
which the number and size of strategies for each agent is polynomial in the size of the
problem domain. In what follows, such agents are referred asbounded. Let us denote
bySi the set of allowed strategies�i of Ai (i.e., source-to-target paths inGi). We show
that if a dependence graph forms a polytree thensts for bounded agents is polynomial.
However, its extension to singly connected directed graphsis alreadyNP-complete.

ConsiderP�n. Notice that any polytree is an acyclic graph. Denote byl(�i) the se-
quence of edge labels along�i, and bylj(�i)[j℄ the projection ofl(�i) to the nodes ofGj . Figure 6 presents our algorithm forP�n.

Theorem 4. (I) There exists a polynomial time algorithm forP�n with bounded agents
that determines existence of a coordinated plan and finds such a plan, if exists.(II) S�n
for bounded agents isNP-complete.

Proof sketch. (I)According to the analysis in Section 3, the condition ofCompatibility-
Checkconfirms that the checked pair�i; �j is coordinated. Therefore, convergence of
the pruning process ensures that for each agentA: (i) any one of its strategies has at least
one supporting strategy of each predecessor ofA in G, and (ii) any one of its strategies
supports at least one strategy for any successor ofA in G. Hence, ifConstructionhas a

286

personal strategy to begin with, then it is surely successful. Polynomiality holds, since
each execution ofPruningdecreases the total number of personal strategies.

(II) Membership inNP for S�n is straightforward, and the hardness proof is by a
polynomial reduction from 3-SAT.

5 Discussion and Conclusions

In this paper, we concerned coordination for a set of agents that work on independent
goals in the same environment. We investigated a particularfamily of the problems of
finding coordinated plans, where actions of an agent depend on the local states of cer-
tain other agents. First, we presented a graphical representation model for this family of
problems. Then, we classified these problems mainly according to the structural proper-
ties of the model. In the main part of the paper, we analyzed the computational proper-
ties of various problem classes. We gave polynomial solutions for several classes, while
for some other we proved theirNP-completeness or even provable intractability. A num-
ber of unsolved problems remains for the further research. The suggested approach—to
find a sufficiently formal description for some problem classes, and to analyze their
computational properties—seems to be prospective in the multi-agent area. Following
some additional observations with respect to results presented in this paper.

First, let each agent and its states be considered as a multi-valued variable and its
values, respectively, and let the set of agents’ transitions be considered as a set of oper-
ators over the above variables. In this context, our resultsconcern complexity analysis
in the area of classical planning over multi-valued variables [4, 19]. Specifically, our
results address the planning problems over multi-valued variables and only unary (=
single effect) operators.

Second, in our model, each agent is assumed to be assigned to apersonal goal,
which is independent of the personal goals of all other agents. However, a supporting
agent may have no explicit personal goal, while supporting activities of some other
agents may be its only destiny. This particular relaxation can be immediately added
into the presented model, with no negative impact on the computational properties of the
problems. The coordinated group of dependent agents can be viewed as collaborating
towards the achievement of some global goal.

Third, in this work we address only groups of fully controlled entities. Therefore,
in particular, our results do not concern state-transitionsettings where agent’s strategy
depends on uncontrolled environment, like that studied in [3, 5].

In the future, we plan to continue with analysis of various classes ofsts. In ad-
dition, we want to examine other forms of dependence betweenthe agents, and other
forms of goal(s) definition for a group of agents. This issueswill be examined in the
context of their impact on the complexity of coordination. We also plan to address re-
lated optimization problems.

References

1. R. Alami, F. Ingrand, and S. Qutub. A Scheme for Coordinating Multi-robot Planning Ac-
tivities and Plans Execution. InProceedings of the 13th European Conference on Artificial
Intelligence – ECAI, Brighton, UK, 1998.

287

2. R. Alami, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot Cooperation through Incremental
Plan-Merging. InInternational Conference on Robotics and Automation, 1995.

3. R.C. Arkin and T. Balch. Cooperative Multiagent Robotic Systems. InArtificial Intelligence
and Mobile Robots. MIT Press, 1998.

4. C. Bäckström and B. Nebel. Complexity Results for SAS+ Planning.Computational Intel-
ligence, 11(4):625–655, 1995.

5. T. Balch, G. Boone, T. Collins, H. Forbes, D. MacKenzie, and J. Santamaria. Io, Ganymede
and Callisto - a Multiagent Robot Trash-Collecting Team.AI Magazine, 16(2):39–53, 1995.

6. R. A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation, 2(1):14–23, 1986.

7. Y. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative MobileRobotics: Antecedents and
Directions.Autonomous Robots, 4, 1997.

8. Bradley J. Clement and Edmund H. Durfee. Top-Down Search for Coordinating the Hier-
archical Plans of Multiple Agents. InProceedings of the Third International Conference on
Autonomous Agents, pages 252–259, 1999.

9. P. Cohen and H. Levesque. Confirmations and Joint Actions.In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 951–957, 1991.

10. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press.
11. K. Decker and V. Lesser. Designing a Family of Coordination Algorithms. In M. Huhns and

M.Singh, editors,Readings in Agents, pages 450–457. Morgan Kaufmann, 1998.
12. M. d’Inverno, M. Luck, and M. Wooldridge. Cooperation Structures. InProceedings of the

Fifteenth International Joint Conference on Artificial Intelligence, pages 600–605, 1997.
13. C. Domshlak and Y. Dinitz. Multi-Agent Off-line Coordination: Structure and Complexity.

Technical Report CS-01-04, Department of Computer Science, Ben-Gurion University, 2001.
14. G. Dudek, M.R.M. Jenkin, E. Milios, and D. Wilkes. A Taxonomy for Multi-Agent Robotics.

Autonomous Robots, 3(4):375–397, 1996.
15. E. Ephrati and J. S. Rosenschein. Divide and Conquer in Multi-Agent Planning. InProceed-

ings of the Twelfth National Conference on Artificial Intelligence, pages 375–380, 1994.
16. M. Georgeff. Communication and Interaction in Multi-Agent Planning. InProceedings of

the Third National Conference on Artificial Intelligence, pages 125–129, 1983.
17. B. Grosz. Collaborative Systems.AI Magazine, 17(2):67–85, 1995.
18. B. Grosz and S. Kraus. Collaborative Plans for Complex Group Action. Artificial Intelli-

gence, 86(2):269–357, 1996.
19. P. Jonsson and C. Bäckström. State-variable Planningunder Structural Restrictions: Algo-

rithms and Complexity.Artificial Intelligence, 100(1–2):125–176, 1998.
20. D. N. Kinny, M. Ljungberg, A. S. Rao, E. S. Sonenberg, G. Tidhar, and E. Werner. Planned

Team Activity. InArtificial Social Systems, volume 830 ofLNCS, pages 227–256. 1994.
21. J. McCarthy and P. Hayes. Some Phylosophical Problems from the Standpoint of Artificial

Intelligence.Machine Intelligence, 6, 1969.
22. Y. Moses and M. Tennenholtz. Multi-entity Models.Machine Intelligence, 14:63–88, 1995.
23. C. Le Pape. A Combination of Centralized and DistributedMethods for Multi-agent Planning

and Scheduling. InProceedings of the IEEE International Conference on Robotics and
Automation – ICRA, pages 488–493, 1990.

24. O. Shehory and S. Kraus. Formation of Overlapping Coalitions for Precedence-ordered
Task Execution among Autonomous Agents. InProceedings of the Second International
Conference on Multi-Agent Systems, pages 330–337. AAAI Press / MIT Press, 1996.

25. R. C. Smith. The Contract Net Protocol: High-level Communication and Control in a Dis-
tributed Problem Solving.IEEE Transactions on Computers, 29(12), 1994.

26. S. Yuta and S. Premvuti. Coordinating Autonomous and Centralized Decision Making to
Achieve Cooperative Behaviors between Multiple Mobile Robots. InProceedings of Inter-
national Conference on Intelligent Robots and Systems, pages 1566–1574, 1992.

288

Approximate Planning for Fatored POMDPsZhengzhu Feng1 and Eri A. Hansen21 Computer Siene Department, University of Massahusetts, Amherst MA 02062fengzz�s.umass.edu,2 Computer Siene Department, Mississippi State University, Mississippi State MS 39762hansen�s.msstate.eduAbstrat. We desribe an approximate dynami programming algorithm for partiallyobservable Markov deision proesses represented in fatored form. Two omplemen-tary forms of approximation are used to simplify a pieewise linear and onvex valuefuntion, where eah linear faet of the funtion is represented ompatly by an alge-brai deision diagram. In one form of approximation, the degree of state abstrationis inreased by aggregating states with similar values. In the seond form of approx-imation, the value funtion is simpli�ed by removing linear faets that ontributemarginally to value. We derive an error bound that applies to both forms of approx-imation. Experimental results show that this approah improves the performane ofdynami programming and extends the range of problems it an solve.1 IntrodutionMarkov deision proesses (MDPs) have been adopted as a framework for researh in deision-theoreti planning [2℄. An MDP models planning problems for whih ations have an uner-tain e�et on the state, and sensory feedbak ompensates for unertainty about the state.An MDP is said to be ompletely observable if sensory feedbak provides perfet state infor-mation before eah ation. It is said to be partially observable if sensory feedbak is noisyand provides partial and imperfet state information. Although a partially observable Markovdeision proess (POMDP) provides a more realisti model, it is muh more diÆult to solve.Dynami programming is the most ommon approah to solving MDPs. However, a draw-bak of lassi dynami programming algorithms is that they require expliit enumeration ofa problem's state spae. Beause the state spae grows exponentially with the number of statevariables, these algorithms are prey to Bellman's \urse of dimensionality." To address thisproblem, researhers have developed algorithms that exploit a fatored state representationto reate an abstrat state spae in whih planning problems an be solved more eÆiently.This approah was �rst developed for ompletely observable MDPs, using deision trees toaggregate states with idential values [3℄. Improved performane was subsequently ahievedusing algebrai deision diagrams (ADDs) in plae of deision trees [9℄. A fatored represen-tation has also been exploited in solving POMDPs using both deision trees [4℄ and ADDs [8℄.Although this approah improves the eÆieny with whih many problems an be solved,it provides no bene�t unless there are states with idential values that an be aggregated.Moreover, the degree of state abstration that an be ahieved in this way may be insuÆ-ient to make a problem tratable. Many large MDPs and even small POMDPs resist exatsolution. Thus, there is a need for approximation to allow a tradeo� between optimality and
289

omputation time. For ompletely observable MDPs, an approah to approximation thatinreases the degree of state abstration by aggregating states with similar (rather thanidential) values has been developed, using both deision trees [5℄ and ADDs [13℄. This paperdevelops a related approah to approximation for the partially observed ase.Whereas the value funtion of a ompletely observable MDP an be represented by asingle ADD, the value funtion of a POMDP is represented by a set of ADDs. This makesdevelopment of an approximation algorithm for fatored POMDPs more omplex. We de-sribe two omplimentary forms of approximation for POMDPs. The �rst is losely relatedto approximation in the ompletely observable ase and involves simplifying an ADD byaggregating states of similar value. In the seond form of approximation, the set of ADDsrepresenting the value funtion is redued in size, by removing ADDs that ontribute onlymarginally to value. The latter tehnique is often used in pratie, but has not been analyzedbefore in the literature. We larify the relationship between these two forms of approxima-tion, and derive a bound on their approximation error. Experimental results show that thisapproah to approximation an improve the rate of onvergene of dynami programming,as well as the range of problems it an solve.2 Partially observable Markov deision proessesWe assume a disrete-time POMDP with �nite sets of states S, ations A, and observationsO. The transition funtion Pr(s0js; a), observation funtion Pr(ojs0; a), and reward funtionr(s; a) are de�ned in the usual way. We assume a disounted in�nite-horizon optimalityriterion with disount fator � 2 (0; 1℄. A belief state, b, is a probability distribution over Smaintained by Bayesian onditioning. As is well-known, it ontains all information neessaryfor optimal ation seletion. This gives rise to the standard approah to solving POMDPs.The problem is reast as a ompletely observable MDP with a ontinuous, jSj-dimensionalstate spae onsisting of all possible belief states, denoted B. In this form, the POMDP anbe solved by iteration of a dynami programming operator T that improves a value funtionV : B ! < by performing the following \one-step bakup" for all belief states b.Vn(b) = TVn�1(b) = maxa2A (r(b; a) + �Xo2OPr(ojb; a)Vn�1(bao)) ; (1)where r(b; a) =Ps2S b(s)r(s; a); bao is the updated belief state after ation a and observationo; and Pr(ojb; a) =Ps;s02S Pr(o; s0js; a)b(s) where Pr(o; s0js; a) = Pr(s0js; a)Pr(ojs0; a).The theory of dynami programming tells us that the optimal value funtion V � is theunique solution of the equation system V = TV , and that V � = limn!1 TnV0, where Tndenotes n appliations of operator T to any initial value funtion V0. We note that Tnorresponds to the value iteration algorithm.An important result of Smallwood and Sondik [11℄ is that the dynami-programmingoperator T preserves the pieewise linearity and onvexity of the value funtion. A pieewiselinear and onvex value funtion V an be represented by a �nite set of jSj-dimensionalvetors of real numbers, V = fv0; v1; : : : ; vkg, suh that the value of eah belief state b isde�ned as: V (b) = max0�i�kXs2S b(s)vi(s):
290

Several algorithms for omputing the dynami-programming operator have been developed.The most eÆient, alled inremental pruning [6℄, relies on the fat that the updated valuefuntion Vn of Equation (1) an be de�ned as a ombination of simpler value funtions, asfollows: Vn(b) = maxa2A V an (b)V an (b) = Xo2O V a;on (b)V a;on (b) = r(b; a)jOj + �Pr(ojb; a)Vn�1(bao)Eah of these value funtions is also pieewise linear and onvex, and an be represented bya unique minimum-size set of vetors, denoted Vn, Van, and Va;on respetively.The ross sum of two sets of vetors, U and W , is de�ned as U �W = fu+wju 2 U ; w 2Wg. An operator that takes a set of vetors U and redues it to its unique minimum formis denoted PRUNE(U). Using this notation, the minimum-size sets of vetors de�ned abovean be omputed as follows: Vn = PRUNE ([a2AVan)Van = PRUNE (�o2OVa;on)Va;on = PRUNE �fva;o;ijvi 2 Vn�1g� ;where va;o;i is the vetor de�ned byva;o;i(s) = r(s; a)jOj + � Xs02S Pr(o; s0js; a)vi(s0): (2)Inremental pruning gains its eÆieny (and its name) from the way it interleaves pruningand ross-sum to ompute V an , as follows:Van = PRUNE(:::PRUNE(PRUNE(Va;o1n � Va;o2n)� Va;o3n) : : :� Va;okn):PRUNE redues a set of vetors to a unique, minimal-size set by removing \dominated"vetors, that is, vetors that an be removed without a�eting the value of any belief state.There are two tests for dominated vetors. One test determines that vetor w is dominatedby some other vetor u 2 V when w(s) � u(s);8s 2 S: (3)Although this test an be performed eÆiently, it annot detet all dominated vetors. There-fore, it is supplemented by a seond, less eÆient test that determines that a vetor w isdominated by a set of vetors V when the following linear program annot be solved for avalue of d that is greater than zero.variables: d; b(s) 8s 2 Smaximize dsubjet to the onstraintsPs2S b(s)(w(s) � u(s)) � d; 8u 2 VPs2S b(s) = 1
291

In a single iteration of inremental pruning, many linear programs must be solved to detetall dominated vetors, and the use of linear programming to test for domination has beenfound to onsume more than 95% of the running time of inremental pruning [6℄. The numberof variables in eah linear program is determined by the size of the state spae. The numberof onstraints in eah linear program (as well as the number of linear programs that needto be solved) is determined by the size of the vetor set being pruned. This reets the twoprinipal soures of omplexity in solving POMDPs. One soure of omplexity is shared byompletely observable MDPs: the size of the state spae. The other soure of omplexity isunique to POMDPs: the number of linear funtions needed to represent the pieewise linearand onvex value funtion.In this paper, we explore two forms of approximation that address these two souresof omplexity. We use state abstration to redue the number of variables in eah linearprogram. We use relaxed tests for dominane to redue the number of onstraints in eahlinear program, as well as the number of linear programs that need to be solved. Beforedesribing our approximation algorithm, we desribe the framework for state abstration.3 State abstration and algebrai deision diagramsWe onsider an approah to state abstration for MDPs and POMDPs that exploits a fatoredrepresentation of the problem. We assume the relevant properties of a domain are desribedby a �nite set of Boolean state variables, X = fX1; : : : ; Xng, and observations are desribedby a �nite set of Boolean observation variables Y = fY1; : : : ; Ymg. We de�ne an abstratstate as a partial assignment of truth values to X , orresponding to a set of possible states.Algebrai deision diagrams Instead of using matries and vetors to represent the POMDPmodel, we use a data struture alled an algebrai deision diagram (ADD) that exploits stateabstration to represent the model more ompatly. Deision diagrams are widely used inVLSI CAD to represent and evaluate large state spae systems [1℄. A binary deision diagramis a ompat representation of a Boolean funtion, Bn ! B. An algebrai deision diagram(ADD) generalizes a binary deision diagram to represent real-valued funtions, Bn ! <.Operations suh as sum, produt, and expetation (orresponding to similar operations onmatries and vetors) an be performed on ADDs, and eÆient pakages for manipulatingADDs are available [12℄. Hoey et al. [9℄ show how to use ADDs to represent and solveompletely observable MDPs. Hansen and Feng [8℄ extend this approah to POMDPs, basedon earlier work of Boutilier and Poole [4℄. In the rest of this setion, we summarize thisapproah to state abstration for POMDPs.Model We represent the state transition funtion for eah ation a using a two-slie dynamibelief network (DBN). The DBN has two sets of variables, one set X = fX1; :::; Xng refersto the state before taking ation a, and the other set X 0 = fX 01; :::; X 0ng refers to the stateafter.For eah post-ation variable X 0i , the onditional probability funtion P a(X 0i jX) of theDBN is represented ompatly using an ADD. It is onvenient to onstrut a single ADD,P a(X 0jX), that represents in fatored form the state transition funtion for all post-ationvariables. Hoey et al. [9℄ all this a omplete ation diagram and desribe the steps requiredto onstrut it.
292

The observation model of a POMDP is represented in fatored form, in a similar way.We use an ADD P a(YijX 0) to represent the probability that observation variable Yi is trueafter ation a is taken and the state variables hange to X 0. Given an ADD, P a(YijX 0), foreah observation variable Yi, it is again onvenient to onstrut a single ADD, P a(YjX 0),that represents in fatored form the observation funtion for all observation variables. Weall this a omplete observation diagram, and it is onstruted in the same way as a ompleteation diagram.Given a omplete ation diagram and a omplete observation diagram, a single ADD,P a;o(X 0jX), representing the transition probabilities for all state variables after ation a andobservation o, is onstruted as follows:P a;o(X 0jX) = P a(X 0jX)P a(YjX 0):The ADD P a;o(X 0jX) represents the probabilities Pr(o; s0js; a), just as P a(X 0jX) representsthe probabilities Pr(s0js; a) and P a(YjX 0) represents the probabilities Pr(ojs0; a).The reward funtion for eah ation a an also be represented ompatly by an ADD,denoted Ra(X). Similarly, a pieewise linear and onvex value funtion for a POMDP an berepesented ompatly by a set of ADDs. We use the notation V = fv1(X); v2(X); : : : ; vk(X)gto denote this value funtion.Dynami programming Hansen and Feng [8℄ desribe how to modify the inremental pruningalgorithm to exploit this fatored representation of a POMDP for omputational speedup.We briey review their approah, and refer to their paper for details.The �rst step of inremental pruning is generation of the linear funtions in the sets Va;on .For a POMDP represented in fatored form, the following equation replaes Equation (2):va;o;i(X) = Ra(X)jOj + �XX 0 P a;o(X 0jX)vi(X 0):All terms in this equation are represented by ADDs. The symbol PX 0 denotes an ADDoperator alled existential abstration that sums over the values of the state variables inP a;o(X 0jX)vi(X 0), exploiting state abstration to ompute the expeted value eÆiently.State abstration is also exploited to perform pruning more eÆiently. Reall that thevalue funtion is represented by a set of linear funtions. Eah linear funtion is representedompatly by an ADD that an map multiple states to the same value, orresponding to aleaf of the ADD. In this ase, the leaf orresponds to an abstrat state. Hansen and Feng [8℄desribe an algorithm that �nds a partition of the state spae into abstrat states that isonsistent with the set of ADDs. Given this abstrat state spae, both tests for dominanean be performed more eÆiently. In partiular, the number of variables in the linear programused to test for dominae is redued in proportion to the redution in size of the state spae.Beause linear programming onsumes most of the running time of inremental pruning, thissigni�antly improves the performane of the algorithm in the best ase. In the worst ase,performane is only slightly worse sine the overhead for this approah is almost negligible.Hansen and Feng [8℄ report speedups of up to a fator of twenty for the problems they test.The degree of speedup is proportional to the degree of state abstration.
293

4 Approximation algorithmAs an approah to saling up dynami programming for POMDPs, the exat algorithmreviewed in the previous setion has two limitations. First, there may not be suÆientlymany (or even any) states with idential values to reate an abstrat state spae that issmall enough to be tratable. Seond, although the size of the state spae ontributes tothe omplexity of POMDPs, the primary soure of omplexity is the potential exponentialgrowth in the number of linear funtions (ADDs) needed to represent the value funtion.We now desribe an approximate dynami programming algorithm that addresses bothof these limitations by ignoring di�erenes of value less than some error threshold Æ. It runsmore eÆiently than the exat algorithm beause it omputes a simpler, approximate valuefuntion for whih we an bound the approximation error. There are two plaes in whihthe algorithm ignores value di�erenes { in representing state values, and in representingvalues of belief states. These orrespond to two omplementary forms of approximation, onein whih an ADD representing state values is simpli�ed, and the other in whih a set of ADDsrepresenting belief state values is redued in size. In other words, one form of approximationredues the size of the state spae (using state abstration) and the other redues the size ofthe value funtion (by pruning more aggressively). Before desribing the algorithm, we de�newhat we mean by approximate dynami programming and present some theoretial resultsthat allow us to bound the approximation errorApproximation with bounded error We begin by de�ning what we mean by an approximatevalue funtion and an approximate dynami programming operator.De�nition 1. A value funtion V̂ approximates a value funtion V with approximation errorÆ if kV � V̂ k � Æ. (Note that kV � V̂ k denotes maxb2B jV (b)� V̂ (b)j.)De�nition 2. An operator T̂ approximates the dynami programming operator T if for anyvalue funtion V , kTV � T̂ V k � Æ.We de�ne an approximate value iteration algorithm T̂n in the same way that we de�nedthe value iteration algorithm Tn. The error between the approximate and exat n-step valuefuntions is bounded as follows.Theorem 1. For any n > 0 and any value funtion V ,kTnV � T̂nV k � Æ1� � :To ompute a bound on the error between a n-step approximate value funtion andthe optimal value funtion, we use the Bellman residual between the (n � 1)th and nthapproximate value funtions. The following theorem is essentially the same as Theorem 12.2.5of Ortega and Rheinboldt [10℄, who studied approximate ontration mappings for systems ofnonlinear equations, and Theorem 4.2 of Cheng [7℄, who �rst applied their result to POMDPs.Theorem 2. The error between the urrent and optimal value funtion is bounded as follows,kT̂nV � V �k � �1� � kT̂nV � T̂n�1V k+ Æ1� � :
294

Value iteration using an approximate dynami programming operator onverges \weakly,"that is, two suessive value funtions fall within a distane 2Æ1�� in the limit. (Dereasing Æafter \weak" onvergene will allow further improvement, as disussed later.)Theorem 3. For any value funtion V and " > 0, there is an N suh that for all n > N ,kT̂nV � T̂n�1V k � 2Æ1� � + ":Simplifying ADDs We �rst desribe an approah to approximation that simpli�es an ADDby ignoring small di�erenes in state values. It is based on a similar approah to approxima-tion for ompletely observable MDPs [13℄, although modi�ations are needed to extend thisapproah to POMDPs.For ompletely observable MDPs, a single ADD represents the value funtion. Eah leafof the ADD orresponds to a distint value. If more than one state has the same value,the states are mapped to the same leaf. In this way, a leaf an represent a set of states,or equivalently, an abstrat state. Beause state abstration an be exploited to aeleratedynami programming, the approah to approximation is to inrease the degree of stateabstration by aggregating states with similar (though not idential) values.St-Aubin et al. [13℄ introdue the following notation and terminology. The value of astate is represented as a pair [l; u℄, where the lower, l, and upper, u, bounds on the val-ues are both represented. The span of a state, s, is given by span(s) = u� l. The ombinedspan of states s1; s2; : : : ; sn with values [l1; u1℄; : : : ; [ln; un℄, is given by span(s1; s2; : : : ; sn) =max(u1; : : : ; un)�min(l1; : : : ; ln). The method of approximation is to merge states (and or-respondingly, leaves of an ADD) when their ombined span is less than Æ. This approximationis performed after eah iteration of dynami programming. The simpler ADD allows ompu-tational speedup, at the ost of some approximation error introdued by ignoring di�erenesof value less than Æ.To implement this approah to approximation, St-Aubin et al. [13℄ modi�ed the ADDpakage so that a leaf of an ADD an represent a range of values, and a single ADD anrepresent a ranged value funtion. We don't do this beause the value funtion of a POMDPis represented by a set of ADDs, instead of a single ADD, and we are onerned with upperand lower bounds on the values of belief states. The set of ADDs representing the lowerbound funtion may not be the same as the set of ADDs representing the upper boundfuntion. An alternative to a ranged value funtion is to use two ADDs to represent boundson state values { one for lower bounds and one for upper bounds. But this representationwould require performing inremental pruning twie { one to ompute a pieewise linear andonvex lower bound funtion and one to ompute a pieewise linear and onvex upper boundfuntion { doubling the omplexity of the algorithm. Instead, we found that we an ahievean equally good result by omputing a pieewise linear and onvex lower bound funtiononly, and representing the upper bound by using a salar for the approximation error.Figure 1 illustrates the e�et of simpli�ation. The ADD on the left is simpli�ed bymerging leaves that have a ombined span of less than Æ = 0:5. The ADD on the rightrepresents a lower bound on the value of eah abstrat state. Adding Æ to eah lower boundgives the upper bound. We use the following algorithm to simplify an ADD. The input is anADD and approximation threshold Æ. The output is a simpli�ed ADD with bounded error.
295

X

Y

1.8

1.2 2.5

Z Z

W

2.7

1.8 1.9 2.2 W 2.5 W

Z Z Z

Y

1.2 1.6 1.3

X

Fig. 1: Example of ADD simpli�ation.QUEUE all leaves of ADD sorted in inreasingorder of values remove �rst element from QUEUEX fsgwhile QUEUE is not emptyt remove next element from QUEUEif span(X[ftg) � ÆX X [ftgelsemerge(X) and reate new ADD leaf for XX ftgendifendwhileBeause the omplexity of eah merge is jSj, the omplexity of this algorithm is O(jSj2.Performing this simpli�ation algorithm on eah ADD in a pieewise linear and onvex valuefuntion results in an approximate value funtion with approximation error Æ.Theorem 4. Let V = fv1; : : : ; vng be a pieewise linear and onvex value funtion and letV 0 = fv01; : : : ; v0ng be its approximation suh that for eah v0i, we have jjvi � v0ijj � Æ. ThenkV � V 0k � Æ.Pruning ADDs In Setion 2, we desribed two tests for dominated linear funtions. It haslong been reognized that both tests are sensitive to numerial impreision errors when thevalue representing the degree of dominae is lose to zero. Thus, a preision parameter istypially used to prevent linear funtions from being inluded in the value funtion due tonumerial impreision error. Instead of testing for a value greater than zero to ensure that alinear funtion is not dominated, the test is for a value greater that 10�15, for example, orsome number that represent the limit of numerial preision on the omputer.Many pratitioners have notied that inreasing this preision parameter (to a valueof, say, 10�5), has the added bene�t of pruning vetors that ontribute only marginally tothe value funtion. This often results in signi�ant performane improvement. Although thistehnique is widely used in pratie, the e�et of this approximation on the error bound of thevalue funtion has not been analyzed before in the literature. We onsider this seond method
296

of approximation in this paper beause of its lose, and omplementary, relationship to our�rst method of approximation, whih also ignores small di�erenes of value. Equation (3)gives a test for dominane that we generalize to allow approximation as follows.De�nition 3. A linear funtion w is approximately dominated by another linear funtionu 2 V when w(s) � Æ � u(s); 8s 2 S;where Æ > 0.The linear programming test for domination is generalized to allow approximation as follows.De�nition 4. A linear funtion w is approximately dominated by a set of linear funtionsV, if the output of the linear program, d, is less than Æ > 0.Let PRUNE0 be the pruning operator that employs these two approximate dominane tests.Theorem 5. For any set of vetors V,kPRUNE(V)� PRUNE0(V)k � Æ:Aumulation of error Both the approximate ADD simpli�ation algorithm and the approxi-mate pruning algorithm are applied repeatedly during inremental pruning. They are appliedto eah set Va;on . They are applied to eah of the jOj sets of ADDs reated by the ross-sumoperator during the omputation of Van. Finally, they are applied to the set Vn reated by theunion of the sets Van. Thus, we must onsider how approximation error aumulates duringthe progress of inremental pruning.Lemma 1. If a set of ADDs representing value funtion V is simpli�ed with approximationerror Æ1 and then pruned with approximation error Æ2, the resulting set of ADDs representsa value funtion that approximates V with error Æ1 + Æ2.Lemma 2. If V̂ 1 is an approximation of value funtion V 1 with approximation error Æ1,and V̂ 2 is an approximation of value funtion V 2 with approximation error Æ2, then:1. V̂ 1 + V̂ 2 is an approximation of V 1 + V 2 with approximation error Æ1 + Æ2, and2. V̂ 1 [V̂ 2 is an approximation of V 1 [V 2 with approximation error max(Æ1; Æ2).Theorem 6. Let T̂ denote an approximation of the dynami programming operator T om-puted by inremental pruning with simpli�ation error Æ1 and pruning error Æ2. For any valuefuntion V , kTV � T̂ V k � (2jOj+ 1)(Æ1 + Æ2):Letting Æ = (2jOj + 1)(Æ1 + Æ2), we an use Theorem 2 to ompute a bound on the errorbetween the approximate and optimal value funtions.Adjustment of approximation Finally, we note that with exat dynami programming, thedi�erene between suessive value funtions always dereases from one iteration to the next.This is not neessarily the ase with approximate dynami programming. It suggests a strat-egy for reduing the approximation parameters over suessive iterations. Whenever thereis an inrease in the Bellman residual, we redue the approximation parameters (e.g., bythe disount fator 0.5) and the solution ontinues to improve. By using a high degree ofapproximation initially and gradually reduing it, we may aelerate the rate of improvementin initial iterations and still eventually ahieve a result of equal quality as a result found bythe exat algorithm. This is explored in the next setion.
297

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

si
ze

 o
f a

bs
tr

ac
t s

ta
te

 s
pa

ce

CPU seconds

exact DP
DP with approximation

Fig. 2: Size of abstrat state spae using exatand approximate ADD simpli�ation. -4

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500

lo
g

of
 e

rr
or

 b
ou

nd

CPU seconds

exact DP
approximate pruning

approximate state abstraction
both approximations

Fig. 3: Rate of onvergene using both forms ofapproximation, separately and together.
0

0.02
0.04

0.06
0.08

0.1
0.12

0.14
0.16

0.18
0.2

Pruning error
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ADD simplification error

10

15

20

25

30

35

Size of abstract state space

Fig. 4: Interation between ADD simpli�ationand pruning error on size of abstrat statespae.
0

0.02
0.04

0.06
0.08

0.1
0.12

0.14
0.16

0.18
0.2

Pruning error
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ADD simplification error

12
14
16
18
20
22
24
26
28
30

Size of value function

Fig. 5: Interation between ADD simpli�ationand pruning error on size of value funtion.5 Analysis of performaneHansen and Feng [8℄ use seven test problems to evaluate the performane of their exat dy-nami programming algorithm for fatored POMDPs. Among these, the fourth test problem(with six state variables, �ve ations, and two observation variables) illustrates the worst-ase performane of the algorithm. Beause there are strong dependenies among all thestate variables, the algorithm �nds no state abstration. So we use this example as a testof whether the approximation algorithm an reate state abstrations where the exat algo-rithm annot. Figure 2 ompares the size of the abstrat state spae reated by the exat andapproximation algorithms over suessive iterations. Approximate ADD simpli�ation makesit possible to solve the problem in an abstrat state spae that varies in size from �ve to thirtystates, ompared to 64 states in the original state spae. This shows that ADD simpli�ationan reate useful state abstrations for problems with little or no variable independene.Figure 4 and 5 show the interation between the two forms of approximation by wayof their e�et on the two prinipal soures of POMDP omplexity { the size of the statespae and the size of the value funtion. The data is olleted by running the program
298

with di�erent pruning and simpli�ation errors for 30 iterations. The average size of theabstrat state spae and the average size of the value funtion are then plotted as a funtionof the two types of approximation error. Figure 4 shows that inreasing the ADD pruningerror has little or no e�et on ADD simpli�ation. Figure 5 shows that inreasing the ADDsimpli�ation error only slightly ampli�es the e�et of ADD pruning. Thus, the performaneimprovement ahieved from eah form of approximation is almost independent, with a slightpositive interation e�et. The two methods of approximation are omplementary. ADDsimpli�ation dereases the size of the state spae and ADD pruning dereases the size ofthe value funtion.Figure 3 shows the separate e�et of eah form of approximation on the rate of onver-gene, as well as their ombined e�et. (The ADD simpli�ation error is 0.1 and the ADDpruning error is 0.01.) It shows that using both forms of approximation results in betterperformane than using either one alone. It also shows that the approximation algorithm an�nd a better solution than the exat algorithm, in the same amount of time. The reason forthis is that the approximation algorithm approximates the dynami-programming operator,whih performs a single iteration of dynami programming. Dynami programming takesmany iterations to onverge. Beause approximation allows the dynami-programming oper-ator to be omputed faster in exhange for slightly less improvement of the value funtion,approximation an have the e�et of inreasing the rate of improvement. In other words, theapproximation algorithm an perform more iterations in the same amount of time, and, as aresult, an �nd a better solution in the same amount of time. This is true even though eahiteration of the approximation algorithm may not improve the value funtion as muh as aorresponding iteration of the exat algorithm.We are not only interested in improving the rate of onvergene of dynami programming.We are also interested in solving larger problems than the exat algorithm an solve. Thesalability of both the exat algorithm and the approximation algorithm is limited by thesame two fators - the size of the state spae and the size of the value funtion. (The dynamiprogramming algorithm urrently annot handle problems with more than about 50 states orvalue funtions with more than a few hundred ADDs.) The approximation algorithm salesbetter than the exat algorithm beause it an ontrol the size of the state spae and the sizeof the value funtion. It ontrols the size of the (abstrat) state spae by using approximationto adjust the degree of state abstration. It ontrols the size of the value funtion by usingapproximation to adjust the threshold for pruning ADDs, and thus the number of ADDsthat are pruned. This allows the algorithm to �nd approximate solutions to problems withmore states than the exat algorithm an handle, and to avoid an exponential explosion inthe size of the value funtion. The quality of the solution that an be found within theselimitations is problem-dependent, but easily estimated by omputing the error bound.6 ConlusionPOMDPs are very diÆult to solve exatly and it is widely-reognized that approximation isneeded to solve realisti problems. We have desribed two omplementary forms of approxi-mation that improve the performane of a dynami programming algorithm that omputesa pieewise linear and onvex value funtion. The �rst form of approximation inreases thedegree of state abstration by ignoring state distintions that have little e�et on value. Theseond form of approximation redues the number of linear funtions used to represent the
299

value funtion by removing those that have little e�et on value. Both forms of approxima-tion allow omputational speedup in exhange for a bounded derease in solution quality.Both also have tunable parameters that allow the degree of approximation to be adjusted tosuit the problem. We showed that this approah to approximation improves both the rate ofonvergene of dynami programming, and its salability.Referenes1. Bahar, R.I.; Frohm, E.A.; Gaona, C.M.; Hahtel, G.D.; Maii, E.; Pardo, A.; and Somenzi, F.Algebrai deision diagrams and their appliations. International Conferene on Computer-Aided Design, 188{191, IEEE, 1993.2. Boutilier, C.; Dean, T.; and Hanks, S. Deision-theoreti planning: Strutural assumptions andomputational leverage. Journal of Arti�ial Intelligene Researh 11:1{94, 1999.3. Boutilier, C.; Dearden, R.; and Goldszmidt, M. Exploiting struture in poliy onstrution. InProeedings of the Fourteenth International Conferene on Arti�ial Intelligene (IJCAI-95),1104{1111, Montreal, Canada, 1995.4. Boutilier, C. and Poole, D. Computing optimal poliies for partially observable deision pro-esses using ompat representations. In Proeedings of the Thirteenth National Conferene onArti�ial Intelligene (AAAI-96), 1168{1175, Portland, OR, 1996.5. Boutilier, C. and Dearden, R. Approximating value trees in strutured dynami programming.In Proeedings of the Fourteenth International Conferene on Mahine Learning, 54{62. Bari,Italy, 1996.6. Cassandra, A.R.; Littman, M.L.; and Zhang, N.L. Inremental pruning: A simple, fast, exatmethod for partially observable Markov deision proesses. In Proeedings of the ThirteenthAnnual Conferene on Unertainty in Arti�ial Intelligene (UAI-97), 54{61, Providene, RI,1997.7. Cheng, H. Algorithms for Partially Observable Markov Deision Proesses. PhD Thesis, Uni-versity of British Columbia, 1988.8. Hansen, E. and Feng, Z. Dynami programming for POMDPs using a fatored state represen-tation. In Proeedings of the Fifth International Conferene on Arti�ial Intelligene Planningand Sheduling, 130-139, Menlo Park, CA: AAAI Press, 2000.9. Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. SPUDD: Stohasti Planning using DeisionDiagrams. In Proeedings of the Fifteenth Conferene on Unertainty in Arti�ial Intelligene(UAI-99), Stokholm, Sweden, 1999.10. Ortega, J.M and Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Vari-ables. Aademi Press: New York, 1970.11. Smallwood, R.D. and Sondik, E.J. The optimal ontrol of partially observable Markov proessesover a �nite horizon. Operations Researh 21:1071{1088, 1973.12. Somenzi, F. CUDD: CU deision diagram pakage. Available from ftp://vlsi.olorado.edu/pub/,1998.13. St-Aubin, R.; Hoey, J.; and Boutilier, C. APRICODD: Approximate Poliy Constrution us-ing Deision Diagrams. In Advanes in Neural Information Proessing Systems 13 (NIPS-00):Proeedings of the 2000 Conferene, Denver, CO, 2000.
300

Solving Informative Partially Observable Markov
Decision Processes

Weihong Zhang andNevin L. Zhang

Department of Computer Science
Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong, China

Abstract. Solving Partially Observable Markov Decision Processes (POMDPs)
generally is computationally intractable. In this paper, we study a special POMDP
class, namely informative POMDPs, where each observation provides good albeit
incomplete information about world states. We propose two ways to accelerate
value iteration algorithm for such POMDPs. First, dynamic programming (DP)
updates can be carried out over a relatively small subset of belief space. Conduct-
ing DP updates over subspace leads to two advantages: representational savings
in space and computational savings in time. Second, a point-based procedure is
used to cut down the number of iterations for value iterationover subspace to
converge. Empirical studies are presented to demonstrate various computational
gains.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a general frame-
work for AI planning problems where effects of actions are nondeterministic and the
state of the world is not known with certainty. Unfortunately, solving general POMDPs
is computationally intractable [10]. For this reason, special classes of POMDPs incur
much attention recently in the community(e.g., [8, 12]).

In this paper, we study a class of POMDPs, namelyinformative POMDPs, where
any observation can restrict the world into a small set of states. Informative POMDPs
come to be a median ground in terms of informative degree of observations. In one
extreme case, unobservable POMDPs assume that observations do not provide any in-
formation about world states(e.g.,[9]). In other words, an observation cannot restrict the
world into any range of states. In another extreme case, fully observable MDPs assume
that an observation restricts the world into a unique state.

For informative POMDPs, we propose two ways to accelerate value iteration. First,
for such POMDPs, we observe that dynamic programming(DP) updates can be carried
out over a subset of belief space. DP updates over a subset leads to two advantages:
fewer vectors are in need to represent a value function over a subset;computational
savings are gained in computing sets of vectors representing value functions over the
subset. Second, to further enhance our capability of solving informative POMDPs, a
point-based procedure is integrated into value iteration over the subset [13]. The pro-
cedure effectively cuts down the number of iterations for value iteration to converge.

301

The integrated algorithm is able to solve an informative POMDP with105 states, 35
observations and 5 actions within 430 CPU seconds.

The rest of the paper is organized as follows. In next section, we introduce back-
ground knowledge and conventional notations. In Section 3, we discussproblem char-
acteristics of informative POMDPs and problem examples in the literature. In Section 4,
we show how the problem characteristics can be exploited in value iteration. Section 5
reports experiments on comparing value iteration over belief space and over asubset of
it. In Section 6, we integrate the point-based procedure to value iteration over a subset
of belief space. In Section 7, we briefly discuss some related work.

2 Background

In a POMDP model, the environment is described by a set of statesS. The agent
changes the states by executing one of a finite set of actionsA. At each point in time,
the world is in one states. Based on the information it has, the agent chooses and
executes an actiona. Consequently, it receives animmediate rewardr(s; a) and the
world moves stochastically into another states0 according to atransition probabilityP (s0js; a). Thereafter, the agent receives an observationz from a finite setZ according
to anobservation probabilityP (zjs0; a). The process repeats itself.

Information that the agent has about the current state of the world can be summa-
rized by a probability distribution overS [1]. The probability distribution is called a
belief stateand is denoted byb. The set of all possible belief states is called thebelief
spaceand is denoted byB. A belief subspaceor simplysubspaceis a subset ofB. If the
agent observesz after taking actiona in belief stateb, its next belief stateb0 is updated
as b0(s0) = kP (zjs0; a)Xs P (s0js; a)b(s) (1)

wherek is a re-normalization constant. We will sometimes denote this new beliefstate
by �(b; a; z).

A policy prescribes an action for each possible belief state. In other words, it is
a mapping fromB to A. Associated with policy� is its value functionV �. For each
belief stateb, V �(b) is the expected total discounted reward that the agent receives by
following the policy starting fromb, i.e. V �(b) = E�;b[P1t=0 �trt], wherert is the
reward received at timet and� (0�� < 1) is thediscount factor. It is known that there
exists a policy�� such thatV ��(b) � V �(b) for any other policy� and any belief stateb. Such a policy is called anoptimal policy. The value function of an optimal policy
is called theoptimal value function. We denote it byV �. For any positive number�, a
policy � is �-optimal if V �(b) + � � V �(b) for any belief stateb.

The dynamic programming(DP) update operatorT maps a value functionV to
another value functionTV that is defined as follows: for anyb in B,TV (b) = maxa [r(b; a) + �Xz P (zjb; a)V (�(b; a; z))]
wherer(b; a) =Ps r(s; a)b(s) is the expected reward if actiona is taken inb.

302

Value iterationis an algorithm for finding�-optimal value functions. It starts with
an initial value functionV0 and iterates using the formula:Vn = TVn�1. Value iteration
terminates when theBellman residualmaxb jVn(b)�Vn�1(b)j falls below�(1��)=2�.
When it does, the value functionVn is �-optimal.

Value functionVn is piecewise linear and convex (PLC)and can be represented by a
finite set ofjSj-dimensionalvectors[11]. It is usually denoted byVn. In value iteration,
a DP update computes a setVn+1 representingVn+1 fromVn representingVn.

3 Problem Characteristics

In general, a POMDP agent perceives the world by receiving observations. Starting
from any state, if the agent executes an actiona and receives an observationz, world
states can be categorized into two classes by the observation model: states theagent can
reach and states it cannot. Formally, the set of reachable states isfsjs 2 S andP (zjs; a) >0g. We denote it bySaz.

An [a; z] pair is said to beinformativeif the sizejSaz j is much smaller thanjSj.
Intuitively, if the pair[a; z] is informative, after executinga and receivingz, the agent
knows that the true world states are restricted into a small set. An observationz is said
to beinformativeif [a; z] is informative for every actiona giving rise toz. Intuitively,
an observation is informative if it always gives the agent an good idea about world
states regardless of the action executed at previous time point. A POMDPis said to
be informativeif all observations are informative. In other words, any observation the
agent receives always provides it a good idea about world states. Since one observation
is received at each time point, a POMDP agent always has a good albeit imperfect idea
about the world.

Informative POMDPs are especially suitable and appropriate for modeling a class
of problems. In this class, a problem state is described by a number of variables(fluents).
Some variables are observable while others are not. The possible assignments to observ-
able variables form the observation space. A specific assignment to observable variables
restricts the world states into a small range of them. Aslotted Alohaprotocol problem
belongs to this class [2, 4]. Similar problem characteristics also exist in a non-stationary
environment model proposed for reinforcement learning [7].

4 Exploiting Problem Characteristics

In this section, we show how informativeness can be exploited in value iteration. We
start from belief subspace representation.

4.1 Belief subspace

We are interested in particular subspace type:belief simplex. It is specified by a list of
extreme belief states. The simplex with extreme belief statesb1, b2, ...,bk consists of all
belief states of the form

Pki=1 �ibi where�i � 0 and
Pki=1 �i = 1.

Suppose the current belief state isb. If the agent executes an actiona and receives
an observationz, its next belief state is�(b; a; z). If we vary the belief state in the belief

303

spaceB, we obtain a setf�(b; a; z)jb 2 Bg. Abusing notation, we denote this set by�(B; a; z). In words, no matter which belief state the agent starts from, if it receivesz
after performinga, its next belief state must be in�(B; a; z). Obviously,�(B; a; z) � B.

Belief states in the set�(B; a; z) have nice property which can be explored in con-
text of informative POMDPs. By belief state update equation, if states0 is not in the setSaz , the beliefb0(s0) equals 0. The nonzero beliefs must distribute over states inSaz.
To reveal the relation between belief states and the setSaz , we define a subset ofB:�(B; a; z) = fbj Xs2Saz b(s) = 1:0; 8s 2 Saz; b(s) � 0g:

It can be proven that for any belief stateb, �(b; a; z) must be in the above set.
Therefore,�(B; a; z) is a subset of�(B; a; z) for a pair [a; z]. It is easy to see that�(B; a; z) is a simplex in which each extreme point has probability mass on one state.

We consider the union of subspaces[a;z�(B; a; z) for all possible combinations of
actions and observations. It consists of all the belief states the agent can encounter. In
other words, the agent can never get out of this set. To ease presentation, wedenote this
set by�(B;A;Z). Since each simplex in it is a subset ofB, so is�(B;A;Z).

One example on belief space and subspaces is shown in Figure 1. A POMDP has
four states and four observations. Its belief region is the tetrahedronABCD where A,
B, C and D are extreme belief states. For simplicity, we also use these letters to refer
to the states. Suppose thatSaz sets are independent of the actions. More specifically,
for any actiona, Saz0 = fA;B;Cg, Saz1 = fA;B;Dg, Saz2 = fA;C;Dg, andSaz3 = fB;C;Dg. In this POMDP, belief simplexes are four facets ABC, ABD, ACD
and BCD and belief subspace�(B;A;Z) is the surface of the tetrahedron. We also note
that the subspace�(B;A;Z) is much smaller thanB in size.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

B C

D

A

B C

A

B

A

D

C

D
Z

Z Z

Z
1

2 3

4

Belief simplexesBelief space

Fig. 1.Belief space, belief simplexes and belief subspace

4.2 Value functions over subspaces

A value functionVn over belief spaceB is a mapping from the belief spaceB to real
line. Conceptually, for anyb in B, Vn(b) is the maximum rewards the agent can receive
in n steps if it starts fromb. Value function over subspaceis defined similarly. An-step
value function over simplex�(B; a; z) is a mapping from the simplex. We denote it byV �(B;a;z)n . Conceptually, for a belief stateb in subspace�(B; a; z), V �(B;a;z)n (b) is the

304

maximum rewards the agent can receive if it starts fromb. An n-step value functionV �(B;A;Z)n (b) can be defined similarly and its domain is restricted to�(B;A;Z).
Value functionVn can be represented by a setVn of jSj-dimensional vectors. IfVn

is restricted to a simplex�(B; a; z), it is a value functionV �(B;a;z)n over the simplex. It
preserves the PLC property and can be represented by a set of vectors. For informative
POMDPs, the restriction will result in a representational advantage. Specifically, for a
pair [a; z], since the beliefs over states outsideSaz are zero, we need to allocate onlyjSaz j components for a vector. Typically, a value function is represented by a great
number of vectors. If one represents the same value function over a simplex, it would
lead to tremendous savings because the vectors are of smaller dimensions.

Given a collectionfV�(B;a;z)n g in which each setV�(B;a;z)n is associated with an
underlying setSaz , defining a value functionV�(B;A;Z)n over subspace�(B;A;Z) ex-
hibits a little bit difficulty. This is because the underlying setSaz contains different
states for different[a; z] pairs. It makes no sense if one defines the value function by
computing the inner product of a vector and a belief state because possiblythe dimen-
sion of the vector differs from that of the belief state. We defineV�(B;A;Z)n this way: for
anyb in �(B;A;Z), V�(B;A;Z)n (b) = V�(B;a;z)n (b) (2)

where[a; z] is a pair such thatb 2 �(B; a; z). The setV�(B;A;Z)n can be regarded as a
two-dimensional array of sets over simplexes. When it needs to determine avalue for a
belief state, one (1) identifies a simplex containing it and (2) computes the value using
the corresponding set of vectors. Obviously, the setV�(B;A;Z)n represents value functionV �(B;A;Z)n .

4.3 DP update over subspace

In this subsection, we show how to conduct implicit DP update over belief subspace.
The problem is cast as: given an arrayV�(B;A;Z)n representingV �(B;A;Z)n over subspace�(B;A;Z), how to compute an arrayV�(B;A;Z)n+1 ?

To compute the setV�(B;A;Z)n+1 , we construct one setV�(B;a0;z0)n+1 for any possible pair[a0; z0]. Before doing so, we recall how DP update over belief space constructs a vector
in setTVn.

DP updateTVn computes a setVn+1 from a current setVn. It is known that each
vector inVn+1 can be defined by a pair of action and a mapping from the set of ob-
servations to the setVn. Let us denote the action bya and the mapping by�. For an
observationz, we use�z to denote the mapped vector inVn. Given an actiona and a
mapping�, the vector, denoted by�a;�, is defined as follows: for eachs in S,�a;�(s) = r(s; a) + �Xz Xs0 P (s0js; a)P (zjs0; a)�z(s0):
By enumerating all possible combinations of actions and mappings, one candefine
different vectors. All these vectors form a setVn+1, i.e.,f�a;�ja 2 A; � : Z ! Vng. It
turns out that this set represents value functionVn+1.

305

We move forward to define a vector inV�(B;a0;z0)n+1 given an arrayV�(B;A;Z)n . Similar

to the case in DP updateTVn, a vector in setV�(B;a0;z0)n+1 can be defined by a pair of
actiona and a mapping� but with two important modifications. First, the mapping� is
from set of observations to the arrayV�(B;A;Z)n . Moreover, for an observationz, �z is a
vector inV�(B;a;z)n . Second, the vector only need to be defined over the setSa0z0 . To be
precise, given a pair[a0; z0], an actiona and a mapping�, a vector, denoted by�a;�, can
be defined as follows:

for eachs in Sa0z0 ,�a;�(s) = r(s; a) + �Xz Xs02Saz P (s0js; a)P (zjs0; a)�z(s0):
A couple of remarks are in order for the above definition. First,�a;� has onlyjSa0z0 j

components. For states outsideSa0z0 , it is unnecessary to allocate space for them. Sec-
ond, given the actiona and observationz, when we define the component�a;�(s), we
only need to account for next states inSaz. This is true because for other states the
probabilities of observingz are zero. It is important to note that anjSa0z0 j-dimensional
vector�a;� is constructed by making use ofjZj vectors: these vectors are of different
dimensions because they come from different representing sets over simplexes.

If we enumerate all possible combinations of actions and mappings above, we can
define various vectors. These vectors form a setf�a;�ja 2 A; � : Z ! V�(B;A;Z)n & 8z; �z 2 V�(B;a;z)n g:
The set is denoted byV�(B;a0;z0)n+1 . The following lemma reveals the relation between the

set and value functionV �(B;a0;z0)n+1 .

Lemma 1. For any pair [a; z], the setV�(B;a;z)n+1 represents value functionV �(B;a;z)n+1
over simplex�(B; a; z). ut

For now, we are able to construct a setV�(B;a;z)n+1 for a pair [a; z]. A complete DP
update over�(B;A;Z) needs to construct such sets for all possible pairs of actions and
observations. After these sets are constructed, they are pooled together to form an arrayV�(B;A;Z)n+1 . It induces a value function by (2). It can be proved that the arrayV�(B;A;Z)n+1
represents value functionV �(B;A;Z)n+1 over the set�(B;A;Z). The following theorem

means thatV �(B;A;Z)n+1 defines the same value function asVn+1 over the set�(B;A;Z).
Theorem 1. For anyb in �(B;A;Z), V �(B;A;Z)n+1 (b) = Vn+1(b). ut

As a corollary of the above theorem, we remark that, ifb is a belief state in the
intersection of two simplexes�(B; a1; z1) and�(B; a2; z2) for two pairs[a1; z1] and[a2; z2], V �(B;a1;z1)n+1 (b) = V �(B;a2;z2)n+1 (b).

306

4.4 Complexity analysis

DP updateTVn improves values for belief spaceB, while DP update of computingV�(B;A;Z)n+1 from V�(B;A;Z)n improves values for subspace�(B;A;Z). Since the sub-
space is much smaller thanB in an informative POMDP, one expects:(1)fewer vectors
are in need to represent a value function over a subspace;(2)since keeping useful vectors
needs solve linear programs, this would lead to computational gains in time cost. Our
empirical studies confirmed these two expectations.

4.5 Value iteration over subspace

Value iteration over subspace starts with a value functionV�(B;A;Z)0 . Each set in it is
initialized to contain a zero-vector ofjSaz j-dimension.

As value iteration continues, the Bellman Residual becomes smaller between two
consecutive value functions over�(B;A;Z). When the residual over�(B;A;Z) falls
below a predetermined threshold, it is also the case for the residual over any simplex.
This suggest that the stopping criterion depend on residuals over simplexes. When the
quantitymaxa;zmaxb2�(B;a;z) jV�(B;a;z)n+1 (b) � V�(B;a;z)n (b)j, the maximal difference
between two consecutive value functions over all simplexes, falls below a threshold�,
value iteration should terminate.

When value iteration terminates, it outputs the arrayV�(B;A;Z)n . A value functionV
over the entire belief space can be defined by one step lookahead operator as follows:V (b) = maxa fr(b; a) +Xz P (zjb; a)V�(B;a;z)n (�(b; a; z))g 8 b 2 B: (3)

The value functionV defined is said to beV�(B;A;Z)n -greedy.
The hope is that ifV�(B;A;Z)n is a good value function over�(B;A;Z), so isV�(B;A;Z)n -greedy value function. The following theorem shows how the threshold �

impacts the quality of value functionV�(B;A;Z)n andV�(B;A;Z)n -greedy value function.

Theorem 2. If � � �(1 � �)=(2�jZj) and value iteration over�(B;A;Z) outputsV�(B;A;Z)n , thenV�(B;A;Z)n -greedy value function is�-optimal over the entire belief
space. ut
This theorem is important for two reasons. First, although value iteration over subspace
computes a value function over a subset of belief space,�-optimal value function over
the entire belief space can be obtained by one step lookahead operator. Second, due to
the availability of�-optimal value function overB, the agent can use it to select action
for any belief state inB. This is true for any initial belief states. Although�(B;A;Z)
consists of all belief states the agent can encounter after receiving any observation, the
initial belief state does not necessarily belong to this set. The theorem implies that theV�(B;A;Z)n -greedy value function can be used to guide the agent to select near optimal
action for any initial belief state.

Finally, we note that to guarantee the�-optimality, the threshold� (set to�(1 ��)=(2�jZj)) in value iteration over subspace is smaller than that over belief space.

307

This stopping criterion is said to bestrict one. If� is set to be�(1� �)=(2�) for value
iteration over subspace, the condition is theloose stopping criterion. In our experiments,
we use the loose stopping criterion.

5 Experiments

Experiments have been designed to test the performances of value iteration algorithms
with and without exploiting the informative characteristics. Here wereport results on a
3x3 grid world problem in Figure 2. It has nine states and the location8(marked by�) is
the goal state. The grid is divided by three rows and three columns. There are three lo-
cations along any row or column. The agent can perform one of four nominal-direction
moving actions or a declaring success action. After performing a moving action, the
agent reaches a neighboring location with probability 0.80 and stays at thesame loca-
tion with probability 0.20. Reasonable constraints are imposed to moving actions. For
instance, if the agent is in location 0 and moves north, it stays at the same location. A
declare-success action does not change the agent’s location. After performing any ac-
tion, the agent is informed of the column number with certainty. As such, the problem
has three observations: col-0, col-1 and col-2. A move action incurs a costof -1. If the
agent declares success in location 8, it receives a reward of 10;If it does so in other
locations, it receives a cost of -2.

E

N

S
W

*

0 3

4

5

1

2

7

6

Columns: 0,1,2.R
ow

s
:0,1,2

Fig. 2.A 3x3 grid world

This POMDP is informative. If value iteration is conducted without exploiting infor-
mativeness, one need to improve values over spaceB(= fbjP8i=0 b(si) = 1:0g. Since
the observations are column numbers and independent of actions, DP updateover sub-
space need to account for three simplexes:Bj = fbjP3j;3j+1;3j+2 b(sj) = 1:0g for
j=0,1,2 wherej is the column number.

Our experiments are conducted on a SUN SPARC workstation. The discount factor
is set to 0.95. The precision parameter is set to 0.000001. The quality requirement�
is set to 0.01. We use the loose stopping criterion. In our experiments, incremental
pruning [12, 5] is used to compute sets of vectors representing value functions over
belief space or subspace. For convenience, we useVI1 andVI to refer to the value
iteration algorithms with and without exploiting regularities respectively. We compare
VI andVI1 at each iteration along two dimensions: the size of set representing value
function and time cost to conduct a DP update. The results are presented in Figure 3.

308

1

10

100

1000

10000

100000

0 50 100 150 200 250si
ze

s
of

 s
et

s
re

pr
es

en
tin

g
va

lu
e

fu
nc

tio
ns

(in
 lo

g
sc

al
e)

number of iterations

VI1: belief subspace
VI: belief space

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

0 50 100 150 200 250

C
P

U
 s

ec
on

ds
(in

 lo
g

sc
al

e)

number of iterations

VI1: subspace
VI: space

Fig. 3. Comparative study on value iterations over belief space andbelief subspace

The first chart in the figure depicts the number of vectors in log-scale generated
at each iteration forVI andVI1. In VI, at each iteration, we collects the sizes of
sets representing value functions. InVI1, we compute three sets representing value
functions over three simplexes and report the sum of the sizes of these three sets. For
this problem, except the first iterations,VI generates significantly more vectors than
VI1. In VI, after a severe growth, the number of vectors tends to be stable. In thiscase,
value functions over belief space are represented by over 10,000 vectors. In contrary, the
number of vectors generated byVI1 is much smaller. Our experiments show that the
maximum number is below 150. AfterVI1 terminates, the value function is represented
by only 28 vectors.

Due to the big difference between numbers of vectors generated byVI1 andVI,
VI1 is significantly efficient thanVI. This is demonstrated in the second chart in Fig-
ure 3. Note that CPU times in the figure are drawn in log-scale. WhenVI1 terminates
after 207 iterations, it takes around 2,700 seconds. On average, one DP update takes
less than 13 seconds. ForVI, it never terminates within reasonable time limit. By our
data, it takes 1,052,590 seconds for first 25 iterations. On average, each iteration takes
around 42,000 seconds. Comparing withVI1, we see thatVI1 is drastically efficient.

6 Integrating Point-based Improvement

In this section, we integrate a point-based improving procedure into value iteration over
subspace and report our experiments on a larger POMDP problem.

6.1 Point-based improvement

The standard DP updateTV is difficult because it has to account for infinite number of
belief states. However, given a setV and a belief stateb, computing the vector in the setTV atb is much easier. This can be accomplished by using a so-calledbackup operator.

Given a setV of vectors, a point-based procedure heuristically generates a finite set
of belief points and backs up on the set to obtain a set of vectors. It is designed to have

309

this property: the value function represented by the set of backup vectorsis better than
the input setV . Because the set of belief states are generated heuristically, point-based
improvements is much cheaper than DP improvements.

A point-based value iteration algorithm interleaves standard DP update with multi-
ple steps of point-based improvements. The standard DP update ensures that the output
value function is�-optimal when value iteration terminates.

6.2 Backup operator

In value iteration over subspace, DP update computesV�(B;A;Z)n+1 from V�(B;A;Z)n . To

do so, it computes the setV�(B;a0;z0)n+1 for each[a0; z0] pair. It is conceivable that this is
still not so easy because�(B; a0; z0) usually consists of infinite number of belief states.

Consequently, it is necessary to design a point based procedure to improveV�(B;a0;z0)n
before it is fed to DP update over subspace�(B; a0; z0). We can generate heuristically a
finite set of belief states in the simplex and back up on this set to obtain aset of vectors.
The key problem is, given a setV�(B;A;Z)n and a belief stateb in �(B; a0; z0), how to

compute a vector in the setV�(B;a0;z0)n+1 ? We can define a backup operator in this context.
The backup vector can be built by three steps as follows.

1. For each actiona and each observationz, find the vector inV�(B;a;z)n that has
maximum inner product with�(b; a; z). Denote it by�a;z.

2. For each actiona, construct a vector�a by: for eachs in the setSa0z0 ,�a(s) = r(s; a) + Xz2Z Xs02Saz P (s0; zjs; a)�a;z(s0)
whereP (s0; zjs; a) equals toP (s0js; a)P (zjs; a).

3. Find the vector, among the�a’s, that has maximum inner product withb. Denote it
by �.

It can be proven that� is a vector inV�(B;a0;z0)n+1 . With the backup operator, before

the setV�(B;a;z)n is fed to DP update over subspace, it is improved by multiple steps of
point-based procedure. After these preliminary steps, the improved setsare fed to DP
update over subspace. As such, we expect that the number of iterations can be reduced
as value iteration converges.

6.3 Experiments

The problem is an extended version of the 3x3 grid world. It is illustrated in Figure 4.
It has 35 columns. The goal location is 104, marked by� in the figure. The agent is
informed of its column number. So the problem has 105 states, 35 observations and 5
actions. The transition and observation models are similar to those in3x3 grid world.

For simplicity, we usePB-VI1 andVI1 to refer to the algorithms conducting DP
over subspace with and without integration of point-based procedure. Due to space

310

*

0 3 6 9

2

1
102
103

Columns: 0...34

Fig. 4. A 3x35 grid world

limit, we report only on the time cost of DP update inVI1 andPB-VI1. For conve-
nience, the time reported for a DP update ofPB-VI1 consists of two portions: the time
for multiple point-based improvements and the time for a DP update over subspace.
The results are collected in Figure 5. Note that the time axis is drawn in log-scale.

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40

C
P

U
 s

ec
on

ds
(in

 lo
g

sc
al

e)

number of iterations

PB-VI1: subspace+pb
VI1: subspace only

Fig. 5. Comparative study on value iteration over subspace with/o point-based improving

We see thatVI1 stand-alone is still insufficient to solve the problem. It takes little
time in first 15 iterations but the DP time grows later on. For instance, for the 20th
iteration, it takes 2,500 CPU seconds and for 27th iteration, it takes 9,000 seconds. It is
believed thatVI can by no means solve this problem.

The situation changes when the point-based procedure is integrated.PB-VI1 con-
verges in 425 seconds after 36 DP updates (plus point-based improvements)over belief
subspace. On average, each iteration takes less than 15 seconds. It is much faster than
VI1. In addition,VI1 needs to run 207 iterations to converge for 3x3 grid world (men-
tioned in previous section). Taking this as a reference, we also note that the point-based
procedure is still efficient in cutting down the number of iterations for VI1 to converge.

7 Related Work and Future Directions

Our concept of informative POMDPs is very similar to that of regional observable
POMDPs in [12]. Both of them assume that any observation restricts theworld into a

311

small set of states. In [12], a regional observable POMDP is proposed to approximate an
original POMDP and value iterations for regional observable POMDPs are conducted
over the entire belief space. Our work focuses on accelerating value iterations for such
POMDP class by restricting them over a subset of belief space.

The approach we use to exclude belief states from being considered works much like
that in reachability analysis (e.g., see [6, 3]). In fully observable MDP, this technique is
used to restrict value iteration over a small subset of state space. Even although value
iteration is restricted into a subspace for informative POMDPs, we show that value
function of good quality over entire belief space can be obtained from valuefunctions
over its subset. In addition, as mentioned in Subsection 4.5, the valuefunction generated
by value iteration over subspace is guaranteed to be�-optimality without much effort.

Acknowledgments

This work has been supported by Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. HKUST658 / 95E).

References

1. Astrom, K. J.(1965). Optimal control of Markov decision processes with incomplete state
estimation.Journal of Mathematical Analysis and Applications, 10, 403-406.

2. Bertsekas, D. P. and Gallagher, R. G.(1995).Data Networks. Prentice Hall., Englewood Cliffs,
N. J..

3. Boutilier, C., Brafman, R. I. and Geib, C. (1998). Structured reachability analysis for Markov
decision processes. InProceedings of UAI-98.

4. Cassandra, A. R.(1998).Exact and approximate algorithms for partially observableMarkov
decision processes. PhD Thesis, Department of Computer Science, Brown University.

5. Cassandra, A. R., Littman, M. L. and Zhang, N. L.(1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes.Proceedings of Thirteenth
Conference on Uncertainty in Artificial Intelligence, 54-61.

6. Dean, T., Kaelbling, L. P., Kirman, J. and Nicholson, A. (1995). Planning under time con-
straints in stochastic domain.Artificial Intelligence, volume 76, number 1-2, Pages 35-74.

7. Choi, S.P.M., Yeung, D. Y. and Zhang, N.L.An environment model for non-stationary rein-
forcement learning. Advances in Neural Information Processing Systems 12(NIPS-99), 987-
993.

8. Hansen, E. A. (1998).Finite-memory controls of partially observable systems.PhD thesis,
Depart of Computer Science, University of Massachusetts atAmherst.

9. Hauskrecht, M.(2000). Value-function approximations for partially observable Markov deci-
sion processes.Journal of Artificial Intelligence Research, 13, 33-94.

10. Papadimitriou, C. H. and Tsitsiklis, J. N.(1987). The complexity of Markov decision pro-
cesses.Mathematics of Operations Research, Vol. 12, No. 3, 441-450.

11. Sondik, E. J. (1971). The optimal control of partially observable decision processes. Ph D
thesis, Stanford University, Stanford, California, USA.

12. Zhang, N. L. and Liu, W. (1997). A model approximation scheme for planning in stochastic
domains.Journal of Artificial Intelligence Research, 7, 199-230.

13. Zhang, N. L. and Zhang, W. (2001). Speeding up the convergence of value iteration in par-
tially observable Markov decision processes.Journal of Artificial Intelligence Research, Vol.
14, 29-51.

312

Improved Integer Programming Models andHeuristic Search for AI PlanningYannis DimopoulosDepartment of Computer ScienceUniversity of CyprusCY-1678, Nicosia, Cyprusyannis@cs.ucy.ac.cyAbstract. Motivated by the requirements of many real-life applications,recent research in AI planning has shown a growing interest in tacklingproblems that involve numeric constraints and complex optimization ob-jectives. Applying Integer Programming (IP) to such domains seems tohave a signi�cant potential, since it can naturally accommodate theirrepresentational requirements. In this paper we explore the area of ap-plying IP to AI planning in two di�erent directions.First, we improve the domain-independent IP formulation of Vossen etal., by an extended exploitation of mutual exclusion relations betweenthe operators, and other information derivable by state of the art domainanalysis tools. This information may reduce the number of variables ofan IP model and tighten its constraints. Second, we link IP methods torecent work in heuristic search for planning, by introducing a variant ofFF's enforced hill-climbing algorithm that uses IP models as its under-lying representation. In addition to extending the delete lists heuristicto parallel planning and the more expressive language of IP, we alsointroduce a new heuristic based on the linear relaxation.1 IntroductionMany recent successful approaches to AI planning, including planning graphs [2],propositional satis�ability [11] and heuristic search [3], are essentially restrictedto planning domains representable in propositional logic. It seems however thatmany practical applications are beyond this representational framework, as theyrequire expressing features like resources, numeric constraints, costs associatedwith actions, and complex objectives. Integer Programming (IP), and its under-lying language of linear inequalities, seem to meet many of these requirements,at least from the representation perspective.The study of the relevance of IP techniques to AI planning has only recentlystarted to receive some attention. The LPSAT engine [16] integrates propositionalsatis�ability with an incremental Simplex algorithm; Lplan [6] uses the linear re-laxation as a heuristic in a partial-order causal-link planner; ILP-PLAN [12] usesIP models for solving problems with resources, actions costs and complex objec-tive functions; Bockmayr and Dimopoulos [5] show how IP models can be used to
313

incorporate strong forms of domain knowledge and represent compactly numericconstraints; �nally, Vossen et al. [15] introduce a strong, domain-independent,method for translating STRIPS planning into IP models.The IP models intend to enhance previous approaches to AI planning, likeBLACKBOX or GRAPHPLAN , that essentially view planning as a constraint satisfac-tion problem. All these methods provide optimality guarantees for the solutionsthey generate, usually with respect to plan length. Recently, [13] and [3] intro-duced a new promising approach to AI planning that is based on heuristic search.Planners of this family, eg. [4, 10, 14], automatically extract heuristic functionsfrom a planning problem speci�cation and use it to guide the search for a solutionin the state space. These planners do not provide any optimality guarantees, un-less they employ admissible heuristics combined with optimal search algorithms,as eg. in [9].In this paper we extend previous work on using IP in AI planning in twodi�erent directions. First, we improve the IP formulation of [15]. Second, we linkIP methods to recent work in heuristic search for planning.In the �rst part of the paper we describe an improved formulation of STRIPSplanning, that exploits more fully the mutual exclusion relations between boththe operators and the uents, than this is done in [15]. Mutex information canstrongly inuence the way a planning problem is translated into inequalities, asit can yield formulations with fewer variables and constraints. Moreover, richerforms of information that can be derived automatically by domain analysis tools[7,8], can further tighten the IP formulation of a planning domain.In the second part of the paper we present a variant of FF's [10] enforced hill-climbing algorithm that uses the IP models as its underlying representationallanguage and is capable of generating parallel plans. Moreover, we introduce anew method for heuristic evaluation, that is based on solving the linear relax-ation of the IP models, and compare it with the IP formulation of the deletelists relaxation method of FF.As one may expect, FF clearly outperforms the new heuristic methods in termof running speed. This can be attributed partly to the fact that FF �nds totally-ordered plans, while the new algorithms generate parallel plans. Moreover, whileFF and similar planners, utilize highly optimized special-purpose techniques tospeed-up heuristic evaluation, we rely on general purpose algorithms like Simplexand branch and bound. Nevertheless, generality has the advantage of extendedexpressiveness, as our approach can handle any domain representable in the lan-guage of linear inequalities. Moreover, we reiterate that the new algorithms gen-erate parallel plans, a feature that can increase their usability in domains thatare inherently parallel. This should be contrasted with most heuristic searchbased planners that generate totally-ordered plans, with the exception of recentwork by Haslum and Ge�ner [9]. Additionally, the IP models can easily accom-modate declarative domain knowledge and exploit it in the heuristic evaluation.Finally, IP formulations, combined with the linear relaxation heuristic allow usto implement a variety of strategies that o�er a tradeo� between search timeand solution quality.
314

The paper is organized as follows. Section 2 presents very briey the IPformulation of [15] and then introduces the improved models. In section 3 wediscuss new heuristic search methods based on the IP models. In section 4 wepresent and discuss some experimental results with the new IP formulation andthe heuristic search algorithms, and in section 5 we conclude.2 IP Models for Planning ProblemsInteger Programming is a more general representation language than proposi-tional logic. In order to represent a general linear inequality exponentially manyclauses (in the number of variables) may be needed. Integer programming com-bines propositional logic with arithmetic and therefore allows for more compactformulations. On the other hand, any propositional clause x1_ : : :_xk _ �xk+1 _: : :_ �xk+l can be easily represented as a linear inequality x1+ : : :+ xk � xk+1�: : :� xk+l � 1� l in 0-1 variables. However, such a straightforward translationusually leads to poor performance. Problem solving with IP techniques oftenrequires a di�erent translation of a problem into linear inequalities. Deriving astrong model for the problem to be solved is a fundamental issue for successfullyapplying IP.As it is shown in [15] similar observations hold for AI planning. Instead ofsimply translating SAT encoding into linear inequalities, [15] presented a dif-ferent, substantially stronger, domain-independent IP formulation of planningproblems. A brief presentation of this approach follows (see [15] for details).2.1 Domain Independent ModelingAny STRIPS planning problem can be represented by a set of variables dividedinto action and state change variables. For each action a in the domain, weintroduce an action variable ya;i which assumes the value true if a is executed atperiod i, and false otherwise. For each uent f we de�ne four variables, namelyxaddf;i , xpre�addf;i , xpre�delf;i , xmaintainf;i . Variable xmaintainf;i encodes 'no-op' actions,while the other variables are de�ned as follows (symbol = denotes set di�erence).Xa2pref =delf ya;i � xpre�addf;i , ya;i � xpre�addf;i 8a 2 pref=delfXa2addf =pref ya;i � xaddf;i , ya;i � xaddf;i 8a 2 addf=prefXa2pref\delf ya;i = xpre�delf;iInformally, xaddf;i = 1 i� an action is executed at time point i that has f as anadd e�ect but not as a precondition. Similarly, xpre�addf;i = 1 i� an action isexecuted at time point i that has f as a precondition but does not delete it, andxpre�delf;i = 1 if this action has f both as a precondition and a delete e�ect.The constraints below prohibit parallel execution of mutually exclusive actions.
315

xaddf;i + xmaintainf;i + xpre�delf;i � 1xpre�addf;i + xmaintainf;i + xpre�delf;i � 1The explanatory frame axioms are encoded asxpre�addf;i + xmaintainf;i + xpre�delf;i � xaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1while the initial state constraints are represented by setting xaddf;0 to 1 if f is truein the initial state and 0 otherwise. Finally, if i 2 1; ::; t, for each goal f we addthe constraint xaddf;t + xmaintainf;t + xpre�addf;t � 1.2.2 Exploiting Domain StructureThe domain independent models of planning problems described above can besubstantially improved by exploiting properties of the speci�c planning domainat hand. In particular, by analyzing in greater detail than in [15] the mutualexclusion relations between the operators and the uents of a domain, we may beable to reduce the number of state-change variables and tighten the constraintsof the IP model. We assume the availability of suitable domain analysis toolscapable of identifying these relations, as those described eg. in [7, 8]. We describe�rst, two improvements that aim at reducing the number of variables of the IPmodel.{ For each uent f such that Xa2addf =pref ya;i � 1, de�ne xaddf;i as xaddf;i =Xa2addf =pref ya;i. This is a simple modi�cation that allows us to substituteout variable xaddf;i . Similar observations hold for the xpre�addf;i variables.{ Let f be a uent such that ya1 ;i + ya2 ;i � 1 holds for every pair of actionsa1 2 pref=delf and a2 2 addf=pref . Then merge xpre�addf;i and xmaintainf;isubstituting out variable xpre�addf;i . With this modi�cation we can omit allconstraints that refer to xpre�addf;i but we need to include constraints of theform ya;i � xmaintainf;i for all a 2 pref=delf that reect the new, extended,meaning of the xmaintainf;i variables.The �rst improvement is straightforward, while the second deserves somefurther discussion. Since every a1 2 pref=delf is mutually exclusive with everya2 2 addf=pref , the variables xpre�addf;i and xaddf;i , are also exclusive. Instead ofadding an additional constraint, we omit variable xpre�addf;i and \transfer" its rolein the model to the corresponding variable xmaintainf;i . Note that while exclusionconstraints of the form xpre�addf;i + xmaintainf;i + xpre�delf;i � 1 are dropped, theconstraints xaddf;i + xmaintainf;i + xpre�delf;i � 1 remain in the formulation, markingxaddf;i and xmaintainf;i (and therefore the deleted xpre�addf;i) as mutually exclusive.
316

We now discuss some techniques that can further tighten the IP model of aplanning domain.Our method is based on the derivation of single-valuedness andXOR constraints as described in [8]. We restrict our discussion to binary uents.A single valuedness constraint is a constraint of the form (f(y; �z); C(y)) statingthat for every value of variable y that satis�es constraint C(y) there can be onlyone value for (the \starred") variable �z. An XOR constraint is a constraint ofthe form (XOR f1(y; z); f2(y; u); C(y)) stating that for every state and for everyvalue of y satisfying C(y) either f1(y; z) or f2(y; u) must be true (for some valuesof z and u) but not both.{ Let f(y; z) be a binary uent for which the single-valuedness constraint(f(y; �z); C(y)) holds. Then, for each y that satis�es C(y), replace the set ofconstraints xaddf;i + xmaintainf;i + xpre�delf;i � 1 that refer to each possible valueof z, with a single constraintXz xaddf;i +Xz xmaintainf;i +Xz xpre�delf;i � 1whereXz denotes the sum over the domain of the second parameter of theuent f , namely z.Going one step further we can exploit the XOR constraints and modify themutual exclusion constraints as follows.{ Let f1(y; �z) and f2(y; �u) be two single-valued uents on their second argu-ments, for which the constraint (XOR f1(y; z); f2(y; u); C(y)) holds. Then,replace all mutual exclusion constraints on f1 and f2 that refer to somespeci�c object satisfying C(y) with the constraintXz xaddf1;i +Xz xmaintainf1;i +Xz xpre�delf1;i +Xu xaddf2;i +Xu xmaintainf2;i +Xu xpre�delf2;i � 1Moreover, if the model does not contain any of the variables xpre�addf1;i andxpre�addf2;i (meaning that all actions that have f1 or f2 as a precondition, alsohave it as a delete e�ect), we can replace � in the above constraint with anequality.The following simpli�cation relates to the frame axioms.{ Let f be a uent such that every action that adds it, has f as its sole adde�ect. Then, if f is true at time i� 1 we can safely add the constraintxaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1 � xpre�addf;i + xmaintainf;i + xpre�delf;iwhich combined with the corresponding explanatory frame axiom, namely
317

xpre�addf;i + xmaintainf;i + xpre�delf;i � xaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1gives rise to an equality of the formxpre�addf;i + xmaintainf;i + xpre�delf;i = xaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1To see that the above transformation is valid, note that if a uent f is true attime i � 1 (meaning that one of the xaddf;i�1, xmaintainf;i�1 , xpre�addf;i�1 is true), and allactions that add f have no other add e�ects, then assigning false to xaddf;i , doesnot have unwanted complications. In fact, if we adopt the above simpli�cation,xaddf;i will necessarily be assigned false, if f is true at time i � 1 and f does nothave an associated variable xpre�addf;i or this variable is assigned the value false.We note that the above transformation of the frame axioms into equalities canbe extended to more general cases, but we do not discuss this issue further.Example: Consider the rocket domain with the usual load and unload oper-ators for packages and fly for airplanes. We note that all actions that add infor packages are mutually exclusive, therefore the uent variables xaddin;i can besubstituted out and replaced by Xa2addin=prein ya;i, where a is a load action thatadds the corresponding in proposition. Similar constraints hold for at for bothplanes and packages, hence all corresponding xaddf;i can be omitted from the for-mulation. Now consider the variable xpre�addat;i corresponding to the uent at thatrefers to airplanes. Note that every action ai 2 preat=delat (ie. load and unloadactions) is mutually exclusive with every action aj 2 addat=preat (ie. y actions)and therefore we can merge xpre�addat;i with xmaintainat;i , by omitting all xpre�addat;iand adding the constraints yld;i � xmaintainat;i and yun;i � xmaintainat;i for the corre-sponding load (denoted as yld;i) and unload (yun;i) actions.Moreover the single-valuedness of in(x; �y), where x refers to packages and yto planes, will tighten the mutual exclusion constraintXL yun;i + xmaintainin;i +XL yld;i � 1 into the stronger constraintXPl XL yun;i +XPl xmaintainin;i +XPl XL yld;i � 1wherePPl denotes sum over all planes andPL, sum over all locations. A similarconstraint can be derived for uent at that refers to packages being at locations.Since uents in and at are related with a XOR constraint (meaning that, at eachtime, a package must be in some plane, or at some location but not both) wecan combine the two constraints and deriveXPl XL yun;i +XPl xmaintainin;i +XPl xmaintainat;i +XPl XL yld;i = 1Finally, since the only operator that adds at for a package and a location isunload, and at is the only add e�ect of this operator, the corresponding frame
318

axioms can be converted into equalities. Similar observations hold for the otherpropositions of the domain.In the next section, when we introduce the constraint relaxation heuristic,we will need IP models for domains with operators that do not contain deletee�ects. For this special case we use a straightforward translation of propositionalsatis�ability planning theories into linear inequalities.3 Heuristic SearchThe above modi�cations in the IP formulation of planning problems, can sub-stantially improve performance. However, as it happens with other approachesthat generate optimal plans, in many domains, IP models do not scale well.In this section, we attempt to address this issue in a exible way, by bringingtogether IP modeling and heuristic search. Heuristic search methods derive aheuristic function from the problem speci�cation and use it to guide the searchin the state space. The heuristic function h for a problem P is derived by con-sidering a relaxed problem P 0.We consider two di�erent relaxations of a planning problem. The �rst, whichwe call the constraint relaxation (CL) approach, was introduced in [3] and modi-�ed in FF [10]. Here the relaxed problem is obtained from the original by ignoringthe delete e�ects of the operators. In the second approach, which we call lin-ear relaxation (LR) approach, the relaxed problem is obtained from the originalproblem by dropping the integrality constraint from the integer variables.The heuristic function we use is the same as in FF. Let O1; O2; :::; Om be thesets of actions selected (action selection can be a fractional number greater than0, if the LR approach is used) in the solution of the relaxed problem at time i.Variable m, called the length invariant, equals the number of time steps neededso that the relaxed problem becomes solvable (ie., the relaxation with m�1 timesteps is infeasible). We de�ne our heuristic function as h(S) =Pi=1;:::;m jOij.The search method we use in our approach is a variant of the enforced hill-climbing introduced in FF. It can be described briey as follows.AlgorithmMEHC(step,nd-limit,cutoff)i:=0; solved:=false;while not solvedi:=i+1; Solve the relaxed problem using i time steps;if feasible then solved:=true;endwhilem:=i; /*Length invariant m used in the heuristic function*/Set obj to the value of the objective function and current plan to empty;S :=Initial State; h(S) = obj;while h(S) 6= 0 doCall EBFS(m,step,nd-limit,cutoff) in order tobreadth-�rst search for a state S0 with h(S0) < h(S);if (no such state is found) then report failure and stop;
319

Add the selected actions to current plan, set S := S0 and h(S) := h(S0);endwhileAlgorithm MEHC di�ers from FF in the way it performs the search for thesuccessor state at each of its iterations. The new search method is implementedby procedure EBFS, which is presented below.For a planning problem P , let Pt denote the set of constraints in the IPformulation of P over the time interval t. Moreover, let P lrt denote the set ofconstraints obtained if the integrality constraints of Pt are dropped. Finally, letP crt denote the set of constraints, over the time interval t, of the IP model ofthe problem obtained from P by dropping the delete list of the operators. Then,procedure EBFS below implements the breadth-�rst search for a state with abetter heuristic value, where P 0t stands for any of P lrt and P crt depending on themethod we employ.procedure EBFS(m,step,nd-limit,cutoff)i=step;while (i<cutoff+step)set branch and bound node limit to nd-limit, andsolve min(Xa2A Xj2[i+1;m] ya;j) subject toP[0;i] [P 0[i+1;m][fXa2A Xj2[i+1;m] ya;j < h(S)g;if (feasible) then return solution else i:=i+1;endwhileNote that the set of constraints P[0;i] allows for parallel action execution, andtherefore, the successor of a state S can be any state that can be reached fromS by executing a set of parallel actions. Hence, the algorithm generates parallelplans.Procedure EBFS uses branch and bound in order to perform the search forthe successor state, and therefore its theoretical time complexity is determinedmainly by the number of integer variables of the problem it solves. If the linearrelaxation heuristic is used, each iteration of EBFS has time complexity which is,in the worst case, exponential in the number of variables of P[0;i]. In the case ofthe constraint relaxation heuristic, this complexity is higher, as it is exponentialin the number of variables of P[0;i] [P cr[i+1;m]. However, our experimentationrevealed that, in many domains, the set of constraints P lrt is much harder tosatisfy than the corresponding set P crt . Consequently, the constraint relaxationheuristic can outperform the linear relaxation one in terms of running speed.Moreover, the use of branch and bound in EBFS has some interesting im-plications. For instance, in the case of the constraint relaxation approach, thealgorithm can branch on any of the variables of P[0;i] [P cr[i+1;m], interleaving inthis way the selection of the successor state with its evaluation. Furthermore,the objective function, which minimizes the number of actions, can provide sub-stantial guidance in the search of a low cost successor state.
320

The new algorithm is parametric to the values of step, nd-limit, and cuto�.Parameter nd-limit de�nes the node limit of the branch and bound search algo-rithm. Parameter step de�nes the minimum distance (number of parallel steps)of the successor state from the current state, while cuto� de�nes the maximumsuch distance. Parameters step and nd-limit allow us to implement a variety ofsearch strategies that trade-o� solution quality for performance. Higher valuesfor nd-limit may generate successor states with better heuristic values, whilehigher values for step usually lead to more informed choices in the selection ofthe successor state. Therefore, higher values for these parameters usually yieldbetter plans, while lower values better run times.4 Experimental ResultsWe run some initial experiments with the new IP formulation and the heuristicsearch method on a variety of planning domains. The models were generated byhand, using the algebraic modeling system PLAM (ProLog and Algebraic Mod-eling) [1] and following the steps described in section 2. In all the experimentsCPLEX 6.6 was used. All variables were declared integer. The setting was the fol-lowing. At each node of the branch and bound dual simplex with \steepest-edgepricing" was used. Probing was set to 1, leading to some simpli�cations of themodels, as well as clique cuts derivation. The variable selection strategy was setto \pseudo-reduced costs", and the node selection strategy to best-bound search.All experiments were run on a Sun Ultra-250 with 512 MB RAM.Table 1 compares the performance of the IP formulation of [15] (column OIP)and the improved formulation discussed in section 2 (column IIP) on blocks worldand rocket domain problems. The objective function in both domains was set tominimize the number of actions. In the rocket domain, some ight minimizationexperiments were also run, and are marked with the problem name su�x fl-minin Table 1. The entries under \First" refer to the run time and number of nodesexplored until the �rst solution was found. For the blocks world problems theentries under \Optimal" refer to solving these problems to optimality (the timeneeded to prove optimality is included). The same entries for the, more di�cult,rocket problems refer to �nding a solution with cost that is provably not morethan 10% higher than the cost of the optimal solution. The data of Table 1 wereobtained using, in each domain and for each formulation, the cut generationstrategy that seems to perform best. In the blocks world domain the defaultvalues were used for both formulations. In the rocket domain, di�erent Cliqueand Gomory cut generation strategies were used for the di�erent formulationsand the di�erent optimization objectives, but we do not discuss this issue further.Both domains allow for parallel actions. The largest problem in the blocksworld domain, bw3, involves 13 blocks, has plan length 9 and the optimal solutionhas 19 actions. The IP formulation for this domain is strong, leading to smallintegrality gaps and, consequently, good performance. In some moderately sizedproblems, the �rst solution was obtained by simply rounding the values of thevariables obtained after solving the linear relaxation.
321

First OptimalOIP IIP OIP IIPProblem time nodes time nodes time nodes time nodesbw1 93 5 25 0 93 5 28 11bw2 310 0 108 0 310 0 108 0bw3 7072 21 876 23 - - 1277 50rocket1 98 371 13 56 631 2554 92 287rocket2 109 297 10 28 1521 4237 132 260rocket3 - - 408 459 - - 1885 1251rocket4 7478 2522 461 456 - - 1886 993rocket1-fl-min 1828 1734 19 14 3775 5417 59 422rocket2-fl-min 591 384 80 320 3602 4754 82 360rocket3-fl-min - - 236 260 - - 1685 4791rocket4-fl-min 3391 372 210 150 - - 2083 4067Table 1. Performance comparison of di�erent IP formulations on action and ight(marked with the name su�x fl-min) minimization problems. For each problem wegive run time and number of nodes in the branch and bound tree. Times in seconds. Adash denotes that no solution was found within about 2 hours (8000 sec) of CPU time.In the rocket domain, the largest problem, rocket4, involves 16 packages, 5locations and 3 planes. The optimal parallel plan length is 7, and the optimalsolution contains 41 actions. Here the IP formulation is weaker. The integralitygap is larger, and closes relatively slow, after many iterations. Nevertheless, inmost cases, the new formulation is substantially stronger.Table 2 shows some representative results from experiments with the IP basedheuristic methods on the parallel rocket domain. The CR columns refer to theconstraint relaxation heuristic, while the LR columns to the linear relaxationone. The FF column shows the number of actions in the plan generated by FF,which solves all problems in a few seconds.LR CR FFProblem pac pl loc time len actions time len actions actionsrocket4 16 3 5 29 9 45 25 13 46 53rocket5 16 3 5 62 9 47 36 14 45 41rocket6 16 3 5 33 9 43 31 13 49 52rocket7-1 21 3 6 445 11 57 27 11 56 67rocket7-2 21 3 6 427 12rocket7-3 21 3 6 286 12rocket8 27 4 7 1598 11 75 214 13 90 80Table 2. Performance comparison of the heuristic search algorithms. For each problemwe give the number of packages (pac), planes (pl) and locations (loc), solution time inseconds (time), parallel plan length (len) and number of actions in the plan (actions).
322

In all problems the relaxation based algorithm was run with the step andcuto� parameters set to 1. For the smaller problems, rocket4 to rocket6, thend-limit parameter of the linear relaxation based algorithm was set to in�nity,ie. at each iteration the corresponding problem was solved to optimality. How-ever, for larger problems, like rocket7 and rocket8, when the linear relaxationheuristic is used, the number of explored nodes has to be limited in order to gainacceptable e�ciency. The 3 entries of Table 2 pre�xed with rocket7, correspondto solutions of the same problem with di�erent node bounds. Row rocket7-1refers to solving the problem without limiting the number of explored nodes,while rows rocket7-2 and rocket7-3 correspond to a limit of 1000 and 500nodes respectively. For problem rocket8 the node limit was set to 500. In theproblems we considered, restricting the number of nodes a�ects only the �rst twoiterations of the algorithm, as in the subsequent iterations the optimal solutionis found after exploring a few nodes. More speci�cally, in most problems, the�rst two iterations make up more than 60% of the total solution time.In most of the problems it seems that the linear relaxation heuristic o�ers areasonably good trade-o� between search time and solution quality. For instance,if we compare the solution time of the direct IP formulation of problem rocket4in Table 1, with the time needed for solving the same problem with the linearrelaxation heuristic algorithm in Table 2, we note a decrease from 461 secs to 29secs. This speed-up comes with an increase of the plan length from 7 to 9.It is interesting to compare the characteristics of the linear and constraintrelaxationmethods. The constraint relaxation heuristic almost always runs fasterthan the linear relaxation one. But as far as parallel plan length is concerned,constraint relaxation is quite unstable, and in many cases (eg. problems rocket5and rocket8 in Table 2) generates plans that underutilize the available resources(planes) and, for this reason, are longer.5 Conclusions and discussionThe results presented in [15], suggest that careful modeling can make IP e�ectivein solving classical STRIPS problems. This has important practical implications,since many problems can be represented as a set of STRIPS operators togetherwith some additional complex constraints. Solving such problems e�ectively,requires reasonable performance on their STRIPS part.In this paper we presented some improvements of the IP formulation of [15]that exploit more fully the structure of the planning domains. The new transla-tion method bene�ts from recent work in automated domain analysis, but alsorecent advances in Integer Programming. Indeed, advanced features of state-of-the-art IP solvers, such as preprocessing, probing, and constraint derivation,most notably in the form of Gomory and Clique cuts, have positive e�ect onthe performance of the models. Our current work focuses on further improvingthe IP formulation of planning problems, and combining it with strong forms ofdomain knowledge. More extensive experimentation, to be reported in a longerversion of this paper, gives encouraging �rst results.
323

The enforced hill-climbing algorithm that we described in the second part ofthe paper, can be understood as an attempt towards combining IP models withheuristic search. This is done in a way di�erent than in the Lplan system [6],which uses the linear relaxation of an IP formulation, which is di�erent thanours, as a heuristic in a partial-order causal-link planner.Our intention is to develop algorithms that improve e�ciency at an accept-able cost in solution quality. In parallel domains, which is our main focus, thedegree of parallelism of the generated plan is an integral part of solution quality.It seems that the linear relaxation heuristic performs better than the constraintrelaxation in terms of solution quality, but it is slower. We currently work onimproving its performance.Obviously, the algorithm we presented is neither complete nor optimal. Fu-ture research will focus on investigating whether it is feasible to employ IPmodels in heuristic search algorithms that satisfy both properties.References1. P. Barth and A. Bockmayr. Modelling discrete optimisation problems in constraintlogic programming. Annals of Operations Research, 81:467{496, 1998.2. A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. IJCAI-95,pp. 1636-1642, 1995.3. B. Bonet, G. Loerincs and H. Ge�ner. A fast and robust action selection mechanismfor planning. AAAI-97, pp. 714-719, 1997.4. B. Bonet and H. Ge�ner. Planning as heuristic search: New Results. ECP-99, pp.360-372, 1999.5. A. Bockmayr and Y. Dimopoulos. Integer Programs and Valid Inequalities forPlanning Problems. ECP-99, pp. 239-251, 1999.6. T. Bylander. A Linear Programming Heuristic for Optimal Planning. AAAI-97,pp. 694-699, 1997.7. M. Fox and D. Long. The Automatic Inference of State Invariants in TIM. Journalof AI Research, 9, pp. 367-421, 1998.8. A. Gerevini and L. Schubert. Discovering state constraints in DISCOPLAN: Some newresults. AAAI-00, pp. 761-767, 2000.9. P. Haslum and H. Ge�ner. Admissible Heuristics for Optimal Planning. AIPS-00,pp. 140-149, 2000.10. J. Ho�mann and B. Nebel. The FF Planning System: Fast Plan GenerationThrough Heuristic Search. Journal of AI Research, Vol. 4, pp. 253-302, 2001.11. H. Kautz and B. Selman. Unifying SAT-based and Graph-based Planning. IJCAI-99, pp. 318-325, 1999.12. H. Kautz and J. Walser. State-space Planning by Integer Optimization. AAAI-99,pp. 526-533, 1999.13. D. McDermott. A Heuristic Estimator for Means-Ends Analysis in Planning. AIPS-96, pp. 142-149, 1996.14. I. Refanidis and I. Vlahavas. GRT: A Domain Independent Heuristic for STRIPSWorlds based on Greedy Regression Tables. ECP-99, pp. 346-358, 1999.15. T. Vossen, M. Ball, A. Lotem, and D. Nau. On the Use of Integer ProgrammingModels in AI Planning. IJCAI-99, pp. 304-309, 1999.16. S. Wolfman and D S. Weld. The LPSAT Engine and Its Application to ResourcePlanning. IJCAI-99, pp. 310-317, 1999.
324

RIFO Revisited: Detecting Relaxed IrrelevanceJ�org Ho�mann and Bernhard NebelInstitute for Computer ScienceAlbert Ludwigs UniversityGeorges-K�ohler-Allee, Geb. 5279110 Freiburg, Germanyho�mann@informatik.uni-freiburg.deAbstract. RIFO, as has been proposed by Nebel et al. [8], is a methodthat can automatically detect irrelevant information in planning tasks. Theidea is to remove such irrelevant information as a pre-process to planning.While RIFO has been shown to be useful in a number of domains, its maindisadvantage is that it is not completeness preserving. Furthermore, thepre-process often takes more running time than nowadays state-of-the-artplanners, like FF, need for solving the entire planning task.We introduce the notion of relaxed irrelevance, concerning actions which arenever needed within the relaxation that heuristic planners like FF and HSPuse for computing their heuristic values. The idea is to speed up the heuris-tic functions by reducing the action sets considered within the relaxation.Starting from a su�cient condition for relaxed irrelevance, we introducetwo preprocessing methods for �ltering action sets. The �rst preprocessingmethod is proven to be completeness-preserving, and is empirically shown toterminate fast on most of our testing examples. The second method is fast onall our testing examples, and is empirically safe. Both methods have drasticpruning impacts in some domains, speeding up FF's heuristic function, andin e�ect the planning process.1 IntroductionRIFO, as has been proposed by Nebel et al. [8], is a method that can automaticallydetect irrelevant information in planning tasks. A piece of information can be con-sidered irrelevant if it is not necessary for generating a solution plan. The idea isto remove such irrelevant information as a pre-process in the hope to speed up theplanning process. While RIFO has been shown to be useful for speeding up GRAPH-PLAN in a number of domains, it does not guarantee that the removed informationis really irrelevant. In e�ect, RIFO is not completeness preserving. Furthermore, thepre-process itself can take a lot of running time. While RIFO can be proven to ter-minate in polynomial time, it|or at least its implementation within IPP4.0 [7]|ison a lot of planning tasks not competitive with nowadays state-of-the-art planners.In our experiments on a large range of tasks from di�erent domains, we found thatin most examples RIFO needs more running time to �nish the pre-process than FFneeds for solving the entire task.In this paper, we present a new approach towards de�ning and detecting ir-relevance. We explore the idea of relaxed irrelevance, which concerns pieces of in-formation, precisely STRIPS actions, that are not needed within the relaxationthat state-of-the-art heuristic planners like FF [4] and HSP [2] use for computingtheir heuristic values. Those planners evaluate each search state S by estimatingthe solution length from S under the relaxation that all delete lists are ignored.The main bottleneck in FF and HSP is the heuristic evaluation of states, so it isworthwhile trying to improve on the speed of such evaluations. Our idea is to speed
325

up the heuristic functions by reducing the action sets considered within the relax-ation. Actions that are relaxed irrelevant need never be considered. We de�ne thenotion of legal generation paths, and prove that an action is relaxed irrelevant if itdoes not start such a path. Deciding about legal generation paths is still NP-hard,so we introduce two approximation techniques. Both can be used as preprocessingmethods for �ltering the action set to be considered within the relaxation. The �rstpreprocessing method includes all actions that start a legal generation path, andcan therefore safely be applied to the relaxation. The pre-process terminates faston most of our testing examples in the sense that it is orders of magnitude fasterthan FF. The second approximation method is fast on all our testing examples, andwhile it is not provably completeness preserving, it is empirically safe: from a largetesting suite, no single example task got unsolvable because of the �ltering process.We introduce our theoretical investigations and algorithmic techniques withinthe STRIPS framework, and summarise how they are extended to deal with condi-tional e�ects. Both action �ltering methods can in principle be used as a pre-processto either FF or HSP|or rather as a pre-process to any planner that uses the samerelaxation|and both methods have drastic pruning impacts in some domains. Wehave implemented the methods as a pre-process to FF, and show that they signif-icantly speed up FF's heuristic function, and in e�ect the plan generation process,in those cases where the pruning impact is high.The next section gives the necessary background in terms of STRIPS notationsand heuristic forward state space planning as done by FF and HSP. Section 3 de�nesand investigates our notions of relaxed irrelevance and legal generation paths.1Section 4 explains two ways of approximating legal generation paths, yielding theabove described two action �ltering methods. Section 5 summarises how our analysisis extended to ADL domains, and Section 6 describes the experiments we made forevaluating the approach. Section 7 explains two lines of work that we are currentlyexploring. Section 8 concludes.2 BackgroundWe introduce our theoretical observations and our algorithms in a propositionalSTRIPS framework, where planning tasks are triples (O; I;G) comprising the actionset, the initial state, and the goal state, actions are triples o = (pre(o); add(o); del(o)),and the result of applying an action o to a state S with pre(o) � S is Result(S; o) =(S [add(o)) n del(o). Plans, or solutions, are sequences P of actions for whichG � Result(I; P) holds. A plan P = ho1; : : : ; oni is called minimal, if no singleaction can be left out of the sequence without loosing the solution property, i.e., ifho1; : : : ; oi�1; oi+1; : : : ; oni is not a solution for any oi. The length of a plan is thenumber of actions in the sequence. A plan for a task P is optimal if it has minimallength among all plans for P . Obviously, optimal plans are minimal.FF is based on the general principle of heuristic forward state space search, ashas �rst been implemented in HSP1.0. The idea is to search in the space of statesthat are reachable from the initial state, trying to minimise a heuristic value that iscomputed to each considered state. The heuristic evaluation in both FF and HSPis based on the following relaxation.De�nition 1. Given a planning task P = (O; I;G). The relaxation P 0 of P isde�ned as P 0 = (O0; I;G), withO0 = f(pre(o); add(o); ;) j (pre(o); add(o); del(o)) 2 Og1 We only sketch our proofs. The complete proofs can be found in a longer version of thepaper, available as a technical report [5].
326

In words, a planning task is relaxed by ignoring all delete lists. When either FFor HSP face a search state S, they estimate the length of a relaxed solution startingin S, i.e., they estimate the solution length of the task (O0; S;G). In HSP, this isdone by computing certain weight values for all facts, where the weight of a factis an estimate of how di�cult it is to achieve that fact from S. Computing theseweight values involves a �xpoint computation that iteratively applies all actions untilno more changes occur [2]. In FF, the solution length to (O0; S;G) is estimated byextracting an explicit solution in a GRAPHPLAN-style manner [1, 4]. The techniqueis based on building a relaxed version of GRAPHPLAN's planning graph, whichinvolves, like HSP's method, repeated application of all actions.The main bottleneck in HSP, i.e., the main source of running time consumed,is the heuristic evaluation of states [2]. The same applies to FF. While heuristicevaluation is implemented e�ciently in both systems, usually no more than a fewhundred state evaluations can take place in a second (for FF, Section 6 providesaveraged running times per state evaluation on a large range of domains). In somehuge planning tasks, we have observed that a single evaluation in FF can take upto half a second running time. This is due to the large number of actions that thereare in instantiated planning tasks. With ten-thousands of actions to be considered,FF's process of building a relaxed planning graph, and HSP's process of computinga weight �xpoint, must be costly no matter how e�cient the implementation is.Our idea, consequently, is to reduce the number of actions that the planners needto consider within the relaxation, i.e., to compute as a pre-process a set Ojr ofactions that are considered relevant for the relaxation. During search, one can thenestimate solution lengths to the tasks (Oj0r ; S;G) as opposed to using the wholeaction set in the tasks (O0; S;G).Of course, the set Ojr can not be chosen arbitrarily small. If important actionsare missed out, then the task (Oj0r ; S;G) can become unsolvable for a state S thoughit would be solvable with the original action set. In other words, one runs the riskof loosing relaxed completeness. If the task (Oj0r ; S;G) is unsolvable, which bothHSP's and FF's algorithmic methods will detect, then the systems set the heuristicvalue of S to 1, excluding the state from the search space. While this is normallyjusti�ed|if a state can not be solved even when ignoring delete lists, then thatstate is unsolvable|it can lead to incompleteness if solving (Oj0r; S;G) only failedbecause Ojr does not contain some important action(s).2 The rest of the paper isinspired by a notion of relevance that maintains relaxed completeness.3 Relaxed IrrelevanceWe consider an action relaxed irrelevant if it never appears in an optimal relaxedsolution. Clearly, such actions can be ignored within the relaxation without loos-ing completeness. Unfortunately, deciding about relaxed irrelevance is as hard asplanning itself.De�nition 2. Let (O; I;G) be a planning task. An action o 2 O is relaxed irrele-vant if o is not part of any optimal relaxed solution from any reachable state.De�nition 3. Let RELAXED-IRRELEVANCE denote the following problem:Given a planning task (O; I;G) and an action o 2 O, is o relaxed irrelevant?2 One might argue that this could be �xed by setting the heuristic value of S to a largeinteger instead of 1. While this would regain completeness, it would also make theadequacy of the heuristic questionable: If a large number of states have the same highheuristic evaluation only because Ojr is too restrictive, then the heuristic is not veryinformative about the real structure of the search space.
327

Theorem 1. Deciding RELAXED-IRRELEVANCE is PSPACE-hard.Proof Sketch: By a polynomial reduction from PLANSAT, the decision problemof whether there exists a solution plan for a given arbitrary STRIPS planning task[3]: First rename all atoms in the original task. Then put original o into the renamedaction set, plus two arti�cial actions: one requiring the renamed goal to be solved,deleting all renamed atoms, and adding o's precondition, the other needing o's adds,and achieving the renamed goal. o is needed for an optimal relaxed solution in themodi�ed task if and only if the original task is solvable.3.1 A Su�cient ConditionWe now derive a su�cient condition for relaxed irrelevance. The following de�nitionforms the heart of our investigation.De�nition 4. Let P = (O; I;G) be a planning task. The generation graph to thetask is de�ned by the node set O [foGg, with oG := (G; ;; ;), and the edge setf(o; o0) j add(o) \ pre(o0) 6= ;gWe refer to paths P = ho1; : : : ; on = oGi in this graph as generation paths. We calladd(oi) \ pre(oi+1) the connecting facts at position i. P is legal if at each positionthere is at least one connecting fact that is not contained in the preconditions of theprevious actions, i.e., if for 1 � i � n� 1:(add(oi) \ pre(oi+1)) n [1�j�i pre(oj) 6= ;The generation graph to a task intuitively represents all ways in which facts canbe achieved. A generation path is a sequence of actions that support each other,and that end up making at least one goal true. We will see in the following thatthe only generation paths that are adequate in minimal relaxed solutions are thosegeneration paths that are legal. Precisely, we will show the following.Theorem 2. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni aminimal relaxed solution to S. Then for all oi there exists a legal generation pathPi starting with oi.With that, we immediately have our su�cient condition.Corollary 1. Let (O; I;G) be a planning task, o 2 O. If there is no legal generationpath P starting with o, then o is not part of any minimal relaxed solution from anystate. In particular, o is then relaxed irrelevant.Semantically, De�nition 4 can be seen as a modi�cation of the base techniquethat is used in RIFO. The relation between the techniques gives a nice picture ofwhat is happening. Briey, it can be explained as follows. To create an expectation ofwhat is relevant for solving a planning task, RIFO builds a so-called fact-generationtree. This is an AND- OR-tree that is built by backchaining from the goals. Theroot node is an AND-node corresponding to the goals. Other AND-nodes corre-spond to an action's preconditions, and the OR-nodes are single atoms that canalternatively be achieved by di�erent actions. Once this tree is generated, RIFOapplies a number of simple heuristics to select the information from the tree thatis likely most relevant. Now, the set of all legal generation paths can be viewed asa more restrictive version of RIFO's fact-generation tree, where an action is onlyallowed to achieve an OR-node if the intersection of the action's precondition withthe facts on the path from the OR-node to the tree root is empty. This is adequate
328

(only) for relaxed planning. While RIFO selects fractions of its tree as relevant, weselect the whole tree. This gives us completeness in the relaxation. The proof toTheorem 2 proceeds using what we call the needed facts, which are the facts forwhose achievement actions can be placed at a certain position in a relaxed solution.De�nition 5. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni arelaxed solution to S. The open facts OF (P; i) of P at position i areOF (P; i) := (G n [i<j�n add(oj)) [[i<j�n(pre(oj) n [i<k<j add(ok));and the needed facts NF (P; i) of P at position i areNF (P; i) := OF (P; i) n (S [[1�j<i add(oj))An action placed at position i in a relaxed plan P must add all needed facts ofP at position i, and in a minimal relaxed plan there is at least one needed fact ateach position.Lemma 1. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni arelaxed solution to S. Then add(oi) � NF (P; i) holds for 1 � i � n.Proof Sketch: If an action does not add a needed fact, then P is no relaxedsolution, because either some precondition ahead or some goal remains unachieved.Lemma 2. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni aminimal relaxed solution to S. Then NF (P; i) 6= ; holds for 1 � i � n.Proof Sketch: If there is no needed fact at position i, then P without oi is still arelaxed solution|all facts that must be achieved are true without applying oi.Using the above two lemmata, Theorem 2 can be proven, stating that to allactions oi in a minimal relaxed solution P = ho1; : : : ; oni there is a legal generationpath Pi starting with oi.Proof Sketch: (to Theorem 2) The desired paths Pi can be constructed bystarting with oi, successively stepping onto a successor action that has a neededfact as precondition, and stopping when a goal fact is needed. With Lemma 2, thereis always at least one needed fact, and with Lemma 1, those facts are added. Theresulting action sequence is obviously a generation path, and it is legal because factsare not yet true at the position where they are needed.Unfortunately, deciding about the su�cient condition given by Corollary 1 isstill NP-hard.De�nition 6. Let LEGAL-GENERATION-PATH denote the following problem:Given a planning task (O; I;G) and an action o 2 O, is there a legal generationpath starting with o?Theorem 3. Deciding LEGAL-GENERATION-PATH is NP-complete.Proof Sketch: Membership follows by a simple guess-and-check argument. Hard-ness can be proven by a polynomial reduction from 3SAT. Introduce one action foreach literal in the clauses, and one action for each variable. Additionally, introducea starting action s. The preconditions and add lists can be arranged such that thefollowing holds: Firstly, a generation path starting with s must visit all clauses atleast once, and afterwards pass through all variables. Secondly, passing a variablelegally requires that the path has not visited the respective variable and its nega-tion. A legal generation path starting in s thus de�nes a satisfying truth assignmentvia the literals visited in the clauses, and vice versa.
329

4 Approximation TechniquesWe will now introduce two polynomial-time approximations of legal generationpaths, �ltering action sets for relaxed planning. The �rst method includes all ac-tions that start a legal path, and is therefore complete in the relaxation. As wewill see in the next section, the method terminates fast in almost all of our testingexamples. The second method does not give any completeness guarantees, but willbe shown to be empirically safe, and to terminate extremely fast on all examples inour testing suite.4.1 A Su�cient ApproximationLet us �rst introduce a notation for the set of all actions that start a legal generationpath. With Corollary 1, we can restrict the actions considered by an FF or HSPstyle heuristic function to that set without loosing completeness.De�nition 7. Let P = (O; I;G) be a planning task. The legal action set to P isOjl := fo 2 O j 9 P 2 O� : hoi � P is a legal generation path g.Our su�cient approximation collects together all actions starting generationpaths that ful�ll a weaker notion of legality. Reconsider De�nition 4.De�nition 8. Let P = (O; I;G) be a planning task. A generation path P =ho1; : : : ; oni is initially legal if (add(oi) \ pre(oi+1)) n pre(o1) 6= ; for 1 � i � n� 1.The initially legal action set Ojil to P is de�ned using the following �xpoint operator� : 2O 7! 2O.� (Ojr) := fo 2 O j 9 P 2 Oj�r : hoi � P is an initially legal generation path gWe set Ojil := S1i=0 � i(;).In words, we obtain the initially legal action set by computing a �xpoint over theactions that start an initially legal generation path. A generation path is initiallylegal when between any two actions there is a connecting fact that is not containedin the precondition of the �rst action. Clearly, legal generation paths|where thereare connecting facts that are not contained in the precondition of any previousaction|ful�ll this property.Proposition 1. Let P = (O; I;G) be a planning task. The initially legal action setis a superset of the legal action set, i.e., Ojil � Ojl holds.The de�nition of Ojil translates directly into the �xpoint computation depictedin Figure 1. Our implementation is straightforward. In each iteration of the �xpointprocess, check for all not yet selected actions o whether there is a path to the goals,using only edges that are not excluded by o's preconditions.We have also implemented two other su�cient approximations of Ojl. One ofthose weakens Ojil by dropping the condition that the action sequences P must con-sist of Ojil members. The other method strengthens Ojil by incrementally buildinga graph of edges that start already selected paths. The required action sequencesP must then traverse only edges that are in the graph already. In our experiments,both methods showed signi�cantly worse runtime behaviour than the above Ojilcomputation. The �ltered action sets were, however, the same for all three meth-ods in most of the cases. We therefore chose to concentrate on Ojil as a su�cientapproximation.
330

Ojil := ;repeatFixpoint := truefor o 2 O n Ojil doif there is an initially legal path from o to oGconsisting out of actions in Ojil thenOjil := Ojil [fogFixpoint := falseendifendforuntil FixpointFig. 1. Fixpoint computation of actions starting initially legal generation paths: A su�-cient approximation of legal generation paths.4.2 An Insu�cient but Fast ApproximationLike the computation of initially legal paths, our second approximation techniqueperforms a �xpoint computation. Unlike the former computation, the method allowsonly edges (o; o0) in the paths that are legal with respect to o. What's more, eachaction o is associated with at most one single edge that can be traversed from o.We call the resulting action set the set of approximative legal actions Ojal. Have alook at the pseudo code in Figure 2.Ojal := foGg, e := ;, k := 0repeatFixpoint := truefor o 2 O n Ojal doif there is an edge (o; o0), o0 2 Ojal such thatthe path ho; e0(o0); e1(o0); : : : ; ek(o0) = oGi is initially legal thenOjal := Ojal [foge := e [f(o; o0)gFixpoint := falseendifendfork := k + 1until FixpointFig. 2. Fixpoint computation of actions starting approximative legal generation paths: Aninsu�cient but fast approximation of legal generation paths.The algorithm depicted in Figure 2 iteratively includes new actions into Ojaluntil a �xpoint is reached. The key feature of the algorithm is the function e : O 7!O, which is represented in the �gure as a set of (o; e(o)) pairs. The function startsas the empty set of such pairs, i.e., e is initially unde�ned for the whole action set.If an action o is included into Ojal due to an edge (o; o0), then that edge is includedinto the de�nition of e. Initially, the only member of Ojal is oG, so in iterationk = 0 the only edges that can be included are direct connections to the goals. Inany later iteration k, e de�nes a tree of depth k where the root node is oG, andeach node|the actions for which e is de�ned|occurs exactly once. For the not yetselected actions o it is then checked whether they have an edge connecting themto a tree node o0 such that the path ho; e0(o0); e1(o0); : : : ; ek(o0) = oGi is initiallylegal. Note here that ho; e0(o0); e1(o0); : : : ; ek(o0)i is just the concatenation of the
331

edge (o; o0) with the path from o0 to the tree root. If that path is initially legal, theno and the edge (o; o0) are included into the tree.3 While allowing only a single edgefor each node may sound way to restrictive, the method turned out to be, as said,surprisingly safe in our testing examples.5 Extension to Conditional E�ectsWe have extended our theoretical analysis and approximation algorithms to dealwith conditional e�ects. Because FF compiles away all ADL constructs except theconditional e�ects [4], this enabled us to deal with planning domains speci�ed inthe ADL language [9]. In the following, we briey summarise the extensions madeto the de�nitions and algorithms introduced in Sections 3 and 4. For more details,we refer the interested reader to our technical report [5].An e�ect is relaxed irrelevant if it can be ignored in all optimal relaxed solutionsfrom all reachable states, i.e., if all optimal relaxed plans are still relaxed planswithout that e�ect. Relaxed irrelevant e�ects can be detected by looking at the setof all e�ects in a task as a set of STRIPS actions STRIPS(O), where each e�ect of anaction o corresponds to an action that has as preconditions pre(o) plus the e�ect'sconditions. The parallel to Theorem 2 is that, if an e�ect can not be ignored in aminimal relaxed solution from some state, then the e�ect starts a legal generationpath in STRIPS(O). This can be proven by a natural extension of the needed factsnotion.Extending the �ltering methods from Section 4 thus comes down to implement-ing them on the set STRIPS(O). If an e�ect does not start an initially or approx-imative legal generation path in STRIPS(O), then the e�ect is removed from therespective action in the sense that the e�ect is not considered within the relaxation.If all e�ects of an action are removed, then the whole action is ignored.6 Empirical EvaluationWe evaluated our approach by running a number of large scale experiments. We used20 benchmark planning domains, including all examples from the AIPS-1998 andAIPS-2000 competitions. The domains were Assembly, two Blocksworlds (three-and four-operator representation), Briefcaseworld, Bulldozer, Freecell, Fridge, Grid,Gripper,Hanoi, Logistics,Miconic-ADL,Miconic-SIMPLE,Miconic-STRIPS,Movie,Mprime, Mystery, Schedule, Tsp, and Tyreworld. In each of these domains, we gen-erated instances by using randomised generation software.4 We ran experiments forevaluating1. RIFO's runtime behaviour when compared to FF,2. the runtime behaviour and pruning impact of Ojil and Ojal,3. and the empirical safety of Ojal.For each single experiment, we set up a large testing suite containing up to 200instances from each domain. The testing suites di�ered in terms of the size of theinstances that we generated.In the �rst experiment, we ran the RIFO implementation within IPP4.0 versusFF on a suite of 681 instances that were small enough for the IPP4.0 instantiation3 For optimisation, one obviously only needs to look at actions o0 that are leafs of thecurrent tree.4 Descriptions of the randomisation strategies and the source code of all genera-tors are publicly available at http://www.informatik.uni-freiburg.de/~ ho�mann/�-domains.html.
332

routine to cope with.5 Test runs were given 300 seconds time and 400 M Bytesmemory on a Sun machine running at 163 MHz. We show the number of instanceshandled successfully, and the average running time per domain. For FF, we countas successfully handled those instances were a plan was found. For RIFO, successon an instance means termination of the pre-process within the given time andmemory bounds. We count only those such instances for which we know they aresolvable|those were FF found a plan. Times are averaged over those instancesthat both implementations handled successfully. Running time for RIFO does notinclude IPP's instantiation time. See the data in Figure 3.success running timedomain RIFO FF RIFO FFAssembly 33 33 1.08 9.16Blocksworld-3ops 21 21 4.45 2.90Blocksworld-4ops 21 21 0.91 0.07Briefcaseworld 20 20 1.86 1.12Bulldozer 17 17 1.97 4.54Freecell 33 50 21.90 0.06Fridge 22 22 0.23 0.22Grid 22 35 43.77 7.72Gripper 25 25 0.45 0.31Hanoi 8 8 0.34 4.79Logistics 35 35 46.80 1.18Miconic-ADL 22 40 14.03 3.77Miconic-SIMPLE 25 25 0.64 0.54Miconic-STRIPS 25 25 0.64 0.37Movie 30 30 0.00 0.00Mprime 48 61 16.47 1.19Mystery 23 36 27.16 12.51Schedule 15 28 28.34 14.06Tsp 25 25 4.90 0.12Tyreworld 20 20 6.03 0.48Fig. 3. Instances handled successfully, and average running times for RIFO and FF per do-main. The successfully handled instances for FF are those for which a plan was found. Thesuccessfully handled instances for RIFO are those solvable ones where RIFO terminatedwithin the given time and memory bounds.In 3 of the 20 domains shown (Assembly, Bulldozer and Hanoi) does RIFOterminate faster than FF solves the tasks. In 10 domains, RIFO's average runningtime is orders of magnitude higher than that of FF. In some domains, RIFO exhaustsresources on a number of instances that FF manages to solve. We conclude thatRIFO is, as a pre-process, not competitive with FF, at least in its implementationwithin IPP4.0.In our second experiment, we evaluated the Ojil and Ojal methods in terms ofruntime behaviour and pruning impact. Test runs were given 300 seconds and 200M Bytes memory on a Sun machine running at 300 MHz. We used a total of 2334large instances generated to be of a size challenging for FF, but still within its rangeof solvability within the given resources. On each task, we ran three implementa-tions: FF-v2.2 [4], and two versions of the same code were Ojil respectively Ojalwere computed as a pre-process. In the latter two versions, FF's heuristic functionwas changed to consider only those e�ects contained in the �ltered action set. Wemeasured the overhead produced by the �ltering methods, the total running times,the time taken for state evaluations, and the number of e�ects in the completerespectively �ltered action sets. See the data in Figure 4.5 In some domains, like Freecell, the routine can handle only comparatively small instanceswhich is, we think, due to the implementation: this is intended to deal with full scaleADL constructs [6], and fails to e�ciently handle the simple STRIPS special case.
333

overhead total time single evaluation number of e�ectsdomain Ojil Ojal FF +Ojil +Ojal FF +Ojil +Ojal O Ojil OjalAssembly 0.01 0.00 12.83 12.01 11.53 1.75 1.64 1.57 426.72 358.64 358.64Blocksworld-3ops 0.59 0.08 1.62 2.24 1.61 3.41 3.47 3.21 1854.62 1854.62 1819.09Blocksworld-4ops 0.04 0.00 1.04 1.08 0.99 0.76 0.76 0.72 290.06 290.06 286.94Briefcaseworld 0.04 0.01 5.51 1.10 1.01 4.26 0.82 0.77 4106.50 670.00 670.00Bulldozer 0.02 0.01 6.89 7.00 6.67 1.27 1.29 1.23 599.22 599.22 599.17Freecell 11.14 0.53 17.47 28.77 17.33 8.19 8.26 7.87 4725.37 4668.17 4668.17Fridge 0.00 0.00 1.71 1.72 1.70 0.96 0.97 0.95 302.22 302.22 302.22Grid 76.12 0.54 11.57 87.90 11.93 7.95 8.09 7.89 6424.35 6424.35 6417.28Gripper 0.03 0.01 0.33 0.36 0.27 1.38 1.39 1.11 478.00 478.00 359.00Hanoi 0.00 0.00 4.73 4.80 4.58 0.83 0.84 0.80 244.50 244.50 244.50Logistics 2.24 0.22 83.57 45.51 43.52 37.45 19.39 19.40 19904.53 15347.80 15347.80Miconic-ADL 1.09 0.29 13.91 13.48 12.23 12.72 11.33 10.92 2988.20 2700.52 2700.52Miconic-SIMPLE 0.17 0.02 0.52 0.69 0.51 2.14 2.15 2.04 1504.00 1504.00 1504.00Miconic-STRIPS 0.16 0.02 0.39 0.55 0.38 1.92 1.94 1.82 1504.00 1504.00 1504.00Movie 0.00 0.00 0.00 0.00 0.00 0.33 0.23 0.17 7.00 7.00 7.00Mprime 60.20 0.79 5.40 65.66 6.13 16.38 16.54 16.18 12138.00 12136.97 12136.32Mystery 12.87 1.05 20.11 33.26 21.14 15.59 15.80 15.57 14644.20 14644.20 14641.38Schedule 0.48 0.01 52.31 55.56 54.52 10.86 7.07 6.99 3049.84 917.43 916.82Tsp 0.01 0.09 0.13 0.14 0.22 2.09 2.11 2.13 4390.00 4390.00 4390.00Tyreworld 1.34 0.08 23.23 13.27 7.07 19.31 9.92 5.81 7105.50 4479.00 3646.00Fig. 4. Average overhead for pre-processing, average total running time, average runningtime per state evaluation, and average number of e�ects, shown per planning domain and�ltering method used. Times are in seconds except for state evaluations, where millisecondsare speci�ed.All measured values were averaged over those instances were all three methodssucceeded in �nding a plan (we tried inserting default values in the other cases, butfound that this generally obfuscated the results more than it helped understandingthem). In 12 domains, the solved instances were exactly the same across all methodsanyway. In another 3 domains, di�erences occurred only in very few instances (1- 2 out of 90 - 181). In Grid and Mprime, computing Ojil sometimes exhaustedresources (in Grid, 41 of 179 cases, in Mprime, 51 of 196 cases). In Assembly andLogistics, the speed-up produced by the �ltering methods helped FF to solve somemore instances (165 instead of 159 in Assembly, 87 instead of 75 in Logistics). InSchedule, original FF solved 85 instances instead of 74 solved with Ojil or Ojal on.We will come back to the Schedule domain later.Let us �rst focus on the overheads produced. Compare the �rst two columnswith the third column, showing average solving time for FF. The overhead for Ojilis neglectible (i.e., below 0:2 seconds on average) in 11 of our domains, and orders ofmagnitude smaller than FF's average time in another 4 domains. In the 3-operatorBlocksworld, the overhead is a third of FF 's time, and below a second anyway. Inthe remaining four domains, the pre-process can hurt: In Freecell and Mystery, ittakes almost as much time as FF, and in Grid and Mprime it can take much longertime (we will later describe an approach to automatic recognition of the cases werethe pre-process takes a lot of time). The overhead for Ojal is neglectible in 14 of thedomains, and still a lot smaller than FF's running time in the other cases.Concerning the impact that the �ltering methods have on the number of e�ectsin the action set, the speed of the heuristic function, and the total running time,it is easiest to start by looking at the rightmost three columns in Figure 4. Themethods do not prune any e�ects in 6 of our domains, and prune very few e�ects inanother 7 domains. Moderately many e�ects are pruned in the Assembly, Gripperand Miconic-ADL domains. In the Briefcaseworld, Logistics, Schedule and Tyre-world domains, the pruning is drastic.6 As a consequence, the average time taken6 In the Briefcaseworld, for example, amongst other things all actions are thrown out thattake objects out of the briefcase|taking objects out of the briefcase is not necessarywithin the relaxation, where keeping them inside never hurts.
334

for a single state evaluation (total evaluation time divided by number of evaluatedstates) is, when using the �ltering methods, signi�cantly lower in the four domainswith drastic pruning, and slightly lower in the three domains with moderate prun-ing. Look at the respective columns, specifying the average state evaluation time inmilliseconds. In Briefcaseworld, Logistics and Tyreworld, the faster heuristic func-tions translate directly into improved total running time. In Schedule, there seemsto be some interaction between the �ltering methods and FF's internal algorithmictechniques: though the heuristic function is faster, total running time gets worse.This is because FF evaluates, with the �ltered action sets, more states before �nd-ing the goal. An explanation for this might be FF's helpful actions heuristic, whichbiases the actions selected to those that could also be selected by the heuristic func-tion [4]. For Ojal, it might also be that some states become unsolvable|though wedid not �nd such a case in the experiment described below.We �nally consider the safety of the Ojal �ltering method with respect to com-pleteness in the relaxation. The method is empirically safe in the sense that, fromthe 2334 examples used in the above described experiment, only 11 Schedule in-stances could not be solved with the method on though they could be solved withoriginal FF. The failures were only due to the runtime restrictions we applied inthe experiment: given slightly more time, FF with Ojal �ltering could solve those 11instances. In addition to this result, we ran the following experiment. We generateda total of 2099 instances from our 20 domains, small enough to build an explicitrepresentation of the state space. To each instance, we looked at all reachable states,and veri�ed whether the goal was reachable when ignoring delete lists, using thewhole action set O, or the �ltered action set Ojal. In 19 of our 20 domains, all statessolvable with O were still solvable with Ojal. Only in Grid did we �nd states thatbecame unsolvable. This occurred in 19 of 100 instances. In all those instances, thestates becoming unsolvable were less than 1% of the state space.7 Current WorkOur current results reveal two drawbacks of the presented approach:1. Ojil �ltering sometimes hurts in the sense that it can take a lot of running time.2. While Ojil is provably and Ojal empirically safe, both methods have strongpruning impacts only in a few domains.We address these di�culties in two lines of work that we are currently pursuing.One idea to avoid the �rst problem is estimate the runtime that would be necessaryfor computing Ojil. One can then skip the pre-process if it appears to be too costly.Ojil is computed by the repeated search for legal generation paths, which is morecostly the more edges there are in the generation graph. An upper approximationto the number of edges is:Xf2F jfo 2 O j f 2 add(o)gj � jfo 2 O j f 2 pre(o)gjHere, F denotes the set of all logical atoms that appear in the actions O. Ifjpre(o) \ add(o0)j � 1 for all o; o0 2 O, then the approximation is exact. We havecomputed, for the 2334 large instances from the second experiment described in theprevious section, the above upper limit, as well as the real number of edges in thegeneration graph. In 8 domains, the values are the same across all instances. In theremaining domains, the values are close. There seems to be a close correspondenceto the running time consumed by the Ojil computation: the averaged approximationvalues are between 3 and 11 millions in those four domains were Ojil takes a lot of
335

computation time, and below one million in all other domains. It remains to estab-lish an exact criterion that uses this correspondence for deciding about whether tocompute Ojil or not.Addressing the second problem, lack of strong pruning impacts in many do-mains, appears to us to be a much harder task. If one wants to obtain strongerpruning impacts, there does not seem to be a way around sacri�cing empirical, letalone theoretical safety. We are currently experimenting with combining our tech-niques and RIFO's information selection heuristics. We have implemented some �rststrategies. As expected, the pruning impact became more drastic in some examples.However|as we also expected|a lot of states became unsolvable for the heuristic.Often all paths to the goal were interrupted by such a state, rendering the wholeplanning task unsolvable for FF.8 Conclusion and OutlookWe have presented a new approach towards de�ning irrelevance in planning tasks,concerning actions that are not necessary within the relaxation used in the heuristicfunctions of state-of-the-art heuristic planners like HSP and FF. We have deriveda su�cient condition for relaxed irrelevance, and we have presented two approxi-mation methods that can be used for �ltering action sets. One of those methods,Ojil computation, has been proven to be complete within the relaxation, the othermethod, Ojal computation, has been shown to be empirically safe. The methodshave drastic pruning impacts in some domains, speeding up FF's heuristic function,and in e�ect the planning process (except in Schedule, where there appears to besome interaction with FF's internal techniques). Computing Ojal never hurts in thesense that the required overhead is neglectible in most of the cases, and alwayssmall compared to FF's running time. Computing Ojil does not hurt in 16 of our20 domains. We have outlined an approach how the other cases might be recognis-able automatically. The challenge remains to �nd �ltering methods that are stillempirically safe in most of the cases, but have stronger pruning impacts.References1. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.Arti�cial Intelligence, 90(1-2):279{298, 1997.2. Blai Bonet and H�ector Ge�ner. Planning as heuristic search. Arti�cial Intelligence,2001. Forthcoming.3. Tom Bylander. The computational complexity of propositional STRIPS planning. Ar-ti�cial Intelligence, 69(1{2):165{204, 1994.4. J�org Ho�mann and Bernhard Nebel. The FF planning system: Fast plan generationthrough heuristic search. Journal of Arti�cial Intelligence Research, 14:253{302, 2001.5. J�org Ho�mann and Bernhard Nebel. RIFO revisited: Detecting relaxed irrelevance.Technical Report 153, Albert-Ludwigs-Universit�at, Institut f�ur Informatik, Freiburg,Germany, 2001. Available from http://www.informatik.uni-freiburg.de/tr/20016. Jana Koehler and J�org Ho�mann. On the instantiation of ADL operators involvingarbitrary �rst-order formulas. In Proc. ECAI-00 Workshop on New Results in Planning,Scheduling and Design, 2000.7. Jana Koehler, Bernhard Nebel, J�org Ho�mann, and Yannis Dimopoulos. Extendingplanning graphs to an ADL subset. In Proc. ECP-97, pages 273{285, Toulouse, France,September 1997. Springer-Verlag.8. Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler. Ignoring irrelevant facts andoperators in plan generation. In Proc. ECP-97, pages 338{350, Toulouse, France,September 1997. Springer-Verlag.9. Edwin P.D. Pednault. ADL: Exploring the middle ground between STRIPS and thesituation calculus. In Proc. KR-89, pages 324{331, Toronto, ON, May 1989. MorganKaufmann.
336

Using Reactive Rules to Guide a Forward-Chaining
Planner

Murray Shanahan

Department of Electrical and Electronic Engineering,
Imperial College,
Exhibition Road,

London SW7 2BT,
England.

m.shanahan@ic.ac.uk

Keywords: planning and execution, reactive planning, robot planning

Abstract
This paper presents a planning technique in which a flawed set of reactive rules is used to
guide a stochastic forward-chaining search. A planner based on this technique is shown to
perform well on Blocks World problems. But the attraction of the technique is not only its
high performance as a straight planner, but also its anytime capability. Using a more
dynamic domain, the performance of a resource-bounded version of the planner is shown
to degrade gracefully as computational resources are reduced.

1 Introduction
As Bacchus and Kabanza have demonstrated, the use of domain-specific rules to guide
a forward-chaining planner is a promising line of research [Bacchus & Kabanza, 2000].
Using only a handful of temporal logic formulae as heuristics, their TLPlan system
outperforms many state-of-the-art domain-independent planners on hard Blocks World
problems. In a similar vein, the present paper describes a forward-chaining planner
whose search is controlled by domain-specific rules. But where TLPlan uses formulae
of temporal logic to guide the search, the present planner uses a set of reactive rules.

Although the resulting planner is reasonably fast, the aim of the present work isn’t the
construction of a high-performance planner. Rather, the chief aim is to supply a system
that seamlessly integrates reactive behaviour and planning at the same level. This is
achieved because the reactive rules enable the planner to behave as an anytime
algorithm [Dean & Boddy, 1988], [Zilberstein, 1993]. The planner can always supply a
partial solution, including an action to execute right away, no matter how far into its
computation it has gone. But the solutions it finds increase in quality with the time
available to search for them.

Given sufficient time to respond, the planner generates a complete plan from initial
state to goal. In this case, the reactive rules serve to speed up the search. Given
insufficient time to find a complete plan, the system responds with a partial plan
constructed (mostly) out of actions recommended by the reactive rules, but with the
benefit of look-ahead to favour those that are least dangerous and most promising.
Given very little time to respond, the system doesn’t even have the luxury of look-
ahead, and all it can offer is a partial plan comprising a single action recommended by
the reactive rules. In other words, it starts to behave as the reactive rules would on their
own.

337

Although some pioneers of the use of reactive rules rejected deliberative planning
altogether [Brooks, 1986], [Agre & Chapman, 1987], in the late Eighties and early
Nineties, a variety of ways of reconciling planning with reactivity were studied.
Prominent examples include the work of Schoppers [1987], Drummond [1989], and
Mitchell [1990]. In robotics, hybrid architectures combining a low-level reactive layer
with a high-level deliberative layer, such as that described by Gat [1992], have become
commonplace, and are now to be found in the remotest corners of the Solar System
[Pell, et al., 1997]. However, none of this work looks at the possibility of using reactive
rules to guide a forward-chaining planner, possibly because the idea only starts to look
plausible in the light of Bacchus and Kabanza’s more recent work.

2 Useful but Imperfect Reactive Rules
Consider the following pair of goal-directed reactive rules for solving Blocks World
problems. As we’ll see, these rules are useful but imperfect.

RULE BW1
Move X onto Y if X is on Y in the goal and everything under Y is correct with respect to

the goal

RULE BW2
Move X from Y to Z if anything under Y is incorrect with respect to the goal and

everything under Z is correct with respect to the goal.

Let’s investigate the performance of these rules on some examples, beginning with
the trivial Blocks World problem depicted in Figure 1. Starting in the initial state, the
successive application of Rules BW1 and BW2 yields the following sequence of actions
leading to the goal: move A to the table, move B to the table, move C to B, move A to
C.

Figure 1: Blocks World Problem bw-small

In this case, the rules generate a unique sequence of actions. But in general, such rules
are non-deterministic. For example, in the initial state of the Blocks World problem in
Figure 2, the rules recommend three possible actions – move E to the table, move C to
the table, and move I to the table.

Figure 2: Blocks World Problem bw-large-b

A
B
C

A
C
B

Initial State Goal State

I
H
G
F

E
D

C
B
A

Initial State

H
B

A
E

I
D

C
G
F

Final State

338

Rules BW1 and BW2, though simple, are effective with many Blocks World
problems. Rule BW1 alone can generate an optimal 6-step solution to the problem of
Figure 2 using negligible CPU time. However, these two rules aren’t guaranteed to find
a solution to any Blocks World problem. Problem bw-large-b+ is identical to bw-
large-b except that blocks E and A are swapped in the final state. Given this
problem, one possible sequence of applications of Rules BW1 and BW2 leads to the
state shown in Figure 3. In this state neither Rule BW1 nor Rule BW2 is applicable.

Figure 3: A Stalled State

Not only can the rules lead to stalled states. They can also recommend actions that are
positively harmful. Take the problem in Figure 4, for example. In the initial state, one of
the actions recommended by the reactive rules is to move A onto C, where it will
prevent B from getting to its final destination.

Figure 4: Rule BW2 Goes Wrong

In general, the fact that a set of reactive rules has been effective on a large class of
problems is no guarantee that it will solve the next problem that comes along. If the
rules are hand-coded or pre-computed off-line, their correctness and completeness can
be proved. But if the rules are learned on the fly, by a reinforcement learning algorithm,
for example, there’s no guarantee of completeness, and no possibility of off-line
validation.

It’s easy to see that, in this case, an additional rule would solve the stalled state
problem. The new rule would cater for the case when X needs to be moved off Y, even
though the blocks below Y are correctly placed. But this is beside the point. The
pertinent observation here is that an imperfect set of rules, of the sort that a learning
algorithm might generate, can still be useful.

The system proposed here is designed to exploit the availability of useful but
imperfect sets of reactive rules. As long as the rules are effective some of the time, they
can be used to efficiently guide the search of a forward-chaining planner. The reactive
rules serve a similar function to the temporal logic formulae in TLPlan. But unlike
TLPlan’s heuristic formulae, the reactive rules can be used in stand-alone mode when a
fast response is needed. Moreover, although the examples of reactive rules used in this
paper are all indexed on a goal, the system can also function with goal-less reactive
rules (of the kind that are prevalent in biologically-inspired approaches to robotics). In
the absence of an explicit goal, it isn’t an advisable strategy for an intelligent agent to
cease activity altogether, which is why goal-less reactive rules that encourage
exploration and play are useful. Furthermore, at times when there is no explicit goal, an
agent still has to react to ongoing events. In either case, it’s advantageous for the agent

H
G
F

E
D

B
AIC

C
D

A
B

B
C
DA

Initial State Final State

339

to look ahead before executing an action. In contrast to conventional approaches to
planning and plan execution, the present system can accommodate this requirement.

3 Linear Iterative Lengthening
Given unbounded time to act, the system under discussion is guaranteed to produce a
plan if one exists. Given very little time to act, the system can still suggest the next
action to be executed using the reactive rules alone. In between these two extremes, the
reactive rules and the search-based planner operate together, producing a high-quality
partial plan with an immediately executable action. Moreover, as we’ll see, in this
intermediate region, the system can discover plans that the reactive rules would miss
altogether and that a conventional search-based planner would fail to find within an
acceptable time.

The basic idea of using reactive rules to guide a forward-chaining planner can be
implemented in a variety of ways. During the work carried out for this paper, several
different approaches were tried, on a variety of Blocks World problems, using Rules
BW1 and BW2 from Section 2 as the reactive guide. Only the most promising technique
is described here. This also happens to be the simplest of the implementations.

The most successful planner uses an algorithm we’ll call linear iterative lengthening.
In the following pseudo-code, the algorithm is invoked by a call to ILPlan(G,S,P),
where G is the goal state, S is the initial state, and P is the returned plan. A state is a set
of fluents, to which the closed world assumption is applicable. The variable L is the
length bound.

1 Procedure ILPlan(G,S,P)
2 L := 1
3 FPlan(G,S,L,P)
4 While plan not found
5 L := L + 1
6 FPlan(G,S,L,P)

The FPlan procedure tries to construct a plan, and exits if it finds one or if the plan
it’s working on exceeds the current length bound. In this case, the length bound is
incremented, and the planner goes round the loop again, starting with an empty plan.

7 Procedure FPlan(G,S,L,P)
8 P := []
9 While Length(P) < L and S ≠ G
10 Let RL be the set of actions recommended
11 by the reactive rules for state S
12 Let EL be the set of remaining actions
13 executable in S
14 If RL is empty
15 Then randomly select A from EL
16 Else randomly select A from either
17 EL or RL with a bias towards RL
18 P := [A|P]
19 S := result of executing A in S

340

The FPlan procedure uses forward chaining to construct a single candidate plan in
progression order. Successive actions are randomly selected, but with a heavy bias
towards those recommended by the reactive rules.

While this planner is sound, it obviously isn’t complete. No attempt is made to
systematically explore the search tree. It is, however, complete in a stochastic sense: as
the execution time tends to infinity, the probability of finding a solution, if one exists,
tends to one. (In the reported experiments, though, the bias towards recommended
actions was made 100%, sacrificing completeness even in this stochastic sense.) In
practise, theoretical completeness is a less interesting property than how likely it is that
the planner will actually find a solution in an acceptable timeframe. On this score, how
good can an algorithm be that burrows apparently blindly down a single branch of the
search tree at a time?

The answer is that everything depends on the quality of the reactive rules guiding the
planner. At one extreme, if the reactive rules are very poor, the planner really is
working blindly and its performance is appalling. At the other extreme, if the reactive
rules are extremely good, they can solve any problem directly, and the planner is
redundant. The planner’s performance is most impressive in the intermediate cases,
where the reactive rules are effective on a small class of problems, but are unable to
solve all problems by themselves. As we’ll see in the next section, the Blocks World
rules of Section 2 fall into this intermediate category, and the planner’s performance is
correspondingly impressive.

But for the planner to be efficient, even in these intermediate cases, it has to be able
to make effective guesses when the reactive rules are inapplicable. The algorithm above
simply makes a random choice. This works fine with the Blocks World, because it’s just
enough to jog the planner out of a stalled state. But in other domains, it will be
necessary to employ a little more sophistication. One way to do this is to introduce an
evaluation function for scoring potential successor states, and to use this to select the
most promising (and least dangerous) next action. This extension to the basic algorithm
will be discussed in Section 6.

4 Blocks World Experiments
As already stated, the thrust of this paper is not the design of a stand-alone high-speed
planner. The issue at hand is architecture rather than performance. In designing a whole
agent, such as a robot, we need to integrate features such as deliberative planning,
reactive behaviour, and heuristics in a single control system that also interleaves
computation and action. Accordingly, the experimental results presented in this section
should be taken solely as a “proof of concept”.

The result of applying the planner to a number of Blocks World problems are
presented, using the two reactive rules discussed in Section 2 to guide the search.
Problems bw-small, bw-large-b, and bw-large-b+ were described in Section
2. Problems bw-large-c and bw-large-d were taken from the BlackBox test suite
[Kautz & Selman, 1999]. Problem bw-large-c+ is a modification of bw-large-c.
Each problem was submitted to the planner 10 times, first using only Rule BW1, and
then using both Rules BW1 and BW2. The results using only Rule BW1 are presented
in Table 1.

The planner was implemented in LPA Prolog 32 on an Apple iMac with a 233MHz
G3 processor. Note that, in a sense, the true metric here is not the time taken to find a

341

solution, but whether or not the planner can find an answer at all within a reasonable
timeframe. If a planner can deliver an answer to a problem in a matter of seconds, then
turning this into milliseconds is simply a matter of optimisation and computing power.
On the other hand, when the system fails to present an answer having been left to run
overnight, we suspect its practical limits have been reached.

Problem Av. Time Av. Length
bw-small 0.02s 4.0
bw-large-b 0.12s 6.0
bw-large-b+ 0.19s 7.0
bw-large-c 1.60s 14.9
bw-large-c+ 7.13s 32.9
bw-large-d 33.88s 18.5

Table 1: Using Rule BW1 Only

The planner consistently solves bw-large-b in around one tenth of a second. The
plan is always 6 steps long, which is optimal. Recall that the reactive rules alone fail to
solve this problem altogether. Moreover, 9-block problems such as bw-large-b and
bw-large-b+, though soluble in seconds by the current generation of domain
independent planners, exemplified by BlackBox [Kautz & Selman, 1999], were large
enough to overwhelm earlier planners, such as UCPOP [Penberthy & Weld, 1992].

The present planner consistently solves the 15-block problem bw-large-c in less
than 2 seconds. However, bw-large-c is a relatively “easy” problem for its size. A
solution can be found just by repeatedly following Rule BW1. In other words, there’s
always a block that can be moved to its final destination, and the planner never has to
dismantle a tower just to get at a particular block.

Problem bw-large-c+ is designed to be more difficult. The initial state is that of
bw-large-c. But the goal state is the same as the initial state with only the bottom
two blocks of each tower swapped over. This requires the planner to take each tower
apart, swap the bottom blocks, and then rebuild it. The planner also performed
satisfactorily on this problem, consistently finding a solution in under 10 seconds.

Finally, the planner was run on a 19-block problem, bw-large-d. Until recently,
Blocks World problems of this size were beyond the capability of domain-independent
planners. On average, the present planner can solve bw-large-d in around 30
seconds.

Problem Av. Time Av. Length
bw-large-a 0.02s 4.0
bw-large-b 0.72s 8.5
bw-large-b+ 0.96s 9.5
bw-large-c 14.27s 20.0
bw-large-c+ 21.52s 24.0
bw-large-d 58.36s 28.4

Table 2: Using Rules BW1 and BW2

Table 2 presents the results of running the planner on the same problems, but using
both Rules BW1 and BW2. The performance turns out to be worse than with Rule BW2

342

absent, with respect to both time and length. This is because of Rule BW2’s tendency to
recommend the occasional harmful action. Since the recommendations of reactive rules
are given such weight, their mistakes are very costly.

5 The Kids World Domain
The results reported in the previous show that the planner outperforms fast domain-
independent planners in the Blocks World, using only a single guiding reactive rule, one
that is incapable of solving Blocks World problems on its own. This is an encouraging
result. But it doesn’t show off one of the most attractive features of a forward-chaining
planner guided by reactive rules, which is its anytime capability.

In this section, a new domain is introduced, called Kids World, which is adjustably
dynamic, in the sense that unexpected events can occur with a preset probability. (In
other respects, Kids World resembles the Logistics domain used to assess planners in
planning competitions.) Kids World problems will be tackled with a resource-bounded
version of the planner of Section 3, which is embedded in a sense-plan-act cycle that
executes plans and reacts to ongoing events.

Two properties of this system are demonstrated using Kids World problems. First, it’s
demonstrated that the planner’s performance degrades gracefully as its resource bound
is decreased. Second, it’s shown that the system can solve Kids World problems in real
time, even with the frequent occurrence of unexpected events.

The Kids World domain comprises the four fluents and five actions summarised in
Table 3 below. The action Move(x) affects the location of both the parent and any child
they are carrying. The Open(d) and Close(d) actions have the precondition that the
parent isn’t carrying anything. To move from one location to another, the connecting
door has to be open.

The particular Kids World problem used in the experiments reported here involves
two children, Kerry and Liam, and three locations — the house, the street, and the car.
These locations are connected by doors in the obvious way. In the initial state, the
parent and both children are in the house and the doors are all closed. In the final state,
everyone is in the car and both the children are happy. A crucial additional twist to the
problem is that Kerry becomes unhappy if Liam is put in the car first.

Fluent/Action Meaning
Location(x) Parent is in location x

Location(c,x) Child c is in location x
Carrying(c) Parent is carrying child c
Happy(c) Child c is happy
IsOpen(d) Door d is open
Move(x) Go to location x
PickUp(c) Pick child c up

PutDown(c) Put child c down
Open(d) Open door d
Close(d) Close door d

Table 3: Kids World Fluents and Actions

Planning in Kids World would be much easier if children stayed where they were put.
Then, planning could be studied without having to consider plan execution. But to make

343

Kids World problems realistic, after every action the parent performs, there’s a certain
probability that one or other of the children will run off somewhere completely
unexpected. In Experiments kw-1 and kw-2 described in the next section, this
probability is set to zero, but in Experiment kw-3, it is set to 0.1.

A set of seven reactive rules were used in the experiments reported here. Two
examples follow. Note their non-determinism. Suppose the parent is in the car carrying
Liam, while Kerry is still in the street. Then Rule KW1 recommends putting Liam
down, while Rule KW2 recommends going back for Kerry.

RULE KW1
If you're carrying a child and you’re in the location the child has to end up, then put the

child down

RULE KW2
If there’s a child in another room who needs to be moved, then move towards that room

As with the Blocks World example, these seven reactive rules are deliberately
imperfect. On their own, they can solve some Kids World problems. But they cannot
solve the problem described above on their own, as they quickly lead to a stalled state.
Even with the injection of the occasional random action to jog the system out of a
stalled state, the rules still frequently make the fatal mistake of putting Liam in the car
first. However, the rules can be used to effectively guide a forward chaining planner.

6 Planning with Bounded Computation
This section describes the resource-bounded version of the planner. With a low resource
bound, the system amounts to the use of reactive rules with look-ahead. But with higher
values, the system doesn’t commit to an action early by executing it as reactive rules do,
even with look-ahead. Instead, it carries out search — backtracking “in the head” rather
than in the world.

The linear iterative lengthening algorithm of Section 3 can easily be made resource-
bounded by incorporating a count of the number of times the body of the while loop in
the FPlan procedure is executed. The ILPlanR procedure below maintains a resource
bound V. The planning process is terminated if V exceeds a predefined bound Φ.

1 Procedure ILPlanR(G,S,P)
2 L := 1; V := 0
3 FPlanR(G,S,L,P,V)
4 While plan not found and V < Φ
5 L := L + 1
6 FPlanR(G,S,L,P,V)

If V exceeds Φ, the system returns the best partial plan it has found so far. The best
partial plan so far is maintained as B in the FPlanR procedure below, and is determined
using an evaluation function, Score, on partial plans (see [Korf, 1990]).

344

7 Procedure FPlanR(G,S,L,P,V)
8 P := []; B := []
9 While Length(P) < L and S ≠ G and V < Φ
10 Let RL be the set of actions recommended
11 by the reactive rules for state S
12 Let EL be the set of remaining actions
13 executable in S
14 If RL is empty
15 Then randomly select A from EL
16 Else randomly select A from RL
17 P := [A|P]
18 S := result of executing A in S
19 If Score(P) ≤ Score(B) Then B := P
20 V := V + 1
21 If V ≥ Φ Then P := B

When this planner is embedded in a sense-plan-act cycle, it exhibits anytime
properties even without a carefully designed evaluation function. Table 4 shows the
results of Experiment kw-1, a Kids World experiment in which Score(P) = 0 for all P.
In other words, the planner simply returns the partial plan it’s currently working on
when the resource bound is exceeded.

In Experiment kw-1, the planner has to plan and carry out a sequence of actions that
solves the Kids World problem described above. The probability of an unexpected event
after a parental action is set to zero. In other words, the kids stay put. After each action
the system executes, it replans from scratch. This is perfectly feasible, as the planner
solves Kids World planning problems very quickly.

Resource
Bound

Av. Actions Aborts

1000 17.4 0
500 17.0 1
200 17.9 5
100 22.5 10
50 23.0 16
10 24.9 15
2 – 30

Table 4: Results of Experiment kw-1

The system was run 30 times for each value of the resource bound. A run was aborted
after 50 actions, as this indicates that the planner has made Kerry irreversibly unhappy
by putting Liam in the car first. The number of actions executed was averaged over all
the successful runs. As Table 4 shows, the performance of the system degrades
gracefully as the resource bound is reduced, both in terms of the number of aborted runs
and the length of the successful runs.

When the resource bound is 1000, the planner can always find a solution, so there are
no aborted runs. When the resource bound is 2, the system is behaving almost as if it

345

were using the reactive rules on their own, and all runs are aborted. For intermediate
values of the resource bound, we get intermediate levels of success. When the resource
bound falls below 200, we start to see an increase in the length of the successful runs as
well as a continuing increase in the number of aborted runs.

To see why this graceful degradation occurs, in spite of the fact that the planner
doesn’t evaluate intermediate, partial plans, consider how the system behaves as it gets
closer to the goal. When the goal is too far away, the planner’s resource bound will be
exceeded before it finds a plan, and the first action in the partial plan it returns will be
one the reactive rules would have chosen on their own. But the closer the goal gets, the
more likely it becomes that the planner will find a complete plan before the resource
bound is exceeded. The higher the resource bound, the more rapidly this likelihood
increases.

Although the planner exhibits anytime properties even when the evaluation function
returns a constant, the degradation in the planner’s performance can be made more
graceful still if a less trivial evaluation function is used. Without such an evaluation
function, the partial plans returned when the planner fails to find a complete plan are of
uniform quality whatever the resource bound. With a proper evaluation function, a high
resource bound means the planner is more likely to find a complete plan, just as before.
But it will also produce better quality partial plans when it can’t find a complete plan.

In Experiment kw-2, a very simple evaluation function was used to demonstrate this.
This function simply gives a score of –1 to any partial plan that leaves a child unhappy,
and a score of 0 to all other partial plans. The rest of the details of Expriment kw-2 are
as for kw-1. The results of this experiment are presented in Table 5, for low values of
the resource bound.

Resource
Bound

Av. Actions Aborts

100 20.9 6
50 23.1 11
10 29.0 13
2 32.4 13

Table 5: Results of Experiment kw-2

Table 5 shows a clear improvement in performance over that obtained with the
constant evaluation function, in terms of aborted runs. Even when the resource bound is
2, the planner is still able to find solutions. The increase in average run length at
resource bound 10 is misleading, because it’s due simply to the presence of a number of
long runs that would have led to abortion with the constant evaluation function. When
the resource bound dips below about 50, the number of aborted runs levels off at around
12, although the number of actions per run continues to increase as the resource bound
goes down. With such a low resource bound, the planner will rarely find a complete
plan, so this gradual degradation can only be put down to a correspondingly gradual
reduction in the quality of its partial plans, which is what we were aiming for.

In Experiments kw-1 and kw-2, there were no surprise interventions by the children
themselves. But in Experiment kw-3, the dynamic potential of the domain is explored,
and the probability of a child unexpectedly moving somewhere by itself is increased

346

from zero to 0.1. Sometimes these unexpected events make the planner’s job easier, but
most of the time, they make it harder.

Table 6 presents the results of Experiment kw-3. The set-up is essentially the same
as in Experiment kw-2, except that the system is given up to 100 actions before a run is
aborted. As before, 30 runs were carried out for each value of the resource bound. In
addition to the number of actions averaged over the successful runs, the mean response
time per action is given, to indicate that planning is taking place in a realistic timeframe
for robotic applications.

The results of Experiment kw-3 show that the system is consistently able to solve the
problem in spite of interference in plan execution. As before, we see a steady
deterioration in performance as the resource bound is decreased. The similar response
times for resource bounds of 1000 and 500 suggest that the planner doesn’t generally
require as many as 1000 resource units to find a plan, and this is confirmed by the total
absence of aborted runs even with a resource bound of 200.

Resource
Bound

Av.
Actions

Aborts Mean Response Time

1000 25.8 0 599ms
500 26.5 0 627ms
200 28.1 0 521ms
100 40.9 1 347ms
50 46.6 7 199ms
10 51.6 12 44ms
2 55.1 10 11ms

Table 6: Results of Experiment kw-3

7 Concluding Remarks
How does the system described here differ from Bacchus and Kabanza’s TLPlan, from
which it takes its inspiration? First, TLPlan’s temporal logic formulae have to be correct
for all plans in order to preserve the completeness of the planner. Reactive rules, on the
other hand, only supply recommendations. They can be completely wrong without
threatening the planner’s (stochastic) completeness. Second, TLPlan’s heuristic
formulae don’t have a standalone role, and can’t form the basis of a planner with
anytime capability, like the one presented here.

The forward chaining approach to planning has many benefits that haven’t been
explored in this paper. For example, it’s much easier to implement safety and
maintenance goals in a forward-chaining mechanism than in a backward-chaining one.
Similarly, it’s easier to extend the planner to accept a rich input language, permitting
concurrent actions, actions with indirect effects, and so on. These topics are the subject
of ongoing work.

The forward-chaining approach to planning is further vindicated in the recent work of
Hoffmann and Nebel [2001], whose forward-chaining FF planner outperforms other
state-of-the-art domain-independent planners without relying on pre-defined domain-
specific rules. Instead, the FF planner automatically extracts heuristics from the domain
description to guide the forward search. A promising line of research would be to see

347

how such automatically generated heuristics could be used in combination with reactive
rules in a system of the sort described here.

Acknowledgments
This work was funded by EPSRC project GR/N13104, “Cognitive Robotics II”. Thanks
to Paulo Santos.

References
[Agre & Chapman, 1987] P.Agre and D.Chapman, Pengi: An Implementation of a

Theory of Activity, Proceedings AAAI 87, pp. 268–272.
[Bacchus & Kabanza, 2000] F.Bacchus and F.Kabanza, Using Temporal Logics to

Express Search Control Knowledge for Planning, Artificial Intelligence, vol 116
(2000), pp. 123–191.

[Brooks, 1986] R.Brooks, A Robust Layered Control System for a Mobile Robot, IEEE
Journal of Robotics and Automation, Vol.2 (1986), pp. 14–23.

[Dean & Boddy, 1988] T.Dean and M.Boddy, An Analysis of Time-Dependent
Planning, Proceedings AAAI 88, pp. 49–54.

[Drummond, 1989] M.Drummond, Situated Control Rules, Proceedings KR 89, pp.
103–113.

[Gat, 1992] E.Gatt, Integrating Planning and Reacting in a Heterogenous Asynchronous
Architecture for Controlling Real-World Mobile Robots, Proceedings AAAI 92, pp.
809–815.

[Hoffmann & Nebel, 2001] J.Hoffmann and B.Nebel, The FF Planning System: Fast
Plan Generation Through Heuristic Search, Journal of Artificial Intelligence
Research, to appear.

[Kautz & Selman, 1999] H.Kautz and B.Selman, Unifying SAT-Based and Graph-
Based Planning, Proceedings IJCAI 99, pp. 318–325.

[Korf, 1990] R.Korf, Real-Time Heuristic Search, Artificial Intelligence, Vol. 42
(1990), pp. 189–211.

[Mitchell, 1990] T.M.Mitchell, Becoming Increasingly Reactive, Proceedings AAAI 90,
pp. 1051–1058.

[Pell, et al., 1997] B.Pell, E.Gat, R.Keesing, N.Muscettola & B.Smith, Robust Periodic
Planning and Execution for Autonomous Spacecraft, Proceedings IJCAI 97, pp.
1234–1239.

[Penberthy & Weld, 1992] J.S.Penberthy and D.S.Weld, UCPOP: A Sound, Complete,
Partial Order Planner for ADL, Proceedings KR 92, pp. 103–114.

[Schoppers, 1987] M.J.Schoppers, Universal Plans for Reactive Robots in
Unpredictable Environments, Proceedings IJCAI 87, pp. 1039-1046

[Zilberstein & Russell, 1993] S.Zilberstein and S.J.Russell, Anytime Sensing, Planning
and Action: A Practical Model for Robot Control, Proceedings IJCAI 93, pp.
1402–1407.

348

On the Complexity of Planningin Transportation DomainsMalte HelmertInstitut f�ur Informatik, Albert-Ludwigs-Universit�at FreiburgGeorges-K�ohler-Allee, Geb�aude 052, 79110 Freiburg, Germanyhelmert@informatik.uni-freiburg.deAbstract. The e�ciency of AI planning systems is usually evaluatedempirically. The planning domains used in the competitions of the 1998and 2000 AIPS conferences are of particular importance in this context.Many of these domains share a common theme of transporting portables,making use of mobiles traversing a map of locations and roads.In this contribution, we embed these benchmarks into a well-structuredhierarchy of transportation problems and study the computational com-plexity of optimal and non-optimal planning in this domain family. Weidentify the key features that make transportation tasks hard and tryto shed some light on the recent success of planning systems based onheuristic local search, as observed in the AIPS 2000 competition.1 IntroductionApart from generally applicable hardness results [4], there is hardly any theo-retical work on the time and space e�ciency of common planning algorithms,so empirical methods have become the standard for performance evaluationsin the planning community. Running time on problems from classical planningdomains such as Logistics and Blocksworld has often been (and still is)used for comparing the relative merits of planning systems. However, this kindof comparison is always di�cult. If no planning system performs well in a givendomain, does that mean that they are all poor, or is that domain intrinsicallyhard? If they all perform well, is this because of their strength or because of thesimplicity of the task?On a related issue, should planning systems be preferred that generate shorterplans but need more time? While there is no general answer to that question,theoretical results can contribute to the discussion, e. g. in cases where generatingplans is easy but generating optimal plans is infeasible.For addressing these issues, domain-speci�c complexity results for planningtasks appear to be useful. Pondering which domains to analyze, the ones thatimmediately spring to mind are the competition benchmarks from AIPS 1998and AIPS 2000, considering their general importance for the planning communityand the wealth of empirical performance data available.While it would be possible to investigate each competition domain in isola-tion, it seems more worthwhile to identify commonly reoccurring concepts and
349

prove more general results that apply to domain families rather than individualdomains. Not only does this help present the results in a more structured way, italso allows to shed some light on the sources of hardness in these benchmarks.Because of space limitations, we only discuss the transportation domain fam-ily here, covering eight of the thirteen competition domains, namelyGrid,Grip-per, Logistics, Mystery, Mystery', and three versions of Miconic-10. Asimilar discussion of the other domains (Assembly,Blocksworld, FreeCell,Movie, and Schedule) and the corresponding domain families as well as a morethorough discussion of the results presented here can be found elsewhere [8].In the following section, we will introduce and analyze some new transporta-tion problems generalizing most of the competition benchmarks. Section 3 ap-plies the results of this analysis to the competition domains and covers someadditional aspects of the Grid and Miconic-10 domains. The implications ofthose results are discussed in Section 4, followed by some comments on relatedwork in Section 5 and possible directions for future research in Section 6.2 A Hierarchy of Transportation ProblemsIn this section, we will de�ne and analyze a hierarchy of transportation prob-lems that combines the key features of the important transportation benchmarkdomains.De�nition 1. Transport taskA Transport task is a 9-tuple (V;E;M;P; fuel0; l0; lG; cap; road), where{ (V;E) is the roadmap graph; its vertices are called locations, its edges arecalled roads,{ M is a �nite set of mobiles,{ P is a �nite set of portables (V , M , and P must be disjoint),{ fuel0 : V ! N is the fuel function,{ l0 : (M [P)! V is the initial location function,{ lG : P ! V is the goal location function,{ cap : M ! N is the capacity function, and �nally{ road : M ! P(E) is the movement constraints function.This should not require much explanation. The goal location function is onlyde�ned for portables because we do not care about the �nal locations of mobiles.We do require that goal locations are speci�ed for all portables, unlike mostplanning domains. This is because portables with unspeci�ed goals could safelybe ignored, not contributing to the hardness of the task.The fuel function bounds the number of times a given location can be leftby a mobile. Fuel is associated with locations rather than mobiles because thisis the way it is handled in the Mystery-like domains. The carrying capacityfunction bounds the number of portables a given mobile can carry at the sametime. The movement constraints function speci�es which roads a given mobileis allowed to use.We will now de�ne some special cases of transportation tasks.
350

De�nition 2. Special cases of Transport tasksFor i; j 2 f1;1; �g and k 2 f1;+; �g, Iijk is de�ned as the set of all Trans-port tasks I = (V;E;M;P; fuel0; l0; lG; cap; road) satisfying:{ For i = 1, cap(m) = 1 for all mobiles m (one mobile can carry one portable).{ For i =1, cap(m) = jP j for all mobiles m (unlimited capacity).{ For j = 1, fuel0(v) = 1 for all locations v (one fuel unit per location).{ For j =1, fuel0(v) =11 for all locations v (unlimited fuel).{ For k = +, road(m) = E for all mobiles m (no movement restrictions).{ For k = 1, road(m) = E for all mobiles m and jM j = 1 (no movementrestrictions, only one mobile).According to this de�nition, the most general task set, containing allTrans-port tasks, is I���, and the most speci�c ones, having no proper specializationsin the hierarchy, are I111, I111, I111, and I111.De�nition 3. Transport state transition graphThe state transition graph T (I) of a Transport task I = (V;E;M;P;fuel0; l0; lG; cap; road) is the digraph (VT ; AT) with VT = (M [P ! V [M)�(V ! f0; : : : ;maxfuel0(V)g)2 and ((l; fuel); (l0; fuel0)) 2 AT if and only if:(9m 2M; v; v0 2 V : l(m) = v ^ fv; v0g 2 road(m) ^ fuel(v) > 0^ l0 = l � (m; v0)3 ^ fuel0 = fuel� (v; fuel(v)� 1))_ (9m 2M;p 2 P : l(m) = l(p) ^ jf p 2 P j l(p) = m gj < cap(m)^ l0 = l � (p;m) ^ fuel0 = fuel)_ (9m 2M;p 2 P : l(p) = m ^ l0 = l � (p; l(m)) ^ fuel0 = fuel)This de�nition captures the intuition of legal state transitions in the speci�edtransportation task. The �rst disjunct speci�es transitions related to movementsof a mobile, the second relates to a mobile picking up a portable, and the thirdto a mobile dropping a portable. In the following, we will only use these intuitiveterms when talking about state transitions.We can now de�ne the decision problems we are interested in:De�nition 4. PlanEx-TransportijkGiven: Transport task I = (V;E;M;P; fuel0; l0; lG; cap; road) 2 Iijk .Question: In T (I), is there any directed path from (l0; fuel0) to (lG; fuel0) forsome fuel0 2 V ! N?De�nition 5. PlanLen-TransportijkGiven: Transport task I = (V;E;M;P; fuel0; l0; lG; cap; road) 2 Iijk ;K 2 N.Question: In T (I), is there a directed path of length at most K from (l0; fuel0)to (lG; fuel0) for some fuel0 2 V ! N?1 Of course, 1 is not a natural number. However, as we shall see shortly in the proofof Theorem 1, we can assume that there is \enough" fuel at each location, justifyingthis de�nition.2 States specify the location of mobiles and portables and the current fuel function.3 We use the notation f � (a0; b0) for functional overloading, i. e. the function f 0 withf 0(a0) = b0 and f 0(a) = f(a) for a 6= a0.
351

Theorem 1. PlanLen-Transport��� 2 NPProof. If we can show that any solvable Transport task I has a solution oflength p(jjI jj) for some �xed polynomial p, then a simple guess and check algo-rithm can solve the problem non-deterministically.This is true because each portable only needs to be at each location at mostonce, bounding the number of pickup and drop actions, and in between twopickup or drop actions, no mobile should visit a given location twice. 2Corollary 1. PlanEx-Transportijk �p PlanLen-Transportijk for arbi-trary values of i; j; k (and hence PlanEx-Transport��� 2 NP)Proof. A Transport task I has a solution if and only if it has a solution oflength p(jjI jj), for the polynomial p from the preceding theorem. Therefore themapping of I to (I; p(jjI jj)) is a polynomial reduction. 22.1 Plan ExistenceTheorem 2. PlanEx-Transport�1� 2 PProof. Using breadth-�rst search on road(m) starting at l0(m) for each mobilem with non-zero capacity, we can determine which roads can ever be used byany loaded mobile. The task can be solved if and only if for each portable p,lG(p) can be reached from l0(p) using these roads. This can easily be decided inpolynomial time, and in fact the actual plans can easily be generated. 2This shows that the plan existence problems can be solved in polynomialtime if no fuel constraints are present. We will now show that they are NP-complete otherwise, by proving NP-hardness of PlanEx-Transport111 andPlanEx-Transport111.Theorem 3. PlanEx-Transport111 is NP-completeProof. Membership inNP is already known. We proveNP-hardness by a reduc-tion from the NP-complete problem of �nding a Hamiltonian path with a �xedstart vertex [6, Problem GT39]. Let (V;E) be a graph and v1 2 V . Then (V;E)contains a Hamiltonian path starting at v1 if and only if there is a solution forthe Transport task I 2 I111 de�ned as follows: For each v 2 V , there are twodistinct locations v (called an entrance) and v� (called an exit), with one unit offuel each. At each entrance, there is a portable to be moved to the correspondingexit. There is only one mobile, of capacity one, starting at the entrance v1. Thereare roads from v to v� for v 2 V and from u� to v for fu; vg 2 E.Now, if there is a Hamiltonian path in (V;E) starting at v1, say [v1; : : : ; vn],then there is a solution for the planning task where the movement path of themobile is [v1; v�1 ; : : : ; vn; v�n] and portables are picked up and dropped in theobvious way.Now consider there is a solution to the planning task. Whenever a portableis picked up (at an entrance), the only reasonable thing to do is to move toits destination (the corresponding exit) and drop it, because there is no use in
352

deferring that movement when the carrying capacity is exhausted. The mobilemust then proceed to the next entrance, which is only possible in the waysde�ned by the edges in the original graph. Thus, the plan corresponds to a pathin the original graph that visits every vertex. It must be Hamiltonian, because ifan entrance were ever visited twice, it could never be left again because of fuelconstraints. 2Although the same reduction could be used in the in�nite capacity case, wegive another proof for this case showing that it is already NP-complete even ifthe roadmap is restricted to be a planar graph.Theorem 4. PlanEx-Transport111 is NP-completePlanEx-Transport111 is NP-complete, even if the roadmap is restrictedto be a planar graph.Proof. Membership in NP is already known. For hardness, we reduce from theHamiltonian Path problem with a �xed start vertex in a planar graph [8]. Let(V;E) be the graph and v1 2 V . Then (V;E) contains a Hamiltonian pathstarting at v1 if and only if there is a solution for the Transport task I 2 I111de�ned as follows: The roadmap of the planning task is (V;E), each locationprovides one unit of fuel, and there is one portable to be delivered to eachlocation from v1, the initial location of the only mobile (of unlimited capacity).Clearly, this problem is solvable if and only if there is a Hamiltonian Path in(V;E) starting at v1. 2This concludes our analysis of the PlanEx-Transportijk decision prob-lems. They can be solved in polynomial time if j = 1 and are NP-completeotherwise.2.2 Bounded Plan ExistenceTheorems 1, 3 and 4 and Corollary 1 imply NP-completeness for PlanLen-Transportijk for j 6=1. In this subsection, we will show that the same resultholds in the unrestricted fuel case, even in some very limited special cases.In fact, the proofs of Theorems 3 and 4 can be adjusted to prove NP-completeness of PlanLen-Transport111 and PlanLen-Transport111 byreplacing the fuel restrictions with plan length bounds of 4jV j � 1 and 3jV j � 3,respectively. However, these results require allowing for arbitrary (or arbitraryplanar) roadmaps, and thus do not apply to planning domains such as Logisticsor Grid. For that reason, we will prove some stronger results now.The �rst result in this section applies to grid roadmaps, i. e. graphs withvertex set f0; : : : ; wg � f0; : : : ; hg for some w; h 2 N (called width and height ofthe grid, respectively), where vertices (a; b) and (a0; b0) are connected by an edgeif and only if ja� a0j+ jb� b0j = 1. Note that grids are always planar graphs.Theorem 5. PlanLen-Transport111 is NP-completePlanLen-Transport111 is NP-complete, even if the roadmap is restrictedto be a grid.
353

Proof. Membership in NP is already known. For hardness, we reduce from theL1 metric TSP, which is NP-complete in the strong sense [6, Problem ND23].4Omitting the technical details which can be found elsewhere [8], the key ideais to have one portable for each site in the TSP instance, which needs to bemoved to an adjacent location. The mobile starts at the northmost (with thehighest y coordinate) TSP site and has to visit each site in order to deliver allportables, and the number of movements needed for that is equal to the lengthof the shortest non-closed TSP tour (i. e. a tour not returning to the initiallocation). The tour can be closed by putting an additional portable that needsto be moved \far up north".To enforce that the length of the shortest plan is dominated by the movementbetween sites rather than movement between the initial and (adjacent) goallocations of portables the coordinates of the sites are scaled by a factor of 2n (nbeing the number of sites). 2The same reduction can be used in the unrestricted capacity case [8]. Addi-tionally, in this setting the following result holds.Theorem 6. PlanLen-Transport111 is NP-completePlanLen-Transport111 isNP-complete, even if the roadmap is restrictedto be a complete graph.Proof. Membership in NP is already known. For hardness, we reduce from theFeedback Vertex Set problem [6, Problem GT7]. Let (V;A) be a digraph andK 2 N. Then (V;A) contains a feedback vertex set of size at most K if andonly if there is a solution of length at most 3jV j+2jAj+K for the Transporttask I 2 I111 where the roadmap is a complete graph with locations V andan additional location v0, which is the initial location of the only mobile, thereare no capacity or fuel constraints, there is one portable to be moved from v0 toeach v 2 V and one portable to be moved from u to v for each (u; v) 2 A.To see this, observe that for each feedback vertex set V 0 � V , the planningtask can be solved by moving the mobile to the vertices from V 0 in any order,then to the vertices from V n V 0 in an order which is consistent with the arcs inthe subgraph induced by V nV 0 (which must be acyclic because V 0 is a feedbackvertex set), and �nally to the vertices from V 0 again, in any order, picking up anddropping portables in the obvious way. This requires jAj+ jV j pickup and dropactions each and jV j + jV 0j movements, totaling a number of actions boundedby 3jV j+ 2jAj+K if jV 0j � K.On the other hand, any plan must contain at least one pickup and dropaction for each portable and visit each location at least once, totaling 3jV j+2jAjactions, so if a plan does not exceed the given length bound, there cannot bemore than K locations that are visited more than once. These locations mustform a feedback vertex set. 24 Our transformation is only polynomial if numbers in the original TSP instance areencoded in unary, but this is a valid assumption for decision problems that areNP-complete in the strong sense.
354

3 Competition Domains from AIPS 1998/2000Having completed the analysis of the Transport domain, we can now applythese results to the transportation domains from the planning competition.5TheMystery domain [15] is equal to our I��+ task set. Thus, plan existenceand bounded plan existence are NP-complete in this domain, even in the caseof planar roadmaps, according to Theorems 1 and 4 and Corollary 1. This stillholds if there is only one mobile and all portables start at the same location asthe mobile.TheMystery' domain [15] adds operators to move fuel between locations tothe originalMystery domain. However, these can only be applied if at least twounits of fuel are present at a given location, so for tasks from I�1+, there is nodi�erence between the two domains and consequently the same hardness resultsapply for Mystery'. Membership in NP for the decision problems related toMystery' follows from a polynomial plan length argument, as for the number ofmove, pickup and drop actions the same bounds as for Transport tasks apply,and there is no need to have more actions that move fuel than movements ofmobiles.Logistics tasks [15] are special cases of I11� tasks and generalizations ofI111 tasks with complete graph roadmaps. Thus, according to Theorems 1, 2,and 6, plans can be found in polynomial time in this domain, but the boundedplan existence problem is NP-complete, even if there is only one mobile (eithertruck or airplane).The Gripper domain [15] is a specialization of I�11 and thus allows forgenerating plans in polynomial time. Of course, this domain is so simple thateven optimal plans can be generated in polynomial time.For tasks without doors, the Grid domain [15] is very similar to I111 withgrid roadmaps6, thus the bounded plan existence problem in this domain isNP-hard, even in the absence of doors. It is actually in NP and thus NP-complete(with or without doors), again by a polynomial plan length argument, as it is nothard to bound the number of actions between two unlock actions in a reasonableplan, and no location can be unlocked more than once.If optimality is not required, plans can be generated in the Grid domain inpolynomial time by a simple strategy unlocking door after door as long as thisis possible and then moving the keys to their goal destinations if reachable. [8]Concluding our discussion of Grid, we want to briey mention another proofofNP-hardness for the bounded plan existence problem without going into detail(cf. [8]). This reduction does not emphasize the route planning aspect of thedomain and instead makes use of doors and is illustrated in Figure 1.5 Since a \benchmark domain" is not de�ned by the PDDL domain �le alone (considerthe Logistics domain, where it is implicitly assumed that in well-formed problemsthe sets of portables, trucks and airplanes are disjoint), we refer to the literature forinformal [1, 14, 15] and formal de�nitions [8] of these planning tasks.6 The only di�erence is that in Grid, the portable in hand can be swapped with aportable at the current location in just one action, but this does not make a di�erencefor the proof of Theorem 5.
355

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

2

3 ABD A:AC B:C:D A:A:A B:B:B C:C:C D:D:DFig. 1. Grid instance corresponding to (A_B _D)^ (A_:A_C)^ (B _:C _:D).Locations with doors are marked with squares. The bottom left location contains themobile and one key for each literal, opening the corresponding doors. The bottom rightlocation contains an additional key. All keys must be moved to the bottom left location.3.1 Miconic-10For the remaining competition domain, the Miconic-10 elevator domain [12],things are a bit more complicated. There are actually three di�erent domainsunder that name that were part of the AIPS 2000 competition. The �rst, calledMiconic-10 STRIPS, de�nes tasks very similar to Logistics with one mobile,or I111 with complete graphs. The only di�erence is that portables (passengers)can only be dropped at their destination locations and can never be picked upagain (reboard the elevator). Theorems 1, 2, and 6 apply, and thus plans can befound in polynomial time, but deciding existence of a bounded length plan is anNP-complete problem.The same is true for the second version of Miconic-10, called simple ADL .In this version, all boarding and leaving at a given oor (picking up or dropping)is automatically handled by a single stop action with conditional e�ects. It causesall passengers inside the elevator with that goal destination to leave and allpassengers waiting outside to board. This only requires a minor change to theproof of Theorem 6, changing the plan length bound to 2(jV j+K)+1 for jV j+Kmovements of the elevator and jV j+K + 1 stop actions.The \real" Miconic-10 domain additionally introduces special passengerswhich impose movement restrictions on the elevator. Most importantly, the el-evator may only stop at oors to which all passengers inside the elevator haveaccess, and there are \attended" passengers who require the presence of at leastone \attendant" passenger as long as they are inside the cabin (if the last atten-dant leaves the elevator, a new one must board). There are also VIP passengerswho must be served with priority.The decision problems related to that domain are still in NP because thenumber of stops can be bounded by twice the number of passengers to be served(one stop at their initial, another at their goal oor), and this in turn boundsthe number of movements. However, as it turns out, plan existence is alreadyNP-hard in this domain. Due to space restrictions, we will not give a formalde�nition of the decision problem at hand, which can be found in [8]. It shouldbe possible to understand the following proof without those details, though.Theorem 7. PlanEx-Miconic-10 is NP-completeProof. Membership in NP has been shown. For NP-hardness, we reduce from
356

the problem of �nding a Hamiltonian path with a �xed start vertex v1 in adigraph (V;A) [6, Problem GT39].The corresponding Miconic-10 task has the following oors: an init oorf0, �nal oor f1, for each vertex u a vertex start oor fu and vertex end oorf�u , and for each arc (u; v) an arc oor fu;v. F is the set of all these oors andfor each vertex u, Fu is the set containing fu, f�u , and the arc oors for outgoingarcs of u. These are the passengers to be served:Passenger From To Access to : : : Specialp0 f0 fv1 ff0; fv1g VIP, attendant8u 2 V : pu f0 fu F n ff1g attended8u 2 V : p�u fu f�u Fu [ff1g attendant8u 2 V : p1u f�u f1 F n ffug none8(u; v) 2 A: pu;v fu;v fv ffu;v; f�u ; fvg attendantAssume that it is possible to solve the task. Because p0 is a VIP, the �rststops must be at f0 and fv1 , picking up all the attended passengers and p�v1 .Because of the movement restrictions of that passenger, the journey can onlyproceed to oors from Fv1 , and f�v1 is not an option because going there wouldlead to the only attendant leaving. Thus, the elevator must go to fv1;v2 (for somevertex v2 that is adjacent to v1) and can then only proceed to f�v1 and then fv2 ,picking up p1v1 .We are now in a similar situation as upon arrival at fv1 , and again, theelevator will eventually go to some oor fv3 , then fv4 , following the arcs of thedigraph (V;A) in a path [v1; : : : ; vn] until all vertices have been visited once.No vertex can be visited twice because of the passengers of type p1u . So planexistence implies a Hamiltonian path starting at v1 in the digraph.On the other hand, if a Hamiltonian path exists, there is a sequence of elevatormovements that leads to all attended passengers having arrived at their �naldestination and the elevator being at some oor fu for u 2 V . No longer requiringattendants, it can then immediately proceed to f�u , then f1 and �nally serve theremaining passengers of type fu;v (for arcs (u; v) not part of the Hamiltonianpath), one after the other, completing the plan. 24 DiscussionLet us briey summarize the results of our analysis. For fairly general trans-portation tasks, we have shown NP-completeness of non-optimal planning inthe restricted fuel case and NP-completeness of optimal planning in all cases.Just �nding some plan in tasks where fuel is abundant was shown to be a poly-nomial problem.This is detailed in Figure 2. For some domains, even some severe restrictionsare still su�cient to get NP-hardness. Speci�cally, all NP-hardness results inthe multi-agent competition domains still hold if there is only one agent, andthe NP-hardness result for Grid still holds if there are no doors at all. Forconvenience, we repeat the results for the competition domains:
357

Transport���Theorem 1Mystery'Section 3 MysterySection 3Transport�1+
Transport111Theorem 3 Transport111planar graphTheorem 4

Transport�1�Theorem 2LogisticsSection 3Miconic-10Theorem 7 Miconic-10STRIPSSection 3.1Transport111compl. graphTheorem 6Miconic-10simple ADLSection 3.1
GridSection 3Transport111grid graphTheorem 5 Gridno doorsSection 3Fig. 2. The transportation domains hierarchy. Black lines indicate special cases, graylines strong similarities of domains. Deciding plan existence is NP-complete for do-mains with gray boxes, plans can be generated in polynomial time for domains inwhite boxes. The bounded plan length problem is NP-complete for all domains in the�gure. For the Gripper domain (not shown), both problems are polynomial.Domain name PlanEx PlanLenGrid polynomial NP-completeGripper polynomial polynomialLogistics polynomial NP-completeMiconic-10 (STRIPS or simple ADL) polynomial NP-completeMiconic-10 (full ADL) NP-completeNP-completeMystery, Mystery' NP-completeNP-completeIt is interesting to observe that in those domains where heuristic local searchplanners such as FF [10] excel, the table lists di�erent results for plan existenceand bounded plan existence. Because all hardness proofs only use a single agent,they carry over to optimal parallel planning, which implies that in these domainsplanners likeGraphplan [3] or IPP [11] try to solve provably hard subproblemsthat local search planners do not have to care about. When optimal plans arenot required, local search has a conceptual advantage here, and we cannot hopefor similar performance from any planner striving for optimality.Greedy local search is less appropriate, however, if additional constraints canlead to dead ends in the search space. We have faced this problem when dealingwith fuel constraints and in the fullMiconic-10 domain, where it may be unwiseto have people board the elevator who restrict its movement too much. In fact,the competition domains with NP-hard plan existence problems are exactlythe ones for which current planners based on heuristic local search encounterunrecognized dead ends.7 [9]While the observation that non-optimal planning is often easier than optimalplanning is by no means surprising or new, we consider it important to pointout. While there has been signi�cant recent progress on non-optimal planning,optimal planners tend to get less attention than they deserve, maybe due to the7 This is also true for the non-transportation benchmarks. [8, 9]

358

fact that they are often compared to their non-optimal counterparts in terms ofthe size of problems they can handle. This kind of comparison is hardly fair.We also observe that all discussed decision problems are in NP. We do notconsider this a weakness of the benchmark set, as in STRIPS/ADL planning,NP membership is guaranteed as soon as there are polynomial bounds on planlengths, which is a reasonable restriction from a plan execution point of view.5 Related WorkOther work in the AI planning literature concerned with computational com-plexity results mostly focuses on domain-independent planning, analyzing dif-ferent variants of the planning problem and special cases thereof [2, 4, 5]. Thiswork mainly covers purely syntactical restrictions of general planning, such aslimiting the number of operator preconditions or e�ects, but also discusses thecomplexity of STRIPS-style planning in (arbitrary) �xed domains [5].There are very few articles in the planning literature which are concernedwith the same kind of domain-dependent planning complexity results as thiswork. The existing literature concentrates on the complexity of Blocksworld,including results for generalizations of the classical domain, e. g. allowing forblocks of di�erent size. The most comprehensive reference for this line of researchis an article by Gupta and Nau [7]. There is also a very interesting discussionof the important distinction between optimal, near-optimal and non-optimalplanning in Blocksworld. [16]The usefulness of the idea of partitioning planning domains into familieslike transportation and most of the corresponding terminology is borrowed fromwork by Long and Fox [13], although in that paper the focus is on the automaticdetection of transportation domains and the exploitation of some of their featuresby a planning algorithm, not on complexity aspects.6 OutlookWhile some questions were answered in the preceding sections, open issues re-main. In some domains it would be interesting to investigate some more spe-cial cases to come up with more �ne-grained results. For example, in the fullMiconic-10 domain, plan existence is NP-complete, but it is polynomial with-out special passengers and access restrictions. What is the complexity if onlysome of these enhancements are made?Where plan existence isNP-complete, detecting the phase transition between(usually easy) under-constrained and (usually easy) over-constrained instanceswould be interesting, increasing the bene�t of these domains for benchmarking.Finally, in addition to discussing \optimal" and \non-optimal" planning,near-optimal planning is an interesting topic for domains where plan existenceand bounded plan existence are of di�erent complexity [17]. Giving performanceguarantees is certainly easy in Logistics and the restricted Miconic-10 do-mains, but what about Grid?
359

References1. Fahiem Bacchus and Dana S. Nau. The AIPS-2000 planning competition. AIMagazine, 2001. To appear.2. Christer B�ackstr�om and Bernhard Nebel. Complexity results for SAS+ planning.Computational Intelligence, 11(4):625{655, 1995.3. Avrim Blum and Merrick Furst. Fast planning through planning graph analysis.Arti�cial Intelligence, 90(1{2):281{300, 1997.4. Tom Bylander. The computational complexity of propositional STRIPS planning.Arti�cial Intelligence, 69(1{2):165{204, 1994.5. Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decidabilityand undecidability results for domain-independent planning. Arti�cial Intelligence,76(1{2):65{88, 1995.6. Michael R. Garey and David S. Johnson. Computers and Intractability | A Guideto the Theory of NP-Completeness. Freeman, 1979.7. Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning.Arti�cial Intelligence, 56(2{3):223{254, 1992.8. Malte Helmert. On the complexity of planning in transportation and manipulationdomains. Master's thesis, Albert-Ludwigs-Universit�at Freiburg, 2001. Postscriptavailable at http://www.informatik.uni-freiburg.de/�ki/theses.html.9. J�org Ho�mann. Local search topology in planning benchmarks: An empirical anal-ysis. In Proceedings of the 17th International Joint Conference on Arti�cial Intel-ligence (IJCAI'01), 2001. Accepted for publication.10. J�org Ho�mann and Bernhard Nebel. The FF planning system: Fast plan generationthrough heuristic search. Journal of Arti�cial Intelligence Research, 14:253{302,2001.11. Jana K�ohler, Bernhard Nebel, J�org Ho�mann, and Yannis Dimopoulos. Extendingplanning graphs to an ADL subset. In S. Steel and R. Alami, editors, RecentAdvances in AI Planning. 4th European Conference on Planning (ECP'97), volume1348 of Lecture Notes in Arti�cial Intelligence, pages 273{285, New York, 1997.Springer-Verlag.12. Jana K�ohler and Kilian Schuster. Elevator control as a planning problem. In Pro-ceedings of the Fifth International Conference on Arti�cial Intelligence Planningand Scheduling, pages 331{338, 2000.13. Derek Long and Maria Fox. Automatic synthesis and use of generic types in plan-ning. In Proceedings of the Fifth International Conference on Arti�cial IntelligencePlanning and Scheduling (AIPS 2000), pages 196{205, 2000.14. Derek Long, Henry Kautz, Bart Selman, Blai Bonet, Hector Ge�ner, Jana K�ohler,Michael Brenner, J�org Ho�mann, Frank Rittinger, Corin R. Anderson, Daniel S.Weld, David E. Smith, and Maria Fox. The AIPS-98 planning competition. AIMagazine, 21(2):13{33, 2000.15. Drew McDermott. The 1998 AI Planning Systems competition. AI Magazine,21(2):35{55, 2000.16. Bart Selman. Near-optimal plans, tractability, and reactivity. In Jon Doyle, ErikSandewall, and Pietro Torasso, editors, Principles of Knowledge Representationand Reasoning: Proceedings of the Fourth International Conference (KR'94), pages521{529. Morgan Kaufmann, 1994.17. John Slaney and Sylvie Thi�ebaux. Blocks world revisited. Arti�cial Intelligence,125:119{153, 2001.
360

Short Papers

Generating Hard Satis�able ShedulingInstanesJosep Argelih1, Ram�on B�ejar2, Alba Cabisol1, C�esar Fern�andez1,Felip Many�a1, and Carla P. Gomes21 Departament d'Inform�atia i Enginyeria Industrial, Universitat de LleidaJaume II, 69, E-25001 Lleida, Spainfalba,esar,felipg�eup.udl.es2 Department of Computer Siene, Cornell UniversityIthaa, NY 14853, USAfbejar,gomesg�s.ornell.eduAbstrat. We present a random generator of partially omplete roundrobin timetables that produes exlusively satis�able instanes, and pro-vide experimental evidene that there is an easy-hard-easy pattern inthe omputational diÆulty of ompleting partially omplete timetablesas the ratio of the number of removed entries to the total number of en-tries of the timetable is varied. Timetables in the hard region provide asuitable test-bed for evaluating and �ne-tuning loal searh algorithms.1 IntrodutionLoal searh algorithms (LSA's) are widely used to eÆiently solve planning andsheduling problems [3, 9℄. One diÆulty with LSA's is that they are inompleteand annot prove unsatis�ability. Thus, benhmark instanes for measuring theperformane of LSA's have to be satis�able. Unfortunately, it has proven to besurprisingly diÆult to develop random generators of hard satis�able instanesof ombinatorial problems [1℄.Given a set of andidate benhmark instanes, unsatis�able instanes are gen-erally �ltered out with omplete algorithms, and then only satis�able instanesare used to evaluate and �ne-tune LSA's. However, this approah is problematiin problems where inomplete algorithms an solve larger instanes than om-plete algorithms beause the latter annot identify hard satis�able instanes.In this paper we desribe a random generator of satis�able sheduling in-stanes whih are omputationally diÆult to solve with LSA's for SAT. Ourgenerator starts by randomly reating a timetable T for a temporally densesingle round robin tournament using the inomplete satis�ability solver Walk-SAT [11℄. Then, it generates a partially omplete round robin timetable T 0 byrandomly removing a given number of entries of T in suh a way that the numberof removed entries in eah olumn and eah row are approximately equal. Theunderlying generation model guarantees that T 0 an be ompleted into a feasibletimetable, and has the advantage that the expeted hardness of ompleting a
361

partially omplete timetable an be �nely ontrolled by tuning the number ofremoved entries.In order to investigate the hardness of the instanes of our generator weonduted a omprehensive experimental investigation.We observed that there isan easy-hard-easy pattern in the omputational diÆulty of ompleting partiallyomplete timetables with LSA's for SAT as the ratio of the number of removedentries to the total number of entries is varied. Timetables in the hard regionprovide a suitable set of randomly generated satis�able sheduling benhmarks.We onsidered the generi problem solving approah that onsists in mod-eling ombinatorial problems as SAT instanes and then solving the resultinginstane with a SAT solver. In the last years the planning as satis�ability ap-proah has gained popularity and has allowed the reation of planning systemslike Blakbox [9℄. The sheduling as satis�ability approah was used by Craw-ford & Baker [5℄ to solve the job shop problem and by B�ejar & Many�a [2, 3℄ toreate timetables for a variant of round robin tournaments. The generation ofsatis�able instanes for the quasigroup ompletion problem was investigated byAhlioptas, Gomes, Kautz & Selman [1, 6℄, as well as in [8℄. Their papers inspiredour work on the round robin ompletion problem.The paper is strutured as follows. In Setion 2 we introdue the round robinproblem. In Setion 3 we desribe the random generator of partially ompletetimetables. In Setion 4 we present and disuss the experimental investigation.2 The round robin problemIn this paper we onsider the timetabling problem for temporally dense singleround robin tournaments (DSRR): given an even number of teams n, the DSRRproblem onsists in distributing n(n � 1)=2 mathes in n � 1 rounds in suh away that eah team plays eah other team exatly one during the ompetition.Figure 1 shows a 6-team DSRR timetable. We represent DSRR timetables forn teams by an n � (n � 1) matrix o of variables, where variables ot;r tell theopponent team against whih team t plays in round r.The DSRR problem for n teams an be represented as a onstraint satisfa-tion problem (CSP) [7℄ as follows:{ The set of variables is formed by all variables ot;r in matrix o.{ The domain Dot;r of eah variable ot;r is f1; : : : ; ng.{ The set of onstraints is formed by the following onstraints:� all-different(ot;1; : : : ; ot;n�1); for every t 2 f1; : : : ; ng, and� round-mathes(o1;r; : : : ; on;r); for every r 2 f1; : : : ; n� 1g.The onstraints all-different and round-mathes are de�ned as follows:all-different(x1; : : : ; xm) = f(v1; : : : ; vm) 2 Dx1 � � � � �Dxm j8i;j;i6=j vi 6= vjground-mathes(x1; : : : ; xm) = f(v1; : : : ; vm) 2 Dx1 � � � � �Dxm j8i;j;i 6=j vi 6= i ^ vi = j $ vj = ig
362

teams/rounds 1 2 3 4 51 2 4 6 3 52 1 3 5 6 43 5 2 4 1 64 6 1 3 5 25 3 6 2 4 16 4 5 1 2 3Fig. 1. A 6-team DSRR timetable
1 2 3 4 5 61 X 1 4 2 5 32 1 X 2 5 3 43 4 2 X 3 1 54 2 5 3 X 4 15 5 3 1 4 X 26 3 4 5 1 2 XFig. 2. A symmetri quasigroupThe all-different onstraint expresses that eah row of a DSRR timetableontains every team only one, and the round-mathes onstraint expressesthat eah olumn groups the teams into mathes; eah olumn represents all themathes of one round.Next, we de�ne the SAT enoding of the n-team DSRR problem that weused in the experimental investigation desribed in Setion 4.1. The set fpki;j j 1 � i � n; 1 � j � n � 1; 1 � k � n; i 6= kg is the set ofpropositional variables. The intended meaning of pkij is that team i playsagainst team k in round j.2. The onstraint all-different(pi;1; : : : ; pi;n�1) is de�ned as follows:V1 � j < n � W1 � k � nk 6= i pki;j ^ V1 � k1 < k2 � nk1 6= k2 6= i (:pk1i;j _ :pk2i;j) � ^V1 � j1 < j2 < nj1 6= j2 V1 � k � nk 6= i �:pki;j1 _ :pki;j2�3. The onstraint round-mathes(p1;j ; : : : ; pn;j) is de�ned as follows:V1 � i � n V1 � k � nk 6= i �:pki;j _ pik;j�We de�ne the DSRR ompletion problem to be the problem of determiningwhether a partially omplete DSRR timetable an be ompleted into a feasibletimetable. In Setion 4 we provide experimental evidene that ompleting aDSRR timetable is omputationally harder than onstruting a full timetable.The DSRR ompletion problem is NP-omplete. This follows from the fatthat it is equivalent to the problem of ompleting partially omplete symmetriquasigroups, whih is know to be NP-omplete [4℄. Figure 2 shows the symmetriquasigroup of size 6 that orresponds to the DSRR timetable of Figure 1. Weuse the symbols f1; 2; 3; 4; 5; Xg to �ll the entries of the quasigroup: the entry inrow i and olumn j is r 2 f1; 2; 3; 4; 5g if team i plays against team j in roundr, and the entries of the diagonal of the quasigroup are X .

363

3 A random generator of partially omplete timetablesThe random generator of partially omplete DSRR timetables that we have de-signed and implemented has two peuliarities: (i) produes exlusively satis�ableinstanes, and (ii) the number of removed entries in eah olumn and eah roware approximately equal. It has been shown reently that removing entries in abalaned way allows one to generate hard quasigroup ompletion problems [8℄.The pseudo-ode is shown in Figure 3: we represent entries by ot0t;r and referto removed entries as holes. The intended meaning of ot0t;r is that team t playsagainst team t0 in round r.proedure Random-Generatorinput: an even number of teams n and an even number of holes houtput: an n-team partially omplete timetable with h holesh0 := b hn�1 + 1T := a randomly generated n-team omplete DSRR timetablewhile h > 0 doS := set of non-empty entries ot0t;r of T suh that rows t; t0 havehave less than h0 + 1 holes and olumn r has less than h0 holes;ot0t;r := a randomly seleted entry of S;T := T with entries ot0t;r and ott0;r removed;h := h� 2;endwhilereturn(T);Fig. 3. Random generator of partially omplete timetablesIn the experimental investigation, we used WalkSAT and the SAT enodingde�ned in Setion 2 to randomly generate a omplete DSRR timetable. SATenodings of partially omplete timetables were obtained by adding the list ofholes to the SAT enoding of the orresponding omplete timetable. As theresulting enodings had a onsiderable number of unit lauses, they were �rstsimpli�ed by applying unit propagation and then solved with WalkSAT.It is worth mentioning that WalkSAT takes less than 1 minute to �nd a om-plete timetable for 40 teams. Systemati satis�ability algorithms like Satz [10℄are not able to solve omplete DSRR timetable for 14 teams after 48 hours.4 Experimental resultsIn the experimental investigation we �rst used the random generator of partiallyomplete timetables to produe sets of instanes for di�erent number of teams:n = 30; 32; 36; we onsidered these values of n in order to get experimental resultsin a reasonable amount of time. For all the sets, we varied the ratio of the numberof holes (h) to the total number of entries of the timetable (n � (n � 1)) from0:350 to 0:420 for n = 30; 32, and from 0:320 to 0:400 for n = 36; we inrementedthat ratio by 0:001 in eah step. At eah setting we ran WalkSAT on 20 partially
364

05 � 1071081:5 � 1082 � 1082:5 � 108
320 340 360 380 400 420flips

holes/n*(n-1)
36

rsrsrsrsrsrsrsrsrsrsrsrsrsrsrsrs
rs

rs
rsrs
rsrsrs

rs
rsrs
rs

rsrs

rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs
rsrs

rsrs
rsrs
rs

rsrs
rs
rsrsrsrs

rs
rs
rsrs
rs

rsrs
rsrs
rsrsrsrsrsrsrsrsrsrsrsrs

rs
rs
rsrsrs

rs32
++++++++++++++

+++++
+
+

++
+

+

+

++

+30
rs rs

rs
rs rs rs rs rs rs rs

rs
rs rs rs

rs rs
rs rs

rs rs
rs

rs rs rs
rs

rs
rs

rs rs
rs

rs

rs rs
rs

rs
rs

rs

rs
rs

rs

rs

rs

rs

rs rs

rs

rs

rs

rs
rs

rs

rs

rs rs
rs

rs
rs rs rs rs

rs
rs

rs
rs rs

rs

rs rs rs
rs

rs

Fig. 4. Computational ost pro�lesfor 30, 32 and 36 teams 00.20.40.60.81
320 340 360 380 400 420normalizedflips holes/n*(n-1)

36
rs rsrs rsrs rsrs rsrs rsrsrs rsrs rsrs

rs

rs
rsrs
rsrs rs

rs
rsrs
rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs
rsrs

rs
rs
rsrs
rs

rs rs

rs
rs rsrs rs

rs
rs
rs rs
rs

rsrs
rsrs
rsrsrs rsrs rsrs rsrs rsrs rs

rs
rs
rs rsrs

rs32
+++

++++
+++++++

++++
+

+

+

+
+

+

+

+
+
+++++

++

++++

+
+++

+
++

++++++++++++++++++++++++

+30
rs

rs

rs

rs
rs

rs
rs

rs rs
rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs rs

rs

rs

rs

rs

rs
rs

rs

rs
rs rs

rs

rs

Fig. 5. Normalized omputational ostpro�les for 30, 32 and 36 teamsomplete timetables. Eah instane was exeuted until 25 solutions were foundusing no uto� (maxips), 30% noise for n = 30, 26% noise for n = 32, and 20%noise for n = 36. We used approximately optimal noise parameter settings foreah timetable size. Suh experiments were performed on PC's with 500 MHzPentium III Proessors under Linux Operating System.Figure 4 visualizes the easy-hard-easy pattern in the omputational diÆultyof ompleting partially omplete timetables with WalkSAT for n = 30; 32; 36.Along the horizontal axis is the ratio of the number of holes to the total numberof entries of the timetable, and along the vertial axis is the median number ofips needed to solve an instane.Figure 5 is like Figure 4 but the median number of ips are normalized. Onean observe that there is a shift in the loation of the hardness peak as a funtionof the number of teams.Figure 6 visualizes the easy-hard-easy pattern for n = 32 showing seondsinstead of ips. Along the vertial axis are the mean and median number ofseonds needed to solve an instane.
0306090

120150180
350 360 370 380 390 400 410 420seonds holes/n*(n-1)

mean
rs

rs rs

rs rs rs rs

rs rs
rs
rs

rs

rs

rs
rs

rs

rs

rs rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs
rs
rs

rs

rs rs

rs
rs

rs

rs rs

rs
rs

rs
rs
rs rs rs rs rs rs rs rs rs

rs rs

rs rs rs rs rs rs rs rs rs rs rs rs rs

rsmedian
++++++++++++++

+++++

+

+

++

+

+

+

+
++++++

++
++++

+
++++

++++++++++++++++++++++++++

+

Fig. 6. Mean and median number of seonds for 32 teams
365

From the experimental results we an onlude that, when we use our randomgenerator of partially omplete timetables, there is an easy-hard-easy pattern inthe omputational diÆulty of ompleting partially omplete timetables withLSA's for SAT as the ratio of the number of removed entries to the total numberof entries is varied. Thus, the expeted hardness of ompleting a timetable anbe �nely ontrolled by tuning the number of removed entries, and timetables inthe hard region provide a soure of suitable sheduling benhmarks to evaluateand �ne-tune LSA's.Taking into aount the existing work on the quasigroup ompletion prob-lem [1, 8℄, and the equivalene between the DSRR ompletion problem and theproblem of ompleting partially omplete symmetri quasigroups, we onjeturethat the easy-hard-easy pattern ould also be observed if we use non-Boolean en-odings as well as algorithms other than WalkSAT. A ruial point for obtainingthis diÆulty pro�le was the generation model of partially omplete timetables.We did not identify the easy-hard-easy pattern with other strategies of makingholes.Aknowledgements: Researh partially supported by the DARPA ontratsF30602-00-2-0530 and F30602-00-2-0596, and projet CICYT TIC96-1038-C04-03. The �fth author was supported by grant PR2001-0163 of the \Seretar��a deEstado de Eduai�on y Universidades".Referenes1. D. Ahlioptas, C. P. Gomes, H. Kautz, and B. Selman. Generating satis�ableproblem instanes. In Pro. of AAAI-2000, pages 256{261, 2000.2. R. B�ejar and F. Many�a. Solving ombinatorial problems with regular loal searhalgorithms. In Pro. of LPAR'99, pages 33{43. Springer LNAI 1705, 1999.3. R. B�ejar and F. Many�a. Solving the round robin problem using propositional logi.In Pro. of AAAI-2000, pages 262{266, 2000.4. C. Colbourn. Embedding partial steiner triple systems is NP-omplete. Journal ofCombinatorial Theory, Series A, 35:100{105, 1983.5. J. M. Crawford and A. B. Baker. Experimental results on the appliation ofsatis�ability algorithms to sheduling problems. In Pro. of AAAI'94, pages 1092{1097, 1994.6. C. P. Gomes and B. Selman. Problem struture in the presene of perturbations.In Pro. of AAAI'97, pages 221{226, 1997.7. M. Henz, T. M�uller, S. Thiel, and M. van Brandenburg. Global onstraints forround robin tournament sheduling, 2001. Draft paper.8. H. A. Kautz, Y. Ruan, D. Ahlioptas, C. P. Gomes, B. Selman, and M. Stikel.Balane and �ltering in strutured satis�able problems. In Pro. of IJCAI'01,2001.9. H. A. Kautz and B. Selman. Unifying SAT-based and graph-based planning. InPro. of IJCAI'99, pages 318{325, 1999.10. C. M. Li and Anbulagan. Look-ahead versus look-bak for satis�ability problems.In Pro. of CP'97, pages 341{355. Springer LNCS 1330, 1997.11. B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving loal searh.In Pro. of AAAI'94, pages 337{343, 1994.
366

Learning Robot Action Plans for
Controlling Continuous, Percept-driven Behavior?

Michael Beetz1 and Thorsten Belker21 Computer Science Dept. IX, Munich University of Technology, Munich, Germany2 Dept. of Computer Science III, University of Bonn, Bonn, Germany

Abstract. Autonomous robots, such as robot office couriers, need control rou-
tines that support flexible task execution and effective action planning. This pa-
per describes XFRMLEARN, a system that learns structured symbolic robot ac-
tion plans for navigation tasks. Given a navigation task, XFRMLEARN learns to
structure continuous navigation behavior and represents the learned structure as
compact and transparent plans. The structured plans are obtained by starting with
monolithical default plans that are optimized for average performance and adding
subplans to improve the navigation performance for the given task. Compactness
is achieved by incorporating only subplans that achieve significant performance
gains. The resulting plans support action planning and opportunistic task execu-
tion. XFRMLEARN is implemented and extensively evaluated on an autonomous
mobile robot.

1 Introduction

Robots operating in human working environments and solvingdynamically changing
sets of complex tasks are challenging testbeds for autonomous robot control. The dy-
namic nature of the environments and the nondeterministic effects of actions requires
robots to exhibit concurrent, percept-driven behavior to reliably cope with unforeseen
events. Most physical control processes are continuous in nature and difficult to repre-
sent in discrete symbolic structures.

In order to apply high-level plan-based control techniques, robots need adequate and
realistic representations of their control processes thatenable their planning routines to
foresee problems and forestall them. In this paper we take the navigation behavior of
autonomous mobile robots as our prototypical example.

Different approaches have been proposed to specify the navigation behavior of such
robots. A number of researchers consider navigation as an instance of Markov deci-
sion problems (MDPs) [KCK96]. They model the navigation behavior as a finite state
automaton in which navigation actions cause stochastic state transitions. The robot is
rewarded for reaching its destination quickly and reliably. A solution for such problems
is apolicy, a mapping from discretized robot poses into fine-grained navigation actions.

MDPs form an attractive framework for navigation because they use a uniform mech-
anism for action selection and a parsimonious problem encoding. The navigation poli-
cies computed byMDPs aim at robustness and optimizing the average performance.One? This research is partially funded by the Deutsche Forschungsgemeinschaft.

367

of the main problems in the application ofMDP planning techniques is to keep the state
space small enough so that theMDPs are still solvable.

Another approach is the specification of environment- and task-specific navigation
plans, such asstructured reactive navigation plans (SRNPs) [Bee99].SRNPs specify a
default navigation behavior and employ additional concurrent, percept-driven subplans
that overwrite the default behavior while they are active. The default navigation behav-
ior can be generated by anMDP navigation system. The (de-)activation conditions of
the subplans structure the continuous navigation behaviorin a task-specific way.

SRNPs are valuable resources for opportunistic task execution and effective action
planning because they provide high-level controllers withsubplans such as traverse
a particular narrow passage or an open area. More specifically, SRNPs (1) can gener-
ate qualitative events from continuous behavior, such as entering a narrow passage;
(2) support online adaptation of the navigation behavior (drive more carefully while
traversing a particular narrow passage), and (3) allow for compact and realistic sym-
bolic predictions of continuous, sensor-driven behavior.The specification of good task
and environment-specificSRNPs, however, requires tailoring their structure and param-
eterizations to the specifics of the environment.

We propose to bridge the gap between both approaches by learning SRNPs, sym-
bolic plans, from executingMDP navigation policies. Our thesis is that a robot can
autonomously learn compact and well-structuredSRNPs by usingMDP navigation poli-
cies as default plans and repeatedly inserting subplans into theSRNPs that significantly
improve the navigation performance. This idea works because the policies computed by
theMDP path planner are already fairly general and optimized for average performance.
If the behavior produced by the default plans were uniformlygood, making navigation
plans more sophisticated would be of no use. The rationale behind requiring subplans
to achieve significant improvements is to keep the structureof the plan simple.

2 An Overview on XFRM L EARN

We have implemented XFRMLEARN a realization of this learning model and applied
it to learningSRNPs for an autonomous mobile robot that is to perform office courier
service. XFRMLEARN is embedded into a high-level robot control system calledstruc-
tured reactive controllers(SRCs) [Bee99].SRCs are are controllers that can revise their
intended course of action based on foresight and planning atexecution time.SRCs em-
ploy and reason about plans that specify and synchronizeconcurrent percept-driven
behavior. Concurrent plans are represented in a transparent and modular form so that
automatic planning techniques can make inferences about them and revise them.

XFRMLEARN is applied to the RHINO navigation system [BCF+00], which has
shown impressive results in several longterm experiments.Conceptually, this robot nav-
igation system works as follows. A navigation problem is transformed into a Markov
decision problem to be solved by a path planner using a value iteration algorithm. The
solution is a policy that maps every possible location into the optimal heading to reach
the target. This policy is then given to a reactive collisionavoidance module that exe-
cutes the policy taking the actual sensor readings into account [BCF+00].

368

The RHINO navigation system can be parameterized in different ways. The parame-
ter PATH is a sequence of intermediate points which are to be visited in the specified or-
der.COLLI-MODE determines how cautiously the robot should drive and how abruptly
it is allowed to change direction. RHINO’s navigation behavior can be improved be-
cause RHINO’s path planner solves an idealized problem that does not take the desired
velocity, the dynamics of the robot, the sensor crosstalk, and the expected clutteredness
fully into account. The reactive collision avoidance component takes these aspects into
account but makes only local decisions.

We propose an “analyze, revise, and test” cycle as a computational model for learn-
ing SRNPs. XFRMLEARN starts with a default plan that transforms a navigation problem
into anMDP problem and passes theMDP problem to RHINO’s navigation system. After
RHINO’s path planner has determined the navigation policy the navigation system acti-
vates the collision avoidance module for the execution of the resulting policy. XFRM-
LEARN records the resulting navigation behavior and looks for stretches of behavior
that could be possibly improved. XFRMLEARN then tries to explain the improvable
behavior stretches using causal knowledge and its knowledge about the environment.
These explanations are then used to index promising plan revision methods that intro-
duce and modify subplans. The revisions are then tested in a series of experiments to
decide whether they are likely to improve the navigation behavior. Successful subplans
are incorporated into the symbolic plan.

3 Structured Reactive Navigation Plans

Let us now take a more detailed look at the representation ofSRNPs.

navigation plan (desk-1,desk-2)
with subplans

TRAVERSE-NARROW-PASSAGE(h635,1274i,h635,1076i)
parameterizations colli-mode slow
path constraints h635,1274i,h635,1076i
justification narrow-passage-bug-3

TRAVERSE-NARROW-PASSAGE(...)
TRAVERSE-FREE-SPACE(...)

DEFAULT-GO-TO (desk-2)

TheSRNPabove contains three subplans: one for leaving the left office, one for en-
tering the right one, and one for speeding up the traversal ofthe hallway. The subplan
for leaving the left office is shown in more detail. The path constraints are added to
the plan for causing the robot to traverse the narrow passageorthogonally with maxi-
mal clearance. The parameterizations of the navigation system specify that the robot is
asked to drive slowly in the narrow passage and to only use laser sensors for obstacle
avoidance to avoid the hallucination of obstacles due to sonar crosstalk.

SRNPs are calledstructuredbecause the subplans explicitly represent task-relevant
structure in continuous navigation behavior. They are called reactivebecause “per-
ceived” qualitative events, such as entering or leaving a narrow passage, trigger the
activation and termination of subplans.

369

4 XFRM L EARN in Detail

A key problem in learning structured navigation plans is to structure the navigation
behavior well. Because the robot must start the subplans andsynchronize them, it must
be capable of “perceiving” the situations in which subplansare to be activated and
deactivated. Besides being perceiveable, the situations should be relevant for adapting
navigation behavior. Among others, we use the concept ofnarrownessfor detecting the
situations in which the navigation behavior is to be adapted. Based on the concept of
narrowness the robot can differentiate situations such as free space, traversing narrow
passages, entering narrow passages, and leaving narrow passages.

Fig. 1: Visualization of a behavior
trace. The center of the circles de-
note the robot’s position and the
size of the circle the current speed
of the robot.

Diagnosis of Conspicous Subtraces.Upon carrying
out a navigation task, RHINO produces a behavior
trace like the one shown in Figure 1. The robot’s posi-
tion is depicted by a circle where the size of the circle
is proportional to the robot’s translational speed. Be-
havior feature subtraces such as low and high trans-
lational speed, turning in place, and frequent stop-
ping often hint at which behavior stretches can be
improved. To infer how the improvements might be
achieved, XFRMLEARN first tries to explain a behav-
ior feature subtrace by finding environment feature
subtraces, such as “traversing a narrow passage” or
“passing an obstacle” that overlap with it. We use the
predicate MAY CAUSE(F1,F2) to specify that the en-
vironment featureF1 may cause the behavior feature
F2 like narrow passages causing low translational ve-

locity. If there is sufficient overlap between a behavior feature subtraceb and an en-
vironment feature subtracee then the behavior is considered to be abehavior flaw.
The diagnosis step is realized through a simple diagnostic rule that, depending on the
instantiation of MAY CAUSE(?F1,?F2) can diagnose different kinds of flaws:
D-1 Low translational velocity is caused by the traversal of narrow passages.
D-2 Stopping is caused by the traversal of narrow passage.
D-3 Low translational velocity is caused by passing an obstacletoo close.
D-4 Stopping caused by passing an obstacle too close.
D-5 High target velocity caused by traversing free space.

The “revise” step uses programming knowledge about how to revise navigation
plans and how to parameterize the subsymbolic navigation modules that is encoded
in the form of plan transformation rules. In their conditionparts transformation rules
check their applicability and the promise of success. Thesefactors are used to estimate
the expected utility of rule applications. XFRMLEARN selects the rule with a probability
proportional to the expected utility and applies it to the plan.

For the purpose of this paper, XFRMLEARN provides the following revisions:
R-1 If the behavior flaw is attributed to the traversal of a narrowpassage then insert a

subplan to traverse the passage orthogonally and with maximal clearance.
R-2 Switch off the sonar sensors while traversing narrow passages if the robot repeat-

edly stops during the traversal.

370

R-3 Insert an additional path constraint to pass a closeby obstacle with more clearance.
R-4 Increase the target velocity for the traversal of free spacewhere the measured

velocity almost reaches the current target velocity.
R-5 Insert an additional path constraint to avoid abrupt changes in the robot’s heading.

Because XFRMLEARN’s transformation rules are heuristic, their applicability and
the performance gain that can be expected from their application is environment and
task-specific. Therefore XFRMLEARN learns the environment and task specific ex-
pected utility of rules based on experience.

The “test” step. Because plan transformation rules check their applicability and pa-
rameterization with respect to idealized models of the environment, the robot, the per-
ceptual apparatus, and operation of the subsymbolic navigation system, XFRMLEARN

cannot guarantee any improvements of the existing plan. Therefore, XFRMLEARN tests
the resulting candidate plans against the original plan by repeatedly running the orig-
inal and the revised plan and measuring the time performancein the local region that
is affected by the plan transformation. The new candidate plan is accepted, if based on
the experiments there is a 95% confidence that the new plan performs better than the
original one.

5 Experimental Results

To empirically evaluate XFRMLEARN we have performed two long term experiments
in which XFRMLEARN has improved the performance of the RHINO navigation system
for given navigation tasks by up to 44 percent within 6 to 7 hours.

a b c

���
���
���
���
���
���
���
���
���
���
���
������
���
���
���
���

���
���
���
���
���

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������

���
���
���

���
���
���
���

Fig. 2.Behavior trace of the default plan (a). Low T-Vel subtraces (b). LearnedSRNP(c).

Figure 2(a) shows the navigation task (going from the desk inthe left room to the
one in the right office) and a typical behavior trace generated by theMDP navigation
system. Figure 2(b) visualizes the plan that was learned by XFRMLEARN. It contains
three subplans. One for traversing the left doorway, one forthe right one, and one for
the traversal of the hallway. The ones for traversing the doorways are TRAVERSENAR-
ROWPASSAGE subplans, which comprise path constraints (the black circles) as well as
behavior adaptations (depicted by the region). The subplanis activated when the re-
gion is entered and deactivated when it is left. A typical behavior trace of the learned

371

SRNPis shown in Figure 2(c). We can see that the behavior is much more homogeneous
and that the robot travels faster. This visual impression isconfirmed by statistical tests.
The t-test for the learnedSRNPbeing at least 24 seconds (21%) faster returns a signifi-
cance of 0.956. A bootstrap test returns the probability of 0.956 that the variance of the
performance has been reduced.

In the second learning session the average time needed for performing a navigation
task has been reduced by about 95.57 seconds (44%). The t-test for the revised plan
being at least 39 seconds (18%) faster returns a significanceof 0.952. A bootstrap test
returns the probabilty of 0.857 that the variance of the performance has been reduced.

6 Conclusions

We have described XFRMLEARN, a system that learnsSRNPs, symbolic behavior spec-
ifications that (a) improve the navigation behavior of an autonomous mobile robot gen-
erated by executingMDP navigation policies, (b) make the navigation behavior more
predictable, and (c) are structured and transparent so thathigh-level controllers can ex-
ploit them for demanding applications such as office delivery.

XFRMLEARN is capable of learning compact and modularSRNPs that mirror the
relevant temporal and spatial structures in the continuousnavigation behavior because
it starts with default plans that produce flexible behavior optimized for average perfor-
mance, identifies subtasks, stretches of behavior that lookas if they could be improved,
and adds subtask specific subplans only if the subplans can improve the navigation be-
havior significantly.

The learning method builds a synthesis among various subfields of AI: computing
optimal actions in stochastic domains, symbolic action planning, learning and skill ac-
quisition, and the integration of symbolic and subsymbolicapproaches to autonomous
robot control. Our approach also takes a particular view on the integration of symbolic
and subsymbolic control processes, in particularMDPs. In our view symbolic represen-
tations are resources that allow for more economical reasoning. The representational
power of symbolic approaches can enable robot controllers to better deal with com-
plex and changing environmants and achieve changing sets ofinteracting jobs. This is
achieved by making more information explicit and representing behavior specifications
symbolically, transparently, and modularly. In our approach, (PO)MDPs are viewed as a
way to ground symbolic representations.

References

[BCF+00] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun. Experiences with an interactive museum tour-guide robot.ArtificialIn-
telligence, 114(1-2), 2000.

[Bee99] M. Beetz. Structured reactive controllers — a computational model of everyday ac-
tivity. In O. Etzioni, J. Müller, and J. Bradshaw, editors,Proceedings of the Third
International Conference on Autonomous Agents, pages 228–235, 1999.

[KCK96] L. Kaelbling, A. Cassandra, and J. Kurien. Acting under uncertainty: Discrete
bayesian models for mobile-robot navigation. InProceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 1996.

372

Reinforcement Learning for Weakly-Coupled MDPs and
an Application to Planetary Rover Control

Daniel S. Bernstein and Shlomo Zilberstein

Department of Computer Science, University of Massachusetts,
Amherst, Massachusetts 01003fbern, shlomog@cs.umass.edu

Abstract. Weakly-coupled Markov decision processes can be decomposed into
subprocesses that interact only through a small set of bottleneck states. We study
a hierarchical reinforcement learning algorithm designedto take advantage of
this particular type of decomposability. To test our algorithm, we use a decision-
making problem faced by autonomous planetary rovers. In this problem, a Mars
rover must decide which activities to perform and when to traverse between sci-
ence sites in order to make the best use of its limited resources. In our exper-
iments, the hierarchical algorithm performs better than Q-learning in the early
stages of learning, but unlike Q-learning it converges to a suboptimal policy. This
suggests that it may be advantageous to use the hierarchicalalgorithm when train-
ing time is limited.

1 Introduction

The Markov decision processes (MDP) framework is widely used to model problems
in decision-theoretic planning and reinforcement learning [6]. Recently there has been
increased interest in delimiting classes of MDPs that are naturally decomposable and
developing special-purpose techniques for these classes [1]. In this paper, we focus on
reinforcement learning for weakly-coupled MDPs. A weakly-coupled MDP is an MDP
that has a natural decomposition into a set of subprocesses.The transition from one
subprocess to another requires entry into one of a small set of bottleneck states. Because
the subprocesses are only connected through a small set of states, they are “almost”
independent. The common intuition is that weakly-coupled MDPs should require less
computational effort to solve than arbitrary MDPs.

The algorithm that we investigate is a reinforcement learning version of a previously
studied planning algorithm for weakly-coupled MDPs [2]. The planning algorithm is
model based, whereas our algorithm requires only information from experience trajec-
tories and knowledge about which states are the bottleneck states. This can be beneficial
for problems where only a simulator or actual experience areavailable. Our algorithm
fits into the category of hierarchical reinforcement learning (see, e.g., [7]) because it
learns simultaneously at the state level and at the subprocess level. We note that other
researchers have proposed methods for solving weakly-coupled MDPs [3–5], but very
little work has been done in a reinforcement learning context.

For experimentation we use a problem from autonomous planetary rover control that
can be modeled as a weakly-coupled MDP. In our decision-making scenario, a rover on

373

Mars must explore a number of sites over the course of a day without stopping to estab-
lish communication with Earth. Using only a list of sites, information about its resource
levels, and information about the goals of the mission, the rover must decide which
activities to perform and when to move from one site to the next. Limited resources
and nondeterministic action effects make the problem nontrivial. In the main body of
the paper, we describe in detail how this problem can be modeled as a weakly-coupled
MDP, with each site being a separate subprocess.

We compare the hierarchical algorithm with Q-learning, andwe see that the hierar-
chical algorithm performs better initially but fails to converge to the optimal policy. A
third algorithm which is given the optimal values for the bottleneck states at the start ac-
tually learns more slowly than both of the aforementioned algorithms. We give possible
explanations for the observed behavior and suggestions forfuture work.

2 MDPs and Reinforcement Learning

A Markov decision process (MDP)models an agent acting in a stochastic environment
with the aim of maximizing its expected long-term reward. The type of MDP we con-
sider contains a finite setS of states, withs0 being the start state. For each states 2 S,As is a finite set of actions available to the agent.P is the table of transition probabil-
ities, whereP (s0js; a) is the probability of a transition to states0 given that the agent
performed actiona in states. R is the reward function, whereR(s; a) is the reward
received by the agent given that it chose actiona in states.

A policy� is a mapping from states to actions. Solving an MDP amounts tofinding a
policy that maximizes the expected long-term reward. In this paper, we use the infinite-
horizon discounted optimality criterion. Formally, the agent should maximizeE " 1Xt=0 tR(st; �(st))# ;
where 2 [0; 1℄ is the discount factor. In order to modelepisodictasks, we can include
an absorbing state from which the agent can only receive an immediate reward of zero;
a transition to the absorbing state corresponds to the end ofan episode.

Algorithms for MDPs often solve forvalue functions. For a policy�, the state value
function,V �(s), gives the expected total reward starting from states and executing�.
The state-action value function,Q�(s; a), gives the expected total reward starting from
states, executing actiona, and executing� from then on.

When an explicit model is available, MDPs can be solved usingstandard dynamic
programming techniques such as policy iteration or value iteration. When only a simu-
lator or real experience are available, reinforcement learning methods are a reasonable
choice. With these techniques, experience trajectories are used to learn a value function
for a good policy. Actions taken on a trajectory are usually greedy with respect to the
current value function, butexploratoryactions must also be taken in order to discover
better policies. One widely-used reinforcement learning algorithm is Q-learning [8],
which updates the state-action value function after each transition froms to s0 under

374

actiona with the following rule:Q(s; a) Q(s; a) + � hR(s; a) + maxa0 Q(s0; a0)�Q(s; a)i ;
where� is called the learning rate.

3 Reinforcement Learning for Weakly-Coupled MDPs

Consider an MDP with a state setS that is partitioned into disjoint subsetsS1; : : : ; Sm.
Theout-spaceof a subsetSi, denotedO(Si), is defined to be the set of states not inSi
that are reachable in one step fromSi. The set of statesB = O(S1)[� � � [O(Sm) that
belong to the out-space of at least one subset comprise the set of bottleneckstates. If
the set of bottleneck states is relatively small, we call theMDP weakly-coupled.

In [2], the authors describe an algorithm for weakly-coupled MDPs that can be
described as a type of policy iteration. Initially, values for the bottleneck states are set
arbitrarily. The low-level policy improvement phase involves solving each subproblem,
treating the bottleneck state values as terminal rewards. The high-level policy evaluation
phase consists of reevaluating the bottleneck states for these policies. Repeating these
phases guarantees convergence to the optimal policy in a finite number of iterations.

The rules for backpropagatingvalue information in our reinforcement learning algo-
rithm are derived from the two phases mentioned above. Two benefits of our approach
are that it doesn’t require an explicit model and that learning can proceed simultane-
ously at the high level and at the low level.

We maintain two different value functions: a low-level state-action value functionQ defined over all state-action pairs and a high-level state value functionVh defined
over only bottleneck states. The low-level part of the learning is described as follows.
Upon a transition to a non-bottleneck state, the standard Q-learning backup is applied.
However, when a bottleneck states0 2 B is encountered, the following backup rule is
used: Q(s; a) Q(s; a) + �l [R(s; a) + Vh(s0)�Q(s; a)℄ ;
where�l is a learning rate. For the purposes of learning, the bottleneck state is treated
as a terminal state, and its value is the terminal reward. High-level backups occur only
upon a transition to a bottleneck state. The backup rule is:Vh(s) Vh(s) + �h[R+ kVh(s0)� Vh(s)℄;
wherek denotes the number of time steps elapsed between the two bottleneck states,R
is the cumulative discounted reward obtained over this time, and�h is a learning rate.

It is possible to alternate between phases of low-level and high-level backups or
to perform the backups simultaneously. Whether either approach converges to an op-
timal policy is an open problem. We chose the latter for our experiments because our
preliminary work showed it be more promising.

375

4 Autonomous Planetary Rover Control

4.1 The Model

In this section we describe a simple version of the rover decision-making problem and
how it fits within the weakly-coupled MDP framework. In our scenario, a rover is to
operate autonomously for a period of time. It has an ordered sequence of sites along
with priority information and estimated difficulty of obtaining data, and it must make
decisions about which activities to perform and when to movefrom one site to the
next. The goal is to maximize the amount of useful work that gets done during the time
period.

The action set consists of taking a picture, performing a spectrometer experiment,
and traversing to the next site in the sequence. Spectrometer experiments take more
time and are more unpredictable than pictures, but they yield better data. The time to
traverse between sites is a noisy function of the distance between the sites. The state
features are the time remaining in the day, the current site number (from which priority
and estimated difficulty are implicitly determined), the number of pictures taken at the
current site, and whether or not satisfactory spectrometerdata has been obtained at the
current site. Formally,S = T � I � P � E, whereT = f0 min; 5 min; : : : ; 300 ming
is the set of time values;I = f1; 2; 3; 4; 5g is the set of sites;P = f0; 1; 2g is the set
of values for pictures taken; andE = f0; 1g is the set of values for the quality of the
spectrometer data. The start state iss0 = h300; 1; 0; 0i. The sequence of sites used for
our experiments is shown in Table 1.

Table 1.The sequence of sites for the rover to investigate

Site Priority Estimated difficulty Distance to next site
1 8 medium 3 m
2 5 hard 5 m
3 3 easy 7 m
4 2 easy 3 m
5 9 hard N/A

A nonzero reward can only be obtained upon departure from a site and is a function
of the site’s priority and the data obtained at the site. The task is episodic with = 1. An
episode ends when the time component reaches zero or the rover finishes investigating
the last site. The aim is to find a policy that maximizes the expected total reward across
all sites investigated during an episode. Because of limited time and nondeterministic
action effects, the optimal action is not always obvious.

In order to see how this problem fits into the weakly-coupled MDP framework,
consider the set of states resulting from a traversal between sites. In all of these states,
the picture and spectrometer components of the state are reset to zero. The setB =T � I � f0g� f0g is taken to be the set of bottleneck states, and it is over thisset that
we define the high-level value function. Note that the bottleneck states comprise only
300 of the problem’s 1,800 states.

376

4.2 Experiments

In our experiments, we tested Q-learning against the hierarchical algorithm on the prob-
lem mentioned in the previous section. In addition, we tested an algorithm that we call
theomniscienthierarchical learning algorithm. This algorithm is the same as the hier-
archical algorithm, except that the values for the bottleneck states are fixed to optimal
from the start, and only low-level backups are performed. Byfixing the bottleneck val-
ues, the problem is completely decomposed from the start. Ofcourse, this cannot be
done in practice, but it is interesting for the purpose of comparison.

For the experiments, all values were initialized to zero, and we used�-greedy ex-
ploration with� = 0:1 [6]. For the results shown, all of the learning rates were setto
0.1 (we obtained qualitatively similar results with learning rates of 0.01, 0.05, and 0.2).
Figure 1 shows the total reward per episode plotted against the number of episodes of
learning. The points on the curves represent averages over periods 1000 episodes.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

Q-learning
Hierarchical learning
Omn. Hierarchical learning

..........

+++++

Episodes (x 1000)

T
ot

al
 r

ew
ar

d

Fig. 1.Learning curves for Q-learning, hierarchical learning, and omniscient hierarchical learning

A somewhat counterintuitive result is that the omniscient hierarchical algorithm
performs worse than both the original hierarchical algorithm and Q-learning during
the early stages. One factor contributing to this is the initialization of the state-action
values to zero. During the early episodes of learning, the value of the “leave” action
grows more quickly than the values for the other actions because it is the only one that
leads directly to a highly-valued bottleneck state. Thus the agent frequently leaves a
site without having gathered any data. This result demonstrates that decomposability
doesn’t always guarantee a more efficient solution.

The second result to note is that the hierarchical algorithmperforms better than Q-
learning initially, but then fails to converge to the optimal policy. It is intuitively plausi-
ble that the hierarchical algorithm should go faster, sinceit implicitly forms an abstract
process involving bottleneck states and propagates value information over multiple time
steps. It also makes sense that the algorithm doesn’t converge once we consider that the
high-level backups areoff policy. This means that bottleneck states are evaluated for the
policy that is being executed, and this policy always includes non-greedy exploratory

377

actions. Algorithms such as Q-learning, on the other hand, learn about the policy that
is greedy with respect to the value function regardless of which policy is actually being
executed.

5 Conclusion

We studied a hierarchical reinforcement learning algorithm for weakly-coupled MDPs,
using a problem in planetary rover control as a testbed. Our results indicate that the
decomposability of these problems can lead to greater efficiency in learning, but the
conditions under which this will happen are not yet well understood. Perhaps exper-
imentation with different low-level and high-level learning rates could shed some in-
sight. Also, experimental results from other weakly-coupled MDPs besides the rover
problem would be valuable. Finally, a more detailed theoretical investigation may yield
an algorithm similar to ours that is provably convergent.

On the application side, we plan to develop a more realistic and complex simulator
of the rover decision-making problem. In this simulator, the rover will choose among
multiple sites to traverse to. It will also have to manage itsdata storage and battery
capacity and perform activities during constrained time intervals. The state space of the
model will most likely be too large to explicitly store a value for each state. We will
instead have to use some form of function approximation.

Acknowledgements

The authors thank Rich Washington, John Bresina, BalaramanRavindran, and Ted Perkins for
helpful conversations. This work was supported in part by the NSF under grants IRI-9624992
and IIS-9907331, and by NASA under grants NAG-2-1394 and NAG-2-1463. Daniel Bernstein
was supported by an NSF Graduate Research Fellowship and a NASA SSRP Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not reflect the views of the NSF or NASA.

References

1. Boutilier, C., Dean, T. & Hanks, S. (1999). Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, 1, 1–93.

2. Dean, T. & Lin, S.-H. (1995). Decomposition techniques for planning in stochastic domains.
In IJCAI-95.

3. Foreister, J.-P. & Varaiya, P. (1978). Multilayer control of large Markov chains. IEEE Trans-
actions on Automatic Control, 23(2), 298–304.

4. Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T. & Boutilier, C. (1998). Hierarchical
solution of Markov decision processes using macro-actions. In UAI-98.

5. Parr, R. (1998). Flexible decomposition algorithms for weakly coupled Markov decision
problems. In UAI-98.

6. Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press.

7. Sutton, R. S., Precup, D. & Singh, S. (2000). Between MDPs and Semi-MDPs: Learning,
planning, and representing knowledge at multiple temporalscales. Artificial Intelligence,
112, 181–211.

8. Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge University,
Cambridge, England.

378

Conditional Planning under Partial Observability
as Heuristic-Symbolic Search in Belief Space

Piergiorgio Bertoli1, Alessandro Cimatti1, Marco Roveri1;2fbertoli,cimatti,roverig@irst.itc.it1 ITC-IRST, Via Sommarive 18, 38055 Povo, Trento, Italy2 DSI, University of Milano, Via Comelico 39, 20135 Milano, Italy

Abstract. Planning under partial observability in nondeterministicdomains is a
very significant and challenging problem, which requires dealing with uncertainty
together with and-or search. In this paper, we propose a new algorithm for tack-
ling this problem, able to generate conditional plans that are guaranteed to achieve
the goal despite of the uncertainty in the initial conditionand the uncertain effects
of actions. The proposed algorithm combines heuristic search in the and-or space
of beliefs with symbolicBDD-based techniques, and is fully amenable to the use
of selection functions. The experimental evaluation showsthat heuristic-symbolic
search may behave much better than state-of-the-art searchalgorithms, based on
a depth-first search (DFS) style, on several domains.

1 Introduction
In this paper, we tackle the problem of conditional planningunder partial observability,
where only part of the information concerning the domain status is available at run time.
In its generality, this problem is extremely challenging. Compared to the limit case of
full observability, it requires dealing with uncertainty about the state in which the ac-
tions will be executed. Compared to the limit case of null observability, also known as
conformant planning, it requires the ability to search for,and construct, plans repre-
senting conditional courses of actions. Several approaches to this problem have been
previously proposed, e.g.[WAS98], based on extensions of GraphPlan, and[BG00],
based on Partially Observable Markov Decision Processes (POMDP).

Our work builds on the approach proposed in[BCRT01], where planning is seen
as and-or search of the (possibly cyclic) graph induced by the domain, andBDD-based
techniques borrowed from symbolic model checking provide efficient search primitives.
We propose a new algorithm for planning under partial observability, able to generate
conditional acyclic plans that are guaranteed to achieve the goal despite of the uncer-
tainty in the initial condition and in the effects of actions. The main feature of the
algorithm is the heuristic style of the search, that is amenable to the use of selection
functions, and is fully compatible with the use of a symbolic, BDD-based representa-
tion. We call this approachheuristic-symbolicsearch. The proposed approach differs
from (and improves) the depth-first search proposed in[BCRT01] in several respects.
First, depending on the selection function, it can implement different styles of search,
including DFS. Furthermore, the use of selection functions allows to overcome poten-
tially bad initial choices, and can therefore result in moreefficient computations and
higher quality plans. Finally, it opens up the possibility of using preprocessing tech-
niques for determining domain/problem-dependent heuristics. The heuristic-symbolic
algorithm was implemented in theMBP planner[BCP+01], and an extensive experi-
mental evaluation was carried out. The results show that, even considering a simple
domain-independent heuristic, for several classes of problems the heuristic-symbolic
algorithm significantly improves the performance and constructs better plans with re-
spect to DFS.

379

The paper is organized as follows. In Section 2 we describe partially observable
planning domains and conditional planning. In Section 3 we present the planning al-
gorithm. In Section 4 we give an overview of the experimentalevaluation, draw some
conclusions and discuss some future work.

2 Domains, Plans, and Planning Problems
A partially observable planning domain is a tuplehP ;S;A;R;O;Xi.P is a finite set of
propositions.S � Pow(P) is the set of states.A is a finite set of actions.R � S�A�S
is the transition relation, describing the effects of (possibly nondeterministic) action ex-
ecution. We say that an actiona is applicable in a states iff there exists at least one
states0 such thatR(s; a; s0). O is a set of boolean observation variables, whose values
can be observed during plan execution.X : O ! Pow(S � f>;?g) is the observation
relation. Intuitively,X associates each possible value of each observation variable to
the set of states where observing the variable returns such value. (We consider obser-
vation variables to be always defined, and independent from actions performed prior to
observing. The full framework (see[BCRT01]) and the actualMBP implementation are
free from these constraints. The current presentation is simplified for reasons of space.)

We consider conditional plans, branching on the value of observable variables. A
plan for a domainD is either the empty plan�, an actiona 2 A, the concatenation�1;�2 of two plans�1 and�2, or the conditional plano ? �1 : �2 (read “if o then�1 else�2”), with o 2 O. The execution of a plan� must take into account, at each
step, that the executor can be unable to distinguish betweena set of possible states
for the current situation. We call such a set of indistinguishable states a “belief state”.
An actiona is applicable to a belief stateBs iff a is applicable in all states ofBs.
Intuitively, the execution of a conditional plan� starting from a belief stateBs results
into a set of states recursively defined over the structure of� by either (a) the application
of the transition relation, if an action is performed, or (b)the union of the executions
on every branch resulting from the possible observation values for a variableo, if the
plan branches ono. We say that a plan is applicable onBs if no non-applicable actions
are met during its execution onBs. A planning problem is a 3-tuplehD; I;Gi whose
components are a planning domainD, a set of initial statesI and a set of goal statesG.
A solution consists of a plan� which is applicable overI, and whose execution onI
results in a belief state equal toG or contained into it.

Consider the example of a simple robot navigation domainD0, a 2x2 room with
an extra wall (Figure 1). The propositions of the domain areNW, NE, SW, andSE, i.e.
the four positions in the room. Exactly one of them holds in each of the four states
in S. The robot can move in the four directions, unless the actionis not applicable
due to a wall standing in the direction of motion. At each timetick, the information
of walls proximity in each direction is available to the robot (observation variables
WallN, WallS, WallW andWallE). In the figure, the execution of the plan�0 =
GoEast ; WallN ? (GoSouth ; GoWest) : GoWest, starting from the uncertain
initial conditionNW or SW, is outlined by solid lines. The plan�0 is a solution for the
problemP0 = fD0, fNW, SWg, fSWg g.
3 Planning under Partial Observability
When planning under partial observability, the search space can be seen as an and-or
graph, recursively constructed from the initial belief state, expanding each encountered
belief state by every possible combination of applicable actions and observations. The
graph is possibly cyclic; in order to rule out cyclic behaviors, however, the exploration

380

Bs 1 Bs 2 Bs 3

Bs 4

Bs 6

Bs 5

Bs 3 Bs 6

G

O

A

L

G

O

A

L

I

I

T

N

SW SE

NW NE

Bs 1 Bs 1

L
O
O
P

B
A
C
K

L
O
O
P

B
A
C
K

Bs 4

L
O
O
P

B
A
C
K

Bs 4

Bs 4

L
O
O
P

B
A
C
K

GoWestGoSouth

GoWest

GoEast WallN?

N1

GoWest

N2

N4

N5

N7

N8

N9

N10

WallW?

N3 N6

GoWest

N11

GoEast

N11

GoNorth

GoSouth

GoEast

N12

GoNorth

Fig. 1. A simple robot navigation domain

can be limited to its acyclic prefix. Figure 1 depicts the finite prefix of the search space
for the problemP0 described above. Each node in the prefix is associated to a path,
describing how the node has been reached, and to the corresponding belief state.

The prefix is constructed by expanding each node in all possible ways, each repre-
sented by an outgoing arc. Single-outcome arcs correspond to applicable actions (action
execution is deterministic in belief space). For instance,N4 expands into N7 and N8.
Multiple outcome arcs correspond to observations. For instance, node N2 results in
nodes N4 and N5, corresponding to the observation ofWallN. The application of an
observation is what gives the “and” component in the search space: we have a solution
for (the belief state associated with) N2 if we have a solution for both N4 and N5 (whose
associated belief states are obtained by conjoining the beliefs associated byX to the ob-
served values ofWallN with the belief state associated to N2). Some non-informative
observations are not reported in the graph.

The expansion of a noden is halted when (a)n is associated with a belief state
contained in the goal, or (b)n is a loop back, i.e. it has an ancestor node with the same
belief state. For instance, node N6 loops back onto node N1, while node N11 loops
back onto node N4. Node N9 and N10 are associated with the goalbelief state.

The planning algorithm for conditional planning under partial observability is de-
scribed in Figure 2. It takes in input the initial belief state and the goal belief state,
while the domain representation is assumed to be globally available to the subroutines.
The algorithm incrementally constructs the finite acyclic prefix described above. The
algorithm relies on an extended data structure, stored in thegraph variable, which rep-
resents the prefix being constructed. Each node in the structure is associated with a
belief state and a path. In addition to son-ancestor links, the graph has links between
the nodes in the equivalence classes induced by equality on associated belief states, and
presents an explicit representation of the frontier of nodes to be expanded. A success
pool contains the solved nodes for the graph.

At line 1, the algorithm initializes the graph: the root nodecorresponds to the initial
belief state, and the success pool contains the goal. Then (lines 2-24) the iteration pro-

381

HEURSYM CONDPLAN (I,G)
1 graph := MK INITIAL GRAPH(I,G);
2 while (GRAPHROOTMARK(graph) 62 fSuess; Failureg)
3 node := EXTRACTNODEFROMFRONTIER(graph);
4 if (SUCCESSPOOLY IELDSSUCCESS(node, graph))
5 MARKNODEASSUCCESS(node);
6 NODESETPLAN (node,RETRIEVEPLAN (node,graph));
7 PROPAGATESUCCESSONTREE(node,graph);
8 PROPAGATESUCCESSONEQCLASS(node,graph);
9 else
10 orexp := EXPANDNODEWITHACTIONS(node);
11 andexp := EXPANDNODEWITHOBSERVATIONS(node);
12 EXTENDGRAPHOR(orexp,node, graph);
13 EXTENDGRAPHAND(andexp,node, graph);
14 if (SONSY IELDSUCCESS(node))
15 MARKNODEASSUCCESS(node);
16 NODESETPLAN (node,BUILD PLAN (node));
17 PROPAGATESUCCESSONTREE(node, graph);
18 PROPAGATESUCCESSONEQCLASS(node,graph);
19 else if(SONSY IELDFAILURE(node))
20 MARKNODEASFAILURE(node,graph);
21 NODEBUILD FAILUREREASON(node, graph);
22 PROPAGATEFAILUREONTREE(node,graph);
23 PROPAGATEFAILUREONEQCLASS(node, graph);
24 end while
25 if (GRAPHROOTMARK(graph) = Suess)
26 return GRAPHROOTPLAN (graph);
27 else
28 return Failure;

Fig. 2.The planning algorithm

ceeds by selecting a node and expanding it, until a solution is found or the absence of a
solution is detected. At loop exit, either a plan or a failureis returned (lines 25-28).

With the first step in the loop, at line 3, a node is extracted from the frontier in
order to be expanded. The EXTRACTNODEFROMFRONTIER primitive embodies the
selection criterion and is responsible for the style (and the effectiveness) of the search.
Then, at line 4, we check whether the belief state associatedto the selectednode is
entailed by some previously solved belief state in the success pool. If so, the formerly
detected plan is reused fornode, which is marked as success. Moreover, the success
is recursively propagated both to the ancestors ofnode (line 7) and to the nodes in
its equivalence class (line 8). The rules for success propagation directly derive from
the and-or graph semantics. Recursive success propagationtakes also care of removing
descendents of success nodes from the frontier (as their expansion would be useless).

If the success ofnode cannot be derived by the success pool, then the expansion ofnode is attempted, computing the nodes resulting from possible actions (line 10) and
observations (line 11). The graph extension steps, at lines12-13, construct the nodes
associated to the expansion, and add them to the graph, also doing the bookkeeping
operations needed to update the frontier and the links between nodes. In particular,
for each node, the associated status is computed. For instance, if a newly constructed
node has a belief state that is already associated with a plan, then the node is marked

382

as success. Newly constructed nodes are also checked for loops, i.e. if they have an
ancestor node with the same belief state then they are markedas failure.

If it is possible to state the success ofnode based on the status of the newly intro-
duced sons (primitive SONSY IELDSUCCESSat line 14), then the same operations at
line 5-8 for success propagation are executed. Similarly, at lines 19-23, if it is possible
to state the failure ofnode based on the status of the newly introduced sons, failure is
propagated throughout the and-or graph. Failure can happen, for instance, due to loop
detection. The failure of the node is stored in such a way thatit can be reused in the
following search attempts. Notice however that, differently from success, a failure de-
pends on the node path. For instance, in a subsequent search attempt it could be possible
to reach a belief state with a non-cyclic path. Therefore, each belief state is associated
with a set of belief states representing the failure reason.Intuitively, the failure reason
contains the sets of belief states that caused a loop in all the search attempts originating
from the belief state marked with failure.

The algorithm is integrated inMBP [BCP+01], a general planner for nondetermin-
istic domains which allows for conditional planning under full observability, also con-
sidering temporally extended goals, and for conformant planning.MBP is based on the
use of symbolic model checking techniques[McM93]. In particular, it relies on Binary
Decision Diagrams, structures that allow for a compact representation of sets of states
and an efficient expansion of the search space (see[CR00] for an introduction to the
use ofBDDs in planning).

4 Results and Conclusions
We carried out an extensive experimental analysis of the heuristic-symbolic algorithm
presented in previous section, comparing it with the DFSapproach of[BCRT01], shown
to outperform other conditional planners such asSGPandGPT. For lack of space, we
only provide a high-level description of the considered domains and results. The details
can be found in[BCR01]. We considered the standard benchmark problems for PO
planning used in[BCRT01]: MAZE, Empty Room (ER), RING. In the MAZE, a mov-
ing robot must reach a fixed position in a maze, starting from anywhere and being able
to observe the walls around its current position. Basically, this problem reduces to gath-
ering knowledge about the robot position. Unless the maze issignificantly symmetric,
almost at each move of the robot, observing contributes to the purpose. Furthermore,
the problem is highly constrained: observing is forced in many situations by the lack
of applicable actions prior to that. In the ER, the same problem is tackled considering,
rather than a maze, a wide empty room; the robot starts from anywhere in the room. In
this formulation, most moves of the robot will lead to “enabling” some useful sensing.
In the RING, the aim is to have all windows of a ring of connected rooms locked by a
moving robot. Each window must be closed, if open, before being locked (if unlocked).
Here, the key issue is that of locality: before moving around, the robot should better
solve the local problem of locking the local window. Otherwise, plans may become ex-
tremely lengthy. Thus, observing and moving must be interleaved “in a sensible way”.
Furthermore, we considered some variations to the ER. In theVER problem, the robot
initially is in one of two positions near the center of the room. This forces the robot to
execute long sequences of actions before being able to gather some useful information
from sensing the walls. In the ERS, a portion of the empty roomis a “sink”, i.e. once
entered there, the robot cannot exit it.

The performance of the heuristic-symbolic algorithm heavily depends on the se-
lection function, that controls which portions of the search space are explored. The

383

problem of finding an effective, problem dependent selection function for controlling
and-or search appears to be in general very hard. In all our experiments, we considered
a simple structural selection function, that gives high scores to nodes whose equivalence
class contains many open nodes and few failed ones. In spite of this choice, the results
are quite promising. In the RING, ER, VER, ERS problems the timing of the search,
and the length of the plan (defined as its maximum depth) are much better than in the
original DFSsearch. The MAZE problem evidences a reasonable loss of efficiency. This
is due to the fact that the problem is very constrained, and drives the DFS search ac-
cordingly. In this case, the overhead of maintaining a graphstructure and having explicit
propagation routines explains the result.

The conclusion that can be drawn is that giving up the DFS-style search is in general
an advantage, leading in many cases to better results even inabsence of highly tuned
scoring mechanisms, and opens up the possibility for further improvements. Future
research will be directed to the definition of preprocessingtechniques and more effec-
tive heuristic functions, with the goal to obtain “smarter”behaviors from the heuristic-
symbolic algorithm. Another direction of future research is the extension of the partially
observable approach presented in this paper to find strong cyclic solutions, and to deal
with goals expressed in a temporal logic.

References

[BCP+01] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a Model Based
Planner. InProc. of the IJCAI’01 Workshop on Planning under Uncertainty and In-
complete Information, Seattle, August 2001.

[BCR01] P. Bertoli, A. Cimatti, and M. Roveri. Conditional Planning under Partial Observability
as Heuristic-Symbolic Search in Belief Space. Technical report, IRST, Trento, Italy,
July 2001. Extended version of this paper.

[BCRT01] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.Planning in Nondeterministic Do-
mains under Partial Observability via Symbolic Model Checking. In Proc.7th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-01). AAAI Press, August
2001.

[BG00] B. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic Search
in Belief Space. In S. Chien, S. Kambhampati, and C.A. Knoblock, editors,5th Inter-
national Conference on Artificial Intelligence Planning and Scheduling, pages 52–61.
AAAI-Press, April 2000.

[CR00] A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking.Jour-
nal of Artificial Intelligence Research (JAIR), 13:305–338, 2000.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.
[WAS98] Daniel S. Weld, Corin R. Anderson, and David E. Smith. Extending graphplan to han-

dle uncertainty and sensing actions. InProceedings of the 15th National Conference
on Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI-98), pages 897–904, Menlo Park, July 26–30
1998. AAAI Press.

384

Beyond Plan Length: Heuristi Searh Planning forMaximum Reward Problems.Jason Farquhar and Chris HarrisImage Speeh and Intelligent SystemsDepartment of Eletronis and Computer SieneUniversity of SouthamptonSouthampton, SO17 1BJ, UK[jdrf99r;jh℄�es.soton.a.ukAbstrat. Reently automati extration of heuristi estimates has been shown to be extremelyfruitful when applied to lassial planning domains. We present a simple extension to the heuristiextration proess from the well-known HSP system that allows us to apply it to reward maximisationproblems. This extension involves omputing an estimate of the maximal reward obtainable from agiven state by ignoring delete lists. We also desribe how to improve the auray of this estimateusing any available mutual exlusion information. In this way we seek to apply reent advanes inlassial planning to a broader range of problems.Keywords: Domain Independent Planning, Reward Based Planning, Heuristi SearhPlanners.1 IntrodutionIn this paper we investigate reward maximisation as an alternative to plan length forthe optimisation riteria in STRIPS style problems. In reward maximisation problems weattempt to maximise the total reward obtained from the states visited and ations takenduring plan exeution, where the reward is an aribitary real-valued funtion over statesand ations. In partiular we fous on reward problems where the planners objetives arespei�ed through the rewards alloated to di�erent world states rather than as an expliitgoal whih must be ahieved.Inspired by the suess of heuristi searh in eÆiently solving goal-based STRIPSproblems (Ba00; BG99; HN01) we suggest that similar methods may be used in rewardmaximisation problems. To investigate this idea we present a modi�ation of the heuristiused in HSP whih is appliable in the reward maximisation ase.This paper is organised as follows. Setion 2 presents a mathematial model of STRIPSproblems and its reward based extensions. Setion 3 gives the derivation of our new heuristiand an outline of the algorithm used to alulate it. The �nal setions disuss future work(Se 4), ompare related work (Se 5) and present onlusions (Se 6).2 Reward Based PlanningFollowing (BG99) we represent a onventional STRIPS (FN71) domain as a tuple D =hA;Oi, where A is a set of atoms and O is a set of operators. The operators op 2 O andatoms a 2 A are all assumed ground (all variables replaed by onstants). Eah operator
385

2has preondition, add and delete lists whih we denote as Pre(op), Add(op) and Del(op)respetively, given by sets of atoms from A.Suh a domain an be seen as representing a state spae where:1. the states s 2 S are �nite sets of atoms from A2. the state transition funtion f(s; op) whih maps from states to states is given by:s0 = f(s; op) = �s [Add(op) nDel(op) if Pre(op) � sunde�ned otherwise. (1)3. the result of applying a sequene of operators is de�ned reursively assn = f(s0; hop1; ::; opni) = f(f(s0; hop1; :::; opn�1i); opn) (2)In reward based planning the domain desription is augmented to give P = hA;O; I; Riwhere I � A represents the initial situation and R is the reward funtion whih maps fromsituations to real valued rewards. R onsists of two omponents, a state based omponent,R : s 7! IR, and an operator based omponent, R : op 7! IR. The solution to a rewardbased planning problem is a sequene of operators P = hop1; :::; opni that maximises thetotal reward reeived from the states visited and operators applied during plan exeution.One partiular problem with reward based planning not found in goal based planningis the possibility of yli solutions with in�nite reward. Suh in�nities are diÆult to workwith so it is usual to modify the optimisation riteria to remove them; for example, bydisounting future rewards (Put94), optimising with respet to reward rate, or optimisingwith respet to a �nite planning horizon. A �nite horizon is used in this work though themethod ould be applied in the other ases .3 Heuristis for Reward Based Planning ProblemsHeuristi searh planners use a heuristi funtion h(s) to guide solution searh in statespae. To develop an e�etive heuristi we use the same trik that proved so e�etive inSTRIPS planning (BG99; HN01), i.e. we solve a relaxed problem ignoring operator deletelists and use this solution as a heuristi estimate in the original problem. Unfortunatelysolving even the relaxed problem an be shown to be NP-hard (BG99) so an approximatesolution must be used.In STRIPS problems one of the most suessful approximations is that used in the HSPsystem developed by Bonet and Gen�er (BG99). This deomposes the problem of �ndingthe shortest path to the goal state into one of �nding the shortest path to eah individualatom from whih an estimate of the goal distane is reonstruted. This deomposition andreonstrution is performed beause the number of atoms, jAj is generally muh smallerthan the number of states, i.e. subsets of atoms, jSj, (whih is exponential in the numberof atoms, jSj � j2jAjj). Hene performing omputations in atom spae an be signi�antlyheaper in time and spae than the equivalent omputations in state spae.For reward based problems we propose to use a modifed version of the same approxi-mation tehnique of deomposing and resonstruting state values from atom values. Webegin by de�ning the value, V (s; t), of state s as the maximal reward obtainable in getting
386

3from the initial state I to this state in t steps. This value ould be alulated diretly instate spae using the forward Bellman Equation:V (s; t) = R(s) + maxop2O �R(op) + V (f�1(s; op); t� 1)� (3)where V (s; t) is the value of the state s at time step t, R(s) and R(op) are the rewardsfor being in state s and performing operation op respetively, f�1(s; op) is the inverse statetransition operator whih returns the state s0 from whih appliation of operator op resultsin the new state s, and V (I; 0) = 0.The problem de�ned by (3) is equivalent to �nding a maximal weight path through aweighted direted graph. The nodes represent states, edges the operators, and the edge andnode weights the operator and state rewards respetively. A number of eÆient algorithmswhih are polynomial in jSj an be used to solve this problem. Unfortunately as mentionedabove, jSj is generally exponential in the number of atoms making even these algorithmsostly. Hene we approximate (3) by re-formulating the problem to apply over the smallerspae of atoms. This gives the equations (4) and (5).V (p; t) = maxp2Pre(r)R(r; t) + maxp2E�(op) (R(op) + V (fPre(op)g; t� 1)) (4)V (p; 0) = �0 if p 2 Iunde�ned otherwise (5)where V (Pre(op); t) is the reward for for being in atom set fp : p 2 Pre(op)g at timestep t, and Pre(r) is the set of atoms whih de�ne reward state r. R(r; t) is the rewardobtained from being in reward state r at time t and is equal to the value of the rewardstate R(r) if all the atoms in r are valid at time t and unde�ned otherwise.Equation (4) de�nes the estimated value of an atom at time step t is the sum of theimmediate reward reeived due to the urrent state, R(r; t), and the propagated totalreward of the maximum reward path to this atom from the initial state. Equation (5) setsthe initial value of the atoms.The auray of the funtion, V (fBg; t), used to estimate value of an atom set, B, fromthe values of its onsistituent atoms, p � B, is ritial to the auray of the heuristi andhene performane of the planner. In (BG99) Bonnet and Gen�er suggest using either thesum or maximum of the atom values. Using the sum pessimistially assumes that eahatom is totally independent, hene the shortest path to the set beomes the sum of thebest paths to eah atom in the set. Using the maximum optimistially assumes that theatoms are totally dependent suh that any path whih ahieves one atom will also ahieveall other atoms whih an be reahed with shorter paths. Hene the shortest path to anatom set beomes the length of the shortest path to the last atom ahieved.In the reward maximisation ase things beome a little more omplex. If independeneis assumed then the atom set an only be valid when t is greater than the sum of the initialvalues for eah atom in the set. If total dependene is assumed then the value of the setbeomes the value of the highest reward path whih ould ahieve the set, i.e. the last atomahieved initially and after that the highest reward path longer than the sets initially validlength. In this ase, whih is used in this paper, we obtain Equation (6).
387

4 V (B; t) =(maxa2B;l�len(a)�tV (a; t) if 8a 2 B, V (a; t) is de�nedunde�ned otherwise (6)where B is the set of atoms, len(a) is the number of operations required to obtain atoma's value V (a; t) and l is the number of operations required to �rst make B valid.Solving the equations (4,6,5) also orresponds to �nding the maximum weight path in agraph, the onnetivity graph (HN01). In this graph atoms are nodes and operators/rewardsare high order edges whih only beome available after a ertain subset of the nodes (theirpreonditions) are valid.Computation of the atom values an be done in polynomial time using a GraphPlan likeforward propagation proedure based upon the Connetivity Graph. Briey, the algorithmproeeds in a time step by time step manner propagating tokens from atoms to operatorsand rewards. The operators/rewards are then identi�ed as available for propagating rewardand atom validity to their e�ets when all their pre-onditions are valid. The set of validatoms is then used to ompute the updated value for all the atoms using equations (4,6,5).Using the value funtion omputed in this way, the heuristi value of the state s in theoriginal problem is de�ned as the maximal value of a valid atom in the �nal layer of therelaxed graph, Eqn (7). h(s; t) def= maxp2P t V (p; t) (7)where t is the maximum time step to whih the relaxed solution has been omputed andP t is the set of atoms valid, i.e. with de�ned values, at time t.3.1 Improving the Estimate Using Mutual Exlusion InformationOne problem with the heuristi estimates produed by the above proedure is that it takesno aount of the negative interations between atoms. This is aused by ignoring theoperators delete lists allowing extra paths to states or atoms being possible in the relaxedproblem whih do not exist in the original problem, making states beome valid earlier orwith higher reward. This is the same problem of ignored negative interations examinedin (NNK00; NK00) and an be addressed in a similar way using any available mutualexlusion information.Mutual exlusions, alled mutexs from now on, are used extensively in the Graphplanalgorithm (BF97) and represent pairs of atoms that annot our together at some depthin any plan. In the heuristi value omputation this information an be used to lose o�some of the extra paths by preventing or delay operators/rewards from beoming validuntil their pre-onditions are all non mutex. For negligible ost this information an beused in the value omputation algorithm by annotating eah operator/reward by the �rstplan depth at whih it is appliable, i.e. all its pre-onditions are non mutex. Then theoperators/reward are restrited to only be available after this depth. The tehnique an beused both for stati mutexs whih hold for all states and plan lengths and dynami mutexswhih hold only up to a ertain plan length.The ost of omputing the additional mutexs an be ontrolled by only alulating thestati mutex's one at the start of problem solving, for example by running GraphPlans
388

5full graph onstrution algorithm to level-o� from the initial state. Any mutex's whihhold at level-o� this point are stati. Additional dynami mutex's and then be omputedto any required degree of auray only when neessary.4 Further WorkA prototype reward based planner has been implemented using the above heuristi evalu-ation funtion both with and without the mutal exlusion enhanhements. Initial resultsappear to validate the system with the heuristi values showing good orrelation to thetrue value of a state. We are urrently in the proess of developing an A* searh engine afull test suite for the planner. We then intend to perform omparisons with other plannersin both onventional STRIPS and reward based domains.5 Related WorkThere are obviously rih onnetions between this work and existing work on Graph-plan (BF97) and the heuristi state spae searh planners (BG99; HN01) upon whih it isbased. The idea of using mutual exlusion information to aount for negative interationsand hene improve the quality of the heuristi estimates is similar to that used in (NNK00)to improve the heuristi estimates in regression searh.This work is also losely related to work on adding probabilisti (BL98) and deisiontheoreti (PC00) abilities to the Graphplan algorithm. These systems rely on propagatingadditional probability information through the planning graph in muh the same way thatrewards are propagated in this work. This work also has signi�ant onnetions to work ondeision theoreti planning, where reward based formulations are also used. Traditionallythese systems have used dynami programming over a graphial representation of statespae to �nd optimal solutions (Put94). As disussed above in Se 2 and in (BDH99)this works well for reasonable state spae sizes but tends to beome infeasible for verylarge state spaes. Use of heuristi searh to address suh large problems has reently beenproposed by Bonet and Ge�ner (BG00).6 ConlusionsA method for extending the tehniques of heuristi planning, as used in the well knownHSP system, to the more expressive language of reward based planning was presented.The development of a domain independent heuristi for reward maximisation problemsforms the rux of our work. This heuristi is based upon omputing an estimate for themaximal reward obtainable in a relaxed problem where delete lists are ignored. We haveshown how our heuristi funtion was developed to ope with reward aumulation andgoalless planning problems. We have also demonstrated how this heuristi estimate anbe improved by using any available mutual exlusion information to take some aount ofnegative interations.
389

Referenes[Ba00℄ F. Bahus. Results of the aips 2000 planning ompetition, 2000. URL:http://www.s.tronto.edu/aips-2000.[BDH99℄ C. Boutilier, T. Dean, and S. Hanks. Deision-theoreti planning: Struturalassumptions and omputational leverage. Journal of Arti�ial Intelligene,11:1{94, 1999.[BF97℄ Avrim L. Blum and Merrik L. Furst. Fast planning through planning graphanalysis. Arti�ial Intelligene, 90:281{300, 1997.[BG99℄ B. Bonet and H. Ge�ner. Planning as heuristi searh: New results. In Proeedingsof ECP-99. Springer, 1999.[BG00℄ B. Bonet and H. Ge�ner. Planning with inomplete information as heuristisearh in belief spae. In Pro AAAI-2000, 2000.[BL98℄ Avrim L. Blum and John C. Langford. Probabilisti planning in the graphplanframework. Tehnial report, Carnegie Mellon University, Shool of ComputerSiene, CMU, Pittsburgh, PA 15213-3891, 1998.[FN71℄ R. E. Fikes and N. J. Nilsson. Strips: a new approah to the appliation of theormproving to problem solving. Arti�ial Intelligene, 2(3-4):189{203, 1971.[HN01℄ Jorg Ho�mann and Bernhard Nebel. The � planning system: Fast plan generationthrough heuristi searh. JAIR, 14:253{302, 2001.[NK00℄ XuanLong Nguyen and Subbarao Kambhampati. Extrating e�etive and ad-missible state spae searh heuristis for the planning graph. Tehnial re-port, Arizona State University, Dept. of Computer Siene and Engineering,Tempe, AZ 85287-5406, 2000.[NNK00℄ R.S. Nigenda, X. Nguyen, and S. Kambhampati. Altalt: Combining the advan-tages of graphplan and heuristi state spae searh. Tehnial report, ArizonaState University, Dept. of Computer Siene and Engineering, Tempe, AZ85287-5406, 2000.[PC00℄ G. Peterson and D. J. Cook. Deision-theoreti planning in the graphplan frame-work. In Pro AAAI-2000, 2000.[Put94℄ M. L. Puterman. Markov Deision Proesses: Disrete Stohasti Dynami Pro-gramming. Wiley, New York, 1994.

390

Combining Two Fast-Learning Real-Time Search

Algorithms Yields Even Faster Learning⋆

David Furcy and Sven Koenig

Georgia Institute of Technology
College of Computing

Atlanta, GA 30332-0280
{dfurcy, skoenig}@cc.gatech.edu

Abstract. Real-time search methods, such as LRTA*, have been used
to solve a wide variety of planning problems because they can make deci-
sions fast and still converge to a minimum-cost plan if they solve the same
planning task repeatedly. In this paper, we perform an empirical eval-
uation of two existing variants of LRTA* that were developed to speed
up its convergence, namely HLRTA* and FALCONS. Our experimental
results demonstrate that these two real-time search methods have com-
plementary strengths and can be combined. We call the new real-time
search method eFALCONS and show that it converges with fewer actions
to a minimum-cost plan than LRTA*, HLRTA*, and FALCONS.

1 Introduction

Real-time (heuristic) search methods have been used to solve a wide variety of
planning problems. Learning Real-Time A* (LRTA*) [7] is probably the best-
known real-time search method. Unlike traditional search methods it can not
only act in real-time but also amortize learning over several planning episodes
if it solves the same planning task repeatedly. This allows it to find a subopti-
mal plan fast and then improve the plan until it follows a minimum-cost plan.
Researchers have recently attempted to speed up its convergence while maintain-
ing its advantages over traditional search methods, that is, without increasing its
lookahead. Ishida and Shimbo, for example, developed ε-search to speed up the
convergence of LRTA* by sacrificing the optimality of the resulting plan [5, 6]. In
this paper, on the other hand, we study real-time search methods that speed up
the convergence of LRTA* without sacrificing optimality, namely HLRTA* [8]
(which is similar to SLRTA* [1]) and our own FALCONS [2]. We present the first
thorough empirical evaluation of HLRTA* and show that it and FALCONS have
complementary strengths that can be combined. We call the resulting real-time

⋆
We thank Stefan Edelkamp for introducing us to HLRTA*, Richard Korf for making Thorpe’s
thesis about HLRTA* available to us, and James Irizarry for re-implementing HLRTA*. The
Intelligent Decision-Making Group is partly supported by NSF awards to Sven Koenig under
contracts IIS-9984827 and IIS-0098807 as well as an IBM faculty partnership award. The views
and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the sponsoring organizations,
agencies, companies or the U.S. government.

391

Table 1. Comparison of HLRTA* and FALCONS with LRTA*

Performance Average Speedup Over LRTA*
Measure Over HLRTA* FALCONS

Number of All 15 Cases 2.08% 18.84%
Actions to 7 Most Informed Cases -0.69% 28.73%

Convergence 7 Least Informed Cases 4.50% 8.86%

Number of All 15 Cases -11.06% 42.33%
Trials to 7 Most Informed Cases -16.68% 43.87%

Convergence 7 Least Informed Cases -5.17% 40.52%

Number of All 15 Cases 7.04% -21.90%
Actions in 7 Most Informed Cases 11.65% -49.81%
First Trial 7 Least Informed Cases -0.99% -0.14%

search method Even FAster Learning and CONverging Search (eFALCONS) and
show that it converges with fewer actions to a minimum-cost plan than LRTA*,
HLRTA*, and FALCONS, even though it looks at the same states when it se-
lects successors on undirected graphs and is not more knowledge-intensive to
implement.

2 Motivation for Combining HLRTA* and FALCONS

HLRTA* keeps the successor-selection rule of LRTA* but improves its value-
update rule, while FALCONS keeps the value-update rule of LRTA* but im-
proves its successor-selection rule. In the following, we compare these two real-
time search methods with LRTA* averaged over 1000 runs in seven domains
with two or three different heuristic functions each, for a total of fifteen distinct
experimental cases that we have previously used in [3]. As required by the real-
time search methods, all domains are finite, all of their states have finite goal
distances, and all heuristic functions do not overestimate the true distances. We
use three different performance measures. The main performance measure is the
number of actions until convergence (that is, until the real-time search methods
repeatedly execute a minimum-cost plan). The other performance measures are
the number of trials to convergence and the number of actions in the first trial,
where a trial consists of all actions until the goal is reached and the real-time
search method is reset to the start. Table 1 summarizes our empirical results.
The number of actions to convergence of FALCONS was smaller than that of
HLRTA* and the number of actions to convergence of HLRTA* was smaller than
that of LRTA*. In addition, we gained two other important insights:

– The number of trials to convergence of HLRTA* was larger than that of
LRTA* but the number of actions in the first trial of HLRTA* was smaller
than that of LRTA*. The opposite was true for FALCONS. Thus, the number
of trials to convergence is a weakness of HLRTA* and the number of actions
in the first trial is a weakness of FALCONS. Figure 1 illustrates this obser-
vation for one of the fifteen experimental cases, a four-connected gridworld
with the Manhattan distance heuristic. The figure graphs the number of ac-
tions for each trial. The graph for HLRTA* started below that of LRTA*,

392

5 10 15 20 25 30 35 40
15

20

25

30

35

40

45

50

55

60

65

Trial Number

A
ve

ra
ge

 N
um

be
r

of
 A

ct
io

ns
 p

er
 T

ria
l

Inset: Number of Actions in Early Trials_______________________________

Trial LRTA* HLRTA* FALCONS eFALCONS

1
2
3
4
5
6
...
18
19
20

96.45
47.99
41.09
38.83
36.12
32.94

...
20.96
20.41
19.88

65.14
37.51
34.12
31.10
29.22
27.44

...
20.91
20.50
20.13

161.11
52.23
35.74
29.08
25.80
22.56

...
17.82
17.88
17.97

125.01
42.65
34.72
26.50
24.87
22.88

...
18.52
18.41
18.30

LRTA*
HLRTA*
FALCONS
eFALCONS

Fig. 1. Comparison of HLRTA* and FALCONS with LRTA* in a Four-Connected
Gridworld with Manhattan Distance Heuristic

rose above it after the eighteenth trial (see inset) and then remained above
it until the end of learning. The graph for FALCONS, on the other hand,
started above that of LRTA*, dropped below it after the second trial and
then remained below it until the end of learning.

– The improvement in number of actions until convergence of HLRTA* over
LRTA* was smaller in the most informed cases than that of HLRTA* over
LRTA* in the least informed cases. The opposite was true for FALCONS.
Thus, the number of actions to convergence is a weakness of HLRTA* in
the most informed cases and a weakness of FALCONS in the least informed
cases.

Thus, there are two reasons for combining HLRTA* and FALCONS. First,
the resulting real-time search method could reduce the number of actions to
convergence by reducing the number of actions for early trials below that of
FALCONS and the number of actions for later trials below that of HLRTA*.
Second, the resulting real-time search method could be less sensitive to the
level of informedness of the heuristic function and thus perform better across all
experimental cases.

3 eFALCONS

LRTA* associates an h-value with every state to estimate the goal distance
of the state (similar to the h-values of A*). LRTA* always first updates the
h-value of the current state (value-update rule) and then uses the h-values of

393

Table 2. Comparison of eFALCONS with LRTA*, HLRTA* and FALCONS

Performance Average Speedup of eFALCONS over
Measure Over LRTA* HLRTA* FALCONS

Number of All 15 Cases 21.31% 19.34% 2.18%
Actions to 7 Most Informed Cases 28.73% 29.01% 0.00%

Convergence 7 Least Informed Cases 13.52% 9.53% 5.16%

Number of All 15 Cases 36.79% 41.44% -12.11%
Trials to 7 Most Informed Cases 38.13% 44.38% -15.77%

Convergence 7 Least Informed Cases 34.29% 37.10% -10.36%

Number of All 15 Cases -15.01% -25.70% 4.72%
Actions in 7 Most Informed Cases -36.86% -56.21% 7.95%
First Trial 7 Least Informed Cases 0.38% 1.28% 0.53%

the successors to move to the successor believed to be on a minimum-cost path
from the current state to the goal (action-selection rule). HLRTA* introduces hs-
values in addition to the h-values and uses them to modify the value-update rule
of LRTA* so that the h-values converge faster to the goal distances. FALCONS,
on the other hand, introduces g- and f-values in addition to the h-values (similar
to the g- and f-values of A*) and uses them to modify the action-selection rule
of LRTA* so that it moves to the successor believed to be on a shortest path
from the start to the goal. eFALCONS, shown in Figure 2, then uses the value-
update rule of HLRTA* for both the g- and h-values and the action-selection
rule of FALCONS. eFALCONS and FALCONS access only the successors and
predecessors of the current state, while LRTA* and HLRTA* access only the
successors of the current state. Thus, all four real-time search methods access
the same states on undirected graphs. A more detailed description of eFALCONS
together with proofs of its properties is given in [4].

4 Empirical Study of eFALCONS

Table 2 compares eFALCONS with LRTA*, HLRTA*, and FALCONS. More
detailed results are given in [4], including significance results obtained with the
paired-samples Z test at the five-percent confidence level. The table demonstrates
two advantages of eFALCONS over HLRTA* and FALCONS:

1. The number of trials to convergence of eFALCONS was 41.44 percent smaller
than that of HLRTA*, and the number of actions in the first trial of eFAL-
CONS was 4.72 percent smaller than that of FALCONS. We pointed out
earlier that the number of trials to convergence was a weakness of HLRTA*
and the number of actions in the first trial was a weakness of FALCONS.
Thus, eFALCONS mitigates the weaknesses of both HLRTA* and FALCONS
across performance measures. Indeed, Figure 1 shows that the number of ac-
tions of eFALCONS was smaller than that of FALCONS in the early trials
and smaller than that of HLRTA* in the later trials. As a consequence, the
number of actions to convergence of eFALCONS was 19.34 percent smaller
than that of HLRTA* and 2.18 percent smaller than that of FALCONS.
Thus, combining the value-update rule of HLRTA* and the action-selection

394

In the following, S denotes the finite state space; sstart ∈ S denotes the start state;
and sgoal ∈ S denotes the goal state. succ(s) ⊆ S denotes the set of successors of
state s, and pred(s) ⊆ S denotes the set of its predecessors. c(s, s′) > 0 denotes the
cost of moving from state s to successor s′ ∈ succ(s). We use the following conven-
tions: arg mins′′∈∅(·) := ⊥, maxs′′∈∅(·) := −∞, and mins′′∈∅(·) := ∞. We use the
following abbreviations, where ⊥ means “undefined:”

∀s ∈ S and r ∈ succ(s): hs(r) :=

{

h(r) if dh(r) = ⊥ or dh(r) 6= s

sh(r) otherwise,

∀s ∈ S and r ∈ pred(s): gs(r) :=

{

g(r) if dg(r) = ⊥ or dg(r) 6= s

sg(r) otherwise, and
∀r ∈ S: f(r) := max(g(r) + h(r), h(sstart)).

The values are initialized as follows: ∀r ∈ S: g(r) := h(sstart, r) and
h(r) := h(r, sgoal), where h(r, r′) is a heuristic estimate of the distance from r ∈ S

to r′ ∈ S. Furthermore, ∀r ∈ S: dg(r) := ⊥, dh(r) := ⊥, sg(r) := ⊥, and
sh(r) := ⊥.

1. s := sstart.
2. s′ := arg mins′′∈succ(s) f(s′′).

Break ties in favor of a successor s′ with the smallest value of c(s, s′) + hs(s
′).

Break remaining ties arbitrarily (but systematically).
3 a. p := arg mins′′∈pred(s)(gs(s

′′) + c(s′′, s)).
n := arg mins′′∈succ(s)(c(s, s

′′) + hs(s
′′)).

b. Perform the following assignments in parallel:
g(s) := if s = sstart then g(s)

else max(g(s),
gs(p) + c(p, s),
maxs′′∈succ(s)(g(s′′) − c(s, s′′))).

sg(s) := if s = sstart then g(s)
else max(g(s),

mins′′∈pred(s)\{p}(gs(s
′′) + c(s′′, s)),

maxs′′∈succ(s)(g(s′′) − c(s, s′′))).
dg(s) := p.
h(s) := if s = sgoal then h(s)

else max(h(s),
c(s, n) + hs(n),
maxs′′∈pred(s)(h(s′′) − c(s′′, s))).

sh(s) := if s = sgoal then h(s)
else max(h(s),

mins′′∈succ(s)\{n}(c(s, s
′′) + hs(s

′′)),
maxs′′∈pred(s)(h(s′′) − c(s′′, s))).

dh(s) := n.
4. If s = sgoal, then stop successfully.
5. s := s′.
6. Go to 2.

Fig. 2. eFALCONS

395

rule of FALCONS indeed speeds up their convergence. The number of ac-
tions to convergence of eFALCONS, for example, is typically over twenty
percent smaller than that of LRTA* and, in some cases, even over fifty per-
cent smaller (not shown in the table).

2. The number of actions to convergence of eFALCONS was 29.01 percent
smaller than that of HLRTA* in the most informed cases and 5.16 percent
smaller than that of FALCONS in the least informed cases. We pointed
out earlier that the number of actions to convergence was a weakness of
HLRTA* in the most informed cases and a weakness of FALCONS in the
least informed cases. Thus, eFALCONS mitigates the weaknesses of both
HLRTA* and FALCONS across the levels of informedness of the heuristic
function.

5 Conclusions

In this paper, we presented eFALCONS, a real-time search method that is similar
to LRTA* but uses the value-update rule of HLRTA* and the action-selection
rule of FALCONS. We showed experimentally that eFALCONS converges to a
minimum-cost plan with fewer actions than LRTA*, HLRTA*, and FALCONS.
For example, its number of actions to convergence is typically over twenty percent
smaller than that of LRTA* and, in some cases, even over fifty percent smaller. It
is future work to combine eFALCONS with ε-search to speed up its convergence
even more by sacrificing the optimality of the resulting plan.

References

1. S. Edelkamp and J. Eckerle. New strategies in real-time heuristic search. In Pro-

ceedings of the AAAI-97 Workshop on On-Line Search, pages 30–35. AAAI Press,
1997.

2. D. Furcy and S. Koenig. Speeding up the convergence of real-time search. In
Proceedings of the National Conference on Artificial Intelligence, pages 891–897,
2000.

3. D. Furcy and S. Koenig. Speeding up the convergence of real-time search: Empirical
setup and proofs. Technical Report GIT-COGSCI-2000/01, College of Computing,
Georgia Institute of Technology, Atlanta (Georgia), 2000.

4. D. Furcy and S. Koenig. eFALCONS: Speeding up the convergence of real-time
search even more. Technical Report GIT-COGSCI-2001/04, College of Computing,
Georgia Institute of Technology, Atlanta (Georgia), 2001.

5. T. Ishida. Real-Time Search for Learning Autonomous Agents. Kluwer Academic
Publishers, 1997.

6. T. Ishida and M. Shimbo. Improving the learning efficiencies of real-time search. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages
305–310, 1996.

7. R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.
8. P. Thorpe. A hybrid learning real-time search algorithm. Master’s thesis, Com-

puter Science Department, University of California at Los Angeles, Los Angeles
(California), 1994.

396

Wlph0Rswlpdo Sodqqlqj lq Whpsrudo SureohpvB

Dqwrqlr Jduulgr/ Hyd Rqdlqgðd dqg Ihghulfr Eduehu

Gswr1 Vlvwhpdv Lqirupäwlfrv | Frpsxwdflöq
Xqlyhuvlgdg Srolwìfqlfd gh Ydohqfld

Fdplqr gh Yhud v2q/ 79355 Ydohqfld/ Vsdlq
~djduulgrw/rqdlqgld/ieduehu�Cgvlf1xsy1hv

Devwudfw1 Wklv sdshu suhvhqwv WSV\V/ d Whpsrudo Sodqqlqj V\Vwhp/
zklfk dulvhv dv dq dwwhpsw wr frpelqh wkh lghdv ri Judsksodq dqg WJS

wr vroyh whpsrudo sodqqlqj sureohpv pruh h!flhqwo|1 WSV\V lv edvhg rq
d wkuhh0vwdjh surfhvv1 Wkh �uvw vwdjh/ d suhsurfhvvlqj vwdjh/ idflolwdwhv
wkh pdqdjhphqw ri frqvwudlqwv rq gxudwlrq ri dfwlrqv1 Wkh vhfrqg vwdjh
h{sdqgv d whpsrudo judsk dqg rewdlqv wkh vhw ri whpsrudo ohyhov dw zklfk
sursrvlwlrqv dqg dfwlrqv dsshdu1 Wkh wklug vwdjh/ wkh sodq h{wudfwlrq/
rewdlqv wkh sodq ri plqlpdo gxudwlrq e| �qglqj d surshu rz ri dfwlrqv1

Nh| zrugv= sodqqlqj/ whpsrudo sodqqlqj/ uhdvrqlqj derxw dfwlrqv

4 Lqwurgxfwlrq

Lq uhdo zruog sodqqlqj sureohpv zklfk ghdo zlwk wlph/ lw lv qhfhvvdu| wr glvfdug
wkh dvvxpswlrq wkdw dfwlrqv kdyh wkh vdph gxudwlrq1 Iru lqvwdqfh/ lw lv fohdu
wkdw lq d orjlvwlfv grpdlq wkh dfwlrq io| sodqh+Orqgrq> Prvfrz, lv orqjhu wkdq
io| sodqh+Orqgrq> Sdulv,1 Khqfh/ ghdolqj zlwk whpsrudo sodqqlqj sureohpv uh0
txluhv wr kdqgoh pruh frpsoh{ frqvwudlqwv ehfdxvh lw lv qhfhvvdu| wr vhohfw wkh
uljkw h{hfxwlrq wlphv iru dfwlrqv1 Frqvhtxhqwo|/ dq lpsruwdqw lvvxh lq whpsrudo
sodqqlqj lv wr jxdudqwhh wkh sodq zklfk plqlpl}hv wkh joredo gxudwlrq1

Wklv sdshu exlogv rq wkh zrun ri Vplwk dqg Zhog +wkh Whpsrudo Judsksodq
dojrulwkp/ WJS/ suhvhqwhg lq ^9`, dqg h{dplqhv wkh jhqhudo txhvwlrq ri lqfoxglqj
whpsrudolw| rq dfwlrqv lq d Judsksodq0edvhg dssurdfk ^4` e| jxdudqwhhlqj wkh
sodq ri plqlpdo gxudwlrq1 Zh suhvhqw d Whpsrudo Sodqqlqj V\Vwhp +WSV\V,
zklfk frqvlvwv ri wkuhh vwdjhv= d suhsurfhvvlqj vwdjh/ d whpsrudo judsk h{sdqvlrq
vwdjh dqg d sodq h{wudfwlrq vwdjh1 Wkh pdlq ihdwxuhv ri WSV\V duh=

� Lw lv deoh wr kdqgoh ryhuodsslqj dfwlrqv ri gl�huhqw gxudwlrq dqg jxdudqwhhv
wkh rswlpdo sodq/ l1h1 wkh sodq ri plqlpdo gxudwlrq1

� Lw gh�qhv d qhz fodvvl�fdwlrq ri pxwxdo h{foxvlrq uhodwlrqv= vwdwlf pxwh{hv
zklfk duh wlph lqghshqghqw dqg g|qdplf pxwh{hv zklfk duh wlph ghshqghqw1

� Lw h{sdqgv d uhod{hg whpsrudo judsk +iurp qrz rq WJ,/ zlwkrxw pdlqwdlqlqj
qr� rs dfwlrqv qru ghohwh0hgjhv/ wkurxjk whpsrudo ohyhov1 Wkhq/ lw shuirupv
d sodq h{wudfwlrq +iurp qrz rq SH, vwdjh e| vhohfwlqj wkh dssursuldwh df0
wlrqv lq wkh WJ wr dfklhyh wkh sureohp jrdov1

 Wklv zrun kdv ehhq sduwldoo| vxssruwhg e| wkh Surmhfw q1 5334334: 0 Qdyljdwlrq ri
Dxwrqrprxv Preloh Urerwv ri wkh Xqlyhuvlgdg Srolwìfqlfd gh Ydohqfld1

397

5 Uhodwhg Zrun

Dowkrxjk whpsrudo ihdwxuhv lq sodqqlqj duh qrw xvxdoo| pdqdjhg e| fodvvlfdo
sodqqhuv/ rqh ri wkh �uvw whpsrudo sodqqhuv rq wkh odvw ghfdgh zdv R0Sodq ^5`
zklfk lqwhjudwhv erwk sodqqlqj dqg vfkhgxolqj surfhvvhv lqwr d vlqjoh iudphzrun1
Rwkhu sodqqhuv/ vxfk dv L{WhW ^7`/ ghdo zlwk uhvrxufh dydlodelolw| dqg whpsrudo
frqvwudlqwv wr uhsuhvhqw frqvwudlqwv rq wlph srlqwv1 Dq dwwhpsw wr lqwhjudwh sodq0
qlqj dqg vfkhgxolqj lv shuiruphg lq KVWV +Khxulvwlf Vfkhgxolqj Whvwehg V|vwhp
^8`, zklfk gh�qhv dq lqwhjudwhg iudphzrun wr vroyh sodqqlqj dqg vfkhgxolqj
wdvnv1 Wklv v|vwhp xvhv pxowl0ohyho khxulvwlf whfkqltxhv wr pdqdjh uhvrxufhv xq0
ghu wkh frqvwudlqwv lpsrvhg e| wkh dfwlrq vfkhgxoh1 Wkh sdufSODQ dssurdfk ^6`
pdqdjhv pxowlsoh fdsdflw| uhvrxufhv zlwk dfwlrqv zklfk pd| ryhuods/ lqvwdqwl0
dwlqj wlph srlqwv lq d vlplodu zd| wr rxu dssurdfk1

WJS ^9` lqwurgxfhv d frpsoh{ pxwxdo h{foxvlrq uhdvrqlqj wr kdqgoh dfwlrqv
ri gl�hulqj gxudwlrq lq d Judsksodq frqwh{w1 WSV\V frpelqhv ihdwxuhv ri erwk
Judsksodq dqg WJS dqg lqwurgxfhv qhz dvshfwv wr lpsuryh shuirupdqfh1 Wkh
uhdvrqlqj rq frqglwlrqdo pxwh{ +lqyroylqj wlph pxwh{, ehwzhhq dfwlrqv/ sursr0
vlwlrqv dqg ehwzhhq dfwlrqv dqg sursrvlwlrqv lv pdqdjhg lq WJS e| phdqv ri
lqhtxdolwlhv zklfk jhw frpsoh{ lq vrph sureohpv dqg pd| lpso| dq lqwudfwdeoh
uhdvrqlqj rq odujh sureohpv ^9`1 Rq wkh frqwudu|/ wkh uhdvrqlqj surfhvv lq WSV\V

lv vlpsol�hg wkdqnv wr wkh lqfrusrudwlrq ri vhyhudo lpsuryhphqwv=

� Vwdwlf pxwh{ uhodwlrqv ehwzhhq dfwlrqv dqg ehwzhhq dfwlrqv dqg sursrvlwlrqv
duh fdofxodwhg lq d suhsurfhvvlqj vwdjh ehfdxvh wkh| rqo| ghshqg rq wkh
gh�qlwlrq ri wkh dfwlrqv1

� WSV\V xvhv d pxowl0ohyho whpsrudo sodqqlqj judsk dv Judsksodq zkhuh hdfk
ohyho uhsuhvhqwv dq lqvwdqw ri wlph1 Zkloh lq WJS dfwlrqv dqg sursrvlwlrqv
duh rqo| dqqrwdwhg zlwk wkh �uvw ohyho dw zklfk wkh| dsshdu lq wkh sodqqlqj
judsk/ WSV\V dqqrwdwhv doo gl�huhqw lqvwdqfhv ri dfwlrqv dqg sursrvlwlrqv
surgxfhg dorqj wlph1 Wkh frpsdfw hqfrglqj ri WJS uhgxfhv ydvwo| wkh vsdfh
frvwv exw lw lqfuhdvhv wkh frpsoh{lw| ri wkh vhdufk surfhvv/ zklfk pd| wud0
yhuvh f|fohv lq wkh sodqqlqj judsk1 Krzhyhu/ wkh SH lq WSV\V lv vwudljkw0
iruzdug ehfdxvh lw phuho| frqvlvwv ri rewdlqlqj wkh sodq dv dq df|folf rz
ri dfwlrqv wkurxjkrxw wkh WJ1

6 Rxu Whpsrudo Sodqqlqj V\Vwhp

Lq WSV\V/ d whpsrudo sodqqlqj sureohp lv vshfl�hg dv d 70wxsoh iLv>D>Iv>Gpd{j/
zkhuh Lv dqg Iv uhsuhvhqw wkh lqlwldo dqg �qdo vlwxdwlrq uhvshfwlyho|/ D uhs0
uhvhqwv wkh vhw ri dfwlrqv +zlwk srvlwlyh gxudwlrq,/ dqg Gpd{ vwdqgv iru wkh
pd{lpdo gxudwlrq ri wkh sodq uhtxluhg e| wkh xvhu1 Wlph lv prghoohg e| U.

dqg wkhlu fkurqrorjlfdo rughu1 D whpsrudo sursrvlwlrq lv uhsuhvhqwhg e| ?s/wA

zkhuh s ghqrwhv wkh sursrvlwlrq dqg w 5 U. uhsuhvhqwv wkh wlph dw zklfk s

lv surgxfhg1 Khqfh/ Lv dqg Iv duh iruphg e| wzr vhw ri whpsrudo sursrvlwlrqv
i?s�/w�A!w� � Gpd{j1

398

Dfwlrq Gxudwlrq Suhfv1 H�hfwv

og+E4/EF/K, 8
>zE��c M�
dw+EF/K,

qeffE���

�=E��c ���
Sdw+E4/K,

SqeffE���

py+EF/K/X, 8 dw+EF/K,
>zE��c L�
Sdw+EF/K,

xog+E4/EF/X, 5
�=E��c ���
dw+EF/X,

dw+E4/X,

qeffE���
S�=E��c ���

Wdeoh 41 Vlpsol�hg Eulhifdvh grpdlq= qhfhvvdu| dfwlrqv wr dfklhyh wkh jrdo dw+E4/X,

Zh zloo pdnh xvh ri wkh dfwlrq grpdlq gh�qhg lq Wdeoh 4/ zklfk suhvhqwv d
ghvfulswlrq ri wkh dfwlrqv ri wkh Eulhifdvh grpdlq/ wr vkrz wkh ehkdylrxu ri rxu
v|vwhp1 Rqo| wkuhh dfwlrqv duh gh�qhg/ wkrvh zklfk duh qhfhvvdu| wr wudqvsruw
d errn +E4, iurp krph +K, wr xqlyhuvlw| +X, e| xvlqj d eulhifdvh +EF,1

614 Iluvw Vwdjh= Suhsurfhvvlqj

WSV\V fdofxodwhv wkh vwdwlf pxwxdo h{foxvlrqv zklfk zloo doorz xv wr vshhg xs
wkh iroorzlqj wzr vwdjhv1 D pxwh{ uhodwlrqvkls ehwzhhq dfwlrqv lv gh�qhg dv lq
Judsksodq ^4`1 Pxwh{ ehwzhhq sursrvlwlrqv dsshduv dv d frqvhtxhqfh ri pxwh{
ehwzhhq dfwlrqv1 Wkxv/ wzr sursrvlwlrqv s dqg t duh pxwh{ li doo dfwlrqv wkdw
dfklhyh s duh pxwh{ zlwk doo dfwlrqv wkdw dfklhyh t1

Gh�qlwlrq 41 Vwdwlf pxwh{ ehwzhhq dfwlrqv1 Dfwlrqv d dqg e duh vwdwlfdoo|
pxwh{ li wkh| fdqqrw eh h{hfxwhg lq sdudooho +Judsksodq*v lqwhuihuhqfh,1 Iru lq0
vwdqfh/ lq Wdeoh 4/ dfwlrqv og+E4> EF> K, dqg xog+E4> EF> X, duh vwdwlfdoo| pxwh{
ehfdxvh ri wkh frq lfwlqj h�hfw lq+E4> EF,1

Gh�qlwlrq 51 Vwdwlf ds0pxwh{ +vwdwlf dfwlrq2sursrvlwlrq pxwh{,1 Rqh
dfwlrq d lv vwdwlfdoo| ds0pxwh{ zlwk d sursrvlwlrq s l� s 5 gho� hiiv+d,1 Iru
lqvwdqfh/ og+E4> EF> K, lv ds0pxwh{ zlwk dw+E4> K, dqg iuhh+EF, lq Wdeoh 41

615 Vhfrqg Vwdjh= Whpsrudo Judsk H{sdqvlrq

Gh�qlwlrq 61 Whpsrudo judsk +WJ,1 D WJ lv d gluhfwhg/ od|huhg judsk zlwk
sursrvlwlrq dqg dfwlrq qrghv/ dqg suhfrqglwlrq0 dqg dgg0hgjhv iroorzlqj wkh vdph
vwuxfwxuh dv Judsksodq1 Hdfk ohyho lv odehoohg zlwk d qxpehu uhsuhvhqwlqj wkh lq0
vwdqw ri wlph dw zklfk sursrvlwlrqv duh suhvhqw dqg dfwlrqv vwduw wkhlu h{hfxwlrq1
Ohyhov duh rughuhg e| wkhlu lqvwdqw ri wlph1

Gh�qlwlrq 71 Lqvwdqfh ri dq dfwlrq1 Zh gh�qh dq lqvwdqfh ri dq dfwlrq d dv
wkh wulsoh ?d/v/hA zkhuh d ghqrwhv wkh dfwlrq dqg v/h 5 U. uhsuhvhqw wkh wlph
zkhq wkh lqvwdqfh vwduwv dqg hqgv h{hfxwlqj/ uhvshfwlyho| +h @ v. gxudwlrq+d,,1

399

Gh�qlwlrq 81 Sursrvlwlrq ohyho1 D sursrvlwlrq ohyho S^w` lv iruphg e| wkh vhw
ri whpsrudo sursrvlwlrqv i?s�/w�A!w� � wj suhvhqw dw wlph w zklfk yhuli|
?s�/w�A5 Lv b <?d�/v�/h�A!s� 5 dgg� hiiv+d�,/ h� @ w�1

Gh�qlwlrq 91 G|qdplf pxwh{ ehwzhhq whpsrudo sursrvlwlrqv dw S^w`1
Ohw i?d�/v�/w�Aj dqg i?e�/v�/w�Aj eh wzr vhwv ri lqvwdqfhv ri dfwlrqv zklfk
dfklhyh ?s/w�A/?t/w�A 5 S^w` uhvshfwlyho|1 Whpsrudo sursrvlwlrqv ?s/w�A dqg
?t/w�A duh g|qdplfdoo| pxwh{ dw S^w` l� l, ;�> �!� 5 i?d�/v�/w�Aj> � 5
i?e�/v�/w�Aj> � dqg � ryhuods dqg ll, d� dqg e� duh vwdwlfdoo| pxwh{1 D g|0
qdplf pxwh{ h{sluhv dv qhz ohyhov duh h{sdqghg ixuwkhu lq wkh WJ1

Gh�qlwlrq :1 Dfwlrq ohyho1 Dq dfwlrq ohyho D^w` lv iruphg e| wkh vhw ri lq0
vwdqfhv ri dfwlrqv i?d�/w/h�Aj zklfk vwduw wkhlu h{hfxwlrq dw wlph w1

Sursrvlwlrq 41 Ohw S^w` +w � Gpd{, eh wkh hduolhvw sursrvlwlrq ohyho dw zklfk
doo whpsrudo sursrvlwlrqv lq Iv duh qrw sdluzlvh g|qdplfdoo| pxwh{1 Xqghu wklv
dvvxpswlrq/ qr fruuhfw sodq fdq eh irxqg ehiruh wlph w1

WSV\V dgrswv wkh vdph frqvhuydwlyh prgho ri dfwlrq dv WJS ^9`1 Wkh vhfrqg
vwdjh h{sdqgv wkh WJ e| dowhuqdwlqj sursrvlwlrq dqg dfwlrq ohyhov wkurxjk d
iruzdug0fkdlqlqj surfhvv1 Vwduwlqj dw S^3`/ wkh dojrulwkp pryhv lqfuhphqwdoo| lq
wlph wkurxjkrxw wkh WJ jhqhudwlqj qhz dfwlrq dqg sursrvlwlrq ohyhov1 Dw hdfk
dfwlrq ohyho D^w`/ wkh dojrulwkp jhqhudwhv wkh hqwluh vhw ri lqvwdqfhv ri dfwlrqv
zklfk vwduw wkhlu h{hfxwlrq dw w ehfdxvh wkhlu suhfrqglwlrqv duh qrw g|qdplfdoo|
pxwh{ dw S^w`1 Diwhu jhqhudwlqj hdfk lqvwdqfh ri dq dfwlrq/ wkh sursrvlwlrqv lq
dgg� hiiv duh dgghg lqwr wkh surshu sursrvlwlrq ohyho +dffruglqj wr wkh gxudwlrq
ri hdfk dfwlrq,1 Wkh WJ h{sdqvlrq whuplqdwhv rqfh doo whpsrudo sursrvlwlrqv lq
wkh �qdo vlwxdwlrq duh suhvhqw lq S^w` dqg qrqh duh sdluzlvh g|qdplfdoo| pxwh{
+l1h1 Iv lv vdwlv�hg lq S^w`,1 Li w A Gpd{ wkh dojrulwkp rxwsxwv cIdloxuh* ehfdxvh
qr ihdvleoh sodq fdq eh irxqg hduolhu wkdq Gpd{1

Wkh uhvxowlqj WJ iru wkh grpdlq gh�qhg lq Wdeoh 4 lv vkrzq lq Ilj1 41
Dfwlrq xog+E4/EF/X, fdqqrw vwduw dw D^8` ehfdxvh lwv suhfrqglwlrqv lq+E4/EF,
dqg dw+EF/X, duh g|qdplfdoo| pxwh{ dw S^8` dqg wkh| fdqqrw eh vlpxowdqhrxvo|
dydlodeoh xqwlo S^43`1 Dw D^43`/ xog+E4/EF/X, lv dssolfdeoh wkxv rewdlqlqj wkh
jrdo dw+E4/X, dw S^45` +whuplqdwlqj wkh vhfrqg vwdjh,1

616 Wklug Vwdjh= Sodq H{wudfwlrq

Wklv vwdjh lv d edfnzdug vhdufk surfhvv wkurxjkrxw wkh WJ wr h{wudfw d ihdvleoh
sodq1 Wzr gdwd vwuxfwxuhv SodqqhgDfwv dqg JrdovWrVdwlvi|/ zklfk duh lqgh{hg
e| d ohyho/ duh xvhg1 SodqqhgDfwv/ zklfk lv lqlwldol}hg hpsw|/ vwruhv wkh lqvwdqfhv
ri dfwlrqv sodqqhg dw hdfk dfwlrq ohyho1 JrdovWrVdwlvi| vwruhv wkh whpsrudo
sursrvlwlrqv wr eh vdwlv�hg dw hdfk sursrvlwlrq ohyho/ dqg lw lv lqlwldol}hg e|
lqvhuwlqj doo wkh whpsrudo sursrvlwlrqv lq Iv1

Dvvxplqj wkh SH surfhvv vwduwv iurp wkh sursrvlwlrq ohyho S^w` +wkdw lv/ wkh
vhdufk vwduwv iurp wlph w lq wkh WJ,/ zkhuh doo whpsrudo jrdov lq Iv duh qrw
g|qdplfdoo| pxwh{/ wkh dojrulwkp surfhhgv lq wkh iroorzlqj zd|=

400

�dfo

dw+E4/K,

dw+EF/K,

dw+EF/X,

dw+E4/X,

iuhh+EF,

lq+E4/EF,

w@45w@43w@8w@3

gp

�dfo �d�fo�d�fo�dDo�dDo �d�2o

py+EF/K/X,

xog+E4/EF/X,

og+E4/EF/K,

Ilj1 41 Whpsrudo Judsk iru wkh Eulhifdvh sureohp gh�qhg lq Wdeoh 4

41 Li w @ 3 dqg JrdovWrVdwlvi|^w ` - Lv/ wkhq idlo +edfnwudfn, �wklv lv wkh edvh
fdvh iru wkh uhfxuvlyh surfhvv1

51 Li JrdovWrVdwlvi|^w ` @ ! wkhq pryh edfnzdugv lq wlph +w @suhylrxv ohyho
lq wkh WJ, dqg jr wr vwhs 4 wr vdwlvi| wkh jrdov dw w1

61 H{wudfw d whpsrudo sursrvlwlrq ?s/wA iurp JrdovWrVdwlvi|^w `1
71 Vhohfw dq lqvwdqfh ri dq dfwlrq � @?d�/v�/h�A!s 5 dgg� hiiv+d�,/ h� � w

+edfnwudfnlqj srlqw wr jxdudqwhh frpsohwhqhvv,1 Lq rughu wr jxdudqwhh wkh
fruuhfwqhvv ri wkh sodq/ � lv glvfdughg +vhohfwlqj dqrwkhu lqvwdqfh ri dq df0
wlrq e| edfnwudfnlqj wr vwhs 7, li dw ohdvw rqh ri wkh iroorzlqj frqglwlrqv
krogv> l, <� @?e�/v�/h�A5 SodqqhgDfwv!� dqg � ryhuods dqg d� dqg e�
duh vwdwlfdoo| pxwh{/ ru ll, <?t/h�A5 JrdovWrVdwlvi|!d� lv vwdwlfdoo| ds0
pxwh{ zlwk t1 Rwkhuzlvh/ s lv vdwlv�hg dqg wkh vwuxfwxuhv SodqqhgDfwv^v�`
dqg JrdovWrVdwlvi|^v�` duh xsgdwhg zlwk � dqg suhfv+d�, uhvshfwlyho|1
Wkhq/ wkh dojrulwkp jrhv wr vwhs 5 wr vdwlvi| dqrwkhu +vxe,jrdo1

Sursrvlwlrq 51 WSV\V lv frpsohwh dqg rswlpdo1

Lq WSV\V/ doo ohyhov dw zklfk sursrvlwlrqv dqg dfwlrqv dsshdu duh doo jhqhu0
dwhg gxulqj wkh WJ h{sdqvlrq1 Wkhuhiruh/ li d sodq h{lvwv iru wkh sureohp/ lw zloo
eh irxqg lq wkh WJ1 Dgglwlrqdoo|/ vlqfh doo lqvwdqfhv ri dfwlrqv duh frqvlghuhg lq
wkh SH surfhvv dqg wkh WJ lv h{sdqghg wkurxjk wlph/ wkh �uvw vroxwlrq WSV\V

�qgv lv wkh sodq ri plqlpdo gxudwlrq1

7 Vrph H{shulphqwdo Uhvxowv

Dowkrxjk frpsdulvrq ehwzhhq rxu dssurdfk dqg rwkhu sodqqlqj v|vwhpv lv txlwh
gl!fxow ehfdxvh wkh| duh edvhg rq gl�huhqw dojrulwkpv/ zh pdgh d frpsdulvrq

401

Sureohp WSV\V WJS

wjs0DE0t 7 93
wjs0DE0st 8 <3
wjs0DF0u 7 ;3
wjs0DF0su 8 ;3
wjs0DEGH0u 7 :3

Wdeoh 51 Uhvxowv ri frpsdulvrq ehwzhhq WSV\V dqg WJS +wlphv duh lq ploolvhfrqgv,

ehwzhhq WSV\V dqg WJS rq wkh h{dpsohv surylghg e| WJS1 Wkh h{shulphqwv
+Wdeoh 5, zhuh shuiruphg lq d Fhohurq 733 PK} zlwk 97 Pe dqg vkrz wkh
shuirupdqfh ri WSV\V lv ehwwhu wkdq WJS iru wkhvh sureohpv1 Frqvhtxhqwo|/
WSV\V vhhpv txlwh surplvlqj wr ghdo zlwk whpsrudo sodqqlqj sureohpv1

8 Frqfoxvlrqv dqg Ixwxuh Zrun

Lq wklv sdshu zh kdyh suhvhqwhg WSV\V/ d v|vwhp iru ghdolqj zlwk whpsrudo
sodqqlqj sureohpv1 WSV\V frqwulexwhv rq d fodvvl�fdwlrq lqwr vwdwlf dqg g|qdplf
pxwxdo h{foxvlrq uhodwlrqv1 Wklv doorzv wr shuirup d suhsurfhvvlqj vwdjh zklfk
fdofxodwhv vwdwlf pxwh{hv ehwzhhq dfwlrqv dqg ehwzhhq dfwlrqv dqg sursrvlwlrqv
wr vshhg xs wkh iroorzlqj vwdjhv1 Wkh vhfrqg vwdjh h{sdqgv d WJ zlwk ihdwxuhv
ri erwk Judsksodq dqg WJS sodqqlqj judskv1 Wkh wklug vwdjh jxdudqwhhv wkdw wkh
�uvw irxqg sodq kdv wkh plqlpdo gxudwlrq1 Iurp rxu h{shulhqfh dqg wkh rewdlqhg
uhvxowv zh wklqn WSV\V lv surplvlqj wr vroyh whpsrudo sodqqlqj sureohpv1

Wkh suhvhqwhg zrun frqvwlwxwhv d �uvw vwhs wrzdugv dq lqwhjudwhg v|vwhp
iru sodqqlqj dqg vfkhgxolqj1 Vxfk d v|vwhp zloo eh deoh wr pdqdjh whpsrudo
frqvwudlqwv rq dfwlrqv dqg wr uhdvrq rq vkduhg uhvrxufh xwlol}dwlrq1 Dgglwlrqdoo|/
wkh v|vwhp zloo dsso| vhyhudo rswlpl}dwlrq fulwhuld wr rewdlq wkh sodq ri plqlpdo
gxudwlrq ru wkh sodq ri plqlpdo frvw1

Uhihuhqfhv

41 Eoxp/ D1O1 dqg P1O1 Ixuvw1 �Idvw Sodqqlqj wkurxjk Sodqqlqj Judsk Dqdo|vlv/�
Duwl�fldo Lqwhooljhqfh / <3 =5;4�633 +4<<:,1

51 Fxuulh/ N1 dqg D1 Wdwh1 �R0Sodq= wkh Rshq Sodqqlqj Dufklwhfwxuh/� Duwl�fldo Lq0
whooljhqfh / 85+4,=7<�;9 +4<<4,1

61 Ho0Nkro|/ D1 dqg E1 Ulfkdugv1 �Whpsrudo dqg Uhvrxufh Uhdvrqlqj lq Sodqqlqj= wkh
sdufSODQ Dssurdfk1� Surf1 45wk Hxurshdq Frqihuhqfh rq Duwl�fldo Lqwhooljhqfh
+HFDL0<9,1 947�94;1 4<<91

71 Jkdoode/ P1 dqg K1 Oduxhooh1 �Uhsuhvhqwdwlrq dqg Frqwuro lq L{WhW/ d Whpsrudo
Sodqqhu1� Surf1 5qg Lqw1 Frqi1 rq DL Sodqqlqj V|vwhpv1 94�9:1 Kdpprqg/ 4<<71

81 Pxvfhwwrod/ Q1 �KVWV= Lqwhjudwlqj Sodqqlqj dqg Vfkhgxolqj1� Lqwhooljhqw Vfkhgxolqj
hglwhg e| P1]zhehq dqg P1V1 Ir{/ 49<�545/ Prujdq Ndxipdqq/ 4<<71

91 Vplwk/ G1H dqg G1V1 Zhog1 �Whpsrudo Sodqqlqj zlwk Pxwxdo H{foxvlrq Uhdvrqlqj1�
Surf1 49wk Lqw1 Mrlqw Frqi1 rq DL +LMFDL0<<,1 659�66:1 4<<<1

402

Randomization and Restarts in Proof Planning

Andreas Meier1 Carla P. Gomes2 Erica Melis11 Fachbereich Informatik
Universität des Saarlandes

66041 Saarbrücken, Germanyfameierjmelisg@ags.uni-sb.de 2 Computer Science Department
Cornell University

Ithaca, NY 14853, USA
gomes@cs.cornell.edu

1 Introduction

Proof planning considers mathematical theorem proving as aplanning problem. It has
enabled the derivation of mathematical theorems that lay outside the scope of traditional
logic-based theorem proving systems. One of its strengths comes from heuristic math-
ematical knowledge that restricts the search space and thereby facilitates the proving
process for problems whose proofs belong in the restricted search space. But this may
exclude solutions or restrict the kinds of proofs that can befound for a given problem.

We take a different perspective and investigate problem classes for which little or no
heuristic control knowledge is available and test the usageof randomization and restart
techniques. Our approach to control in those mathematical domains is based on inves-
tigations on so-calledheavy-tailed distributions([4, 3, 2]). Because of the non-standard
nature of heavy-tailed cost distributions the controlled introduction of randomization
into the search procedure and quick restarts of the randomized procedure can eliminate
heavy-tailed behavior and can take advantage of short runs.To apply these techniques
to the complicated domains of proof planning, the first task was to find problem classes
for which proof planning exhibits an unpredictable run timebehavior, i.e., with heavy-
tailed cost distributions. Secondly, the experiments provided the basis for determining
suitablecutoff values, i.e., the time interval after which a running proof attemptis inter-
rupted and a new attempt is started. Finally, we designed a new control strategy which
dramatically boosts the performance of our proof planner for a class of problems for
which proof planning exhibits heavy-tailed cost behavior.

2 Proof Planning

A proof planning problem is defined by aninitial statespecified by the proof assump-
tions, theopen goalgiven by the theorem to be proved, and a set ofoperators[1]. A
mathematical proof corresponds to a plan that leads from theinitial state to the goal
state.

For a very basic example of an operator in proof planning consider the=Subst
operator. Its purpose is to replace occurrences of terms with respect to given equations.=Subst is applicable during the planning process if a current goal is a termt[a℄ that
contains an occurrence of a terma and there is an assumption that is an equation witha as one side and another termb as the other side. The application of=Subst reduces
then goalt[a℄ to the new goalt[b℄ which is the same term ast[a℄ but the occurrence ofa is replaced by an occurrence ofb.

403

The proof planning approach developed in this paper is implemented in the
MEGA

system [8, 7].
MEGA employs backward chaining as its main planning strategy. That
is, the planner continuously tries to reduce open goals by applying an operator that has
an appropriate effect, which in turn might result in one or more new open goals and so
on. Initially, the only open goal is the theorem. During thisplanning process there are
several choice points such as which goal should be tackled orwhich operator should be
applied in the next step.

3 The Domain of Residue Classes

In this section, we describe the domain of residue classes over the integers. A detailed
description of the whole domain can be found in [6].

The Residue Class DomainA residue class setRSn over the integers is the set of
all congruence classes modulo an integern, i.e., ZZn, or an arbitrary subset ofZZn.
Concretely, we can deal with sets of the formZZ3;ZZ5;ZZ3nf�13g; : : : where�13 denotes
the congruence class1 modulo3. Binary operationsÆ on a residue class set are either�+; ��; �� which are the addition, subtraction, and multiplication onresidue classes or
functions composed from these connectives, e.g.(�x���y) �+(�y �+�x). For given residue class
set and binary operation we can examine their basic algebraic properties (is the setRSn
closed with respect to the binary operationÆ, is it associative, does it have a unit element
etc.) and classify them in terms of groups, monoids, etc. Moreover, we are interested
in classifying structures into equivalence classes of isomorphic structures. During this
classification process we have to prove proof obligations stating that two structures(RS1n1 ; Æ1) and(RS2n2 ; Æ2) are isomorphic or not. Thereby, two structures(RS1n1 ; Æ1)
and (RS2n2 ; Æ2) are isomorphic if there exists a total functionh : RSn1 ! RSn2
such thath is injective, surjective, and is a homomorphism with respect to Æ1 andÆ2.
A function h is a homomorphism, ifh(x Æ1 y) = h(x) Æ2 h(y) holds for allx; y 2RSn1 . A non-isomorphism problemis formalized as:iso(RS1n1 ; Æ1; RS2n2 ; Æ2), whereiso abbreviatesisomorphi.
Two Proof StrategiesWe developed several proof techniques to tackle these non-isomor-
phism problems in
MEGA. We will focus here on two of those techniques (1) proof
by case analysis and (2) proof by contradiction.

(1) The case analysis strategy is a basic but reliable approach to prove a property
of a residue class structure. Its essence is a proof by cases.It exhaustively checks all
instances of a conjecture. Since residue class sets are finite, only finitely many instances
have to be considered. For non-isomorphism problems the top-most case split is to
check for each possible function from the one residue class set into the other one that it
is either not injective, not surjective, or not a homomorphism.

(2) An alternative proof strategy creates a proof by contradiction. It assumes that
there exists a functionh:RS1n1 ! RS2n2 which is an isomorphism and thus, in partic-
ular, an injective homomorphism. It derives the contradiction by proving that there are
two elements1; 2 2 RS1n1 with 1 6= 2 but h(1) = h(2) which contradicts the
assumption of injectivity ofh. Note, that the proof is with respect to all possible ho-
momorphismsh and we do not have to give a particular mapping. In the remainder of

404

the paper we call the described proof technique to tackle non-isomorphism proofs the
NotInjNotIso technique.

We briefly explain theNotInjNotIso strategy for the example that(ZZ5; �x���y) is
not isomorphic to(ZZ5; �x�+�y). The strategy first constructs the situation for the indirect
argument. From the hypothesis that the two structures are isomorphic follow the two
assumptions that there exists a functionh that is injective and a homomorphism. By the
first assumption a contradiction can be concluded when we areable to show thath is
not injective.

The planner continues by applying a method to the second assumption, that intro-
duces the homomorphism equationh(x��y) = h(x) �+h(y) instantiated for every ele-
ment of the domain as new assumptions. In the above example 25equations likeh(�05) = h(�05) �+h(�15) for x = �05; y = �15 (a)h(�05) = h(�05) �+h(�05) for x = �05; y = �05 (b)
are introduced. From this set of instantiated homomorphismequations theNotIn-
jNotIso strategy tries to derive thath is not injective. To prove this, it has to find
two witnesses1 and2 such that1 6= 2 andh(1) = h(2). In our example�05 and�15 are chosen for1 and2, respectively, which leads toh(�05) = h(�15). This goal is
transformed into the equationh(�05) �+h(�05) �+h(�05) �+h(�05) �+h(�05) �+h(�15) = h(�15) by
successively applying equations from the equation system with the operator=Subst.
First, equation (a) is applied to the left hand side of the equation which results inh(�05) �+h(�15) = h(�15). Then equation (b) is applied four times to occurrences ofh(�05) on the left hand side. The final goal is closed by an application of the opera-
tor Solve�Equation which calls the Computer Algebra System MAPLE to evaluate
the equation. The final equation holds since5��h(�05) equals�05 modulo5. The choice
of the next instantiated homomorphism equation to be applied is guided by a heuristic
described in [5].

4 Experimental Results

The experiments were conducted with160 non-isomorphism problems for the residue
class setZZ5. We decided for the residue class setZZ5 because its cardinality is small
enough to obtain solution statistics in a reasonable time. Problems from this class are:
1.:iso(ZZ5; x��y;ZZ5; x�+y),
2.:iso(ZZ5; x��y;ZZ5; (x��y) �+(x��y)).
The overall experimental effort was around one month of cpu time on a 32 node com-
pute cluster. A detailed description of all experiments canbe found in [5].

4.1 Randomization and Heavy-Tailed Behavior

First let us consider theNotInjNotIso strategy because this strategy leads to the
most interesting proof planning behavior in the residue class domain.The application
of theNotInjNotIso strategy to all problems of the testbed solved 108 of the 160
instances (67:5%) (2 hour time limit per proof attempt). The runs revealed a surpris-
ingly high variance in the performance of this strategy on the different problems of the
testbed. On some of the problems it succeeded very fast and produced short proof plans
consisting only of a few applications of=Subst, whereas on other problems the plan-
ning process took much longer and resulted in proof plans with many applications of=Subst. Furthermore, for over 30% of the instances no proof was found in 2 hours.

405

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000 7000
C

um
m

ul
at

iv
e

fr
ac

tio
n

of
 s

uc
ce

ss
fu

l r
un

s
Run time

Fig. 1. Run time distribution over testbed without randomization.

Table 1 displays the performance extrema for this deterministic proof by contradic-
tion strategy on the testbed as well as the mean values over all successful runs. The
values in brackets give the deviation from the mean. Fig. 1 shows the underlying dis-
tribution of the run time for these experiments. In fact, thedistribution exhibitsheavy-
tailed behavior [2] which is manifested in the long tail of the distribution stretching
for several orders of magnitude. Gomeset al. have shown that one can take advantage
of the large variations in run time of such heavy-tailed distributions by introducing an
element of randomness into the search process, combined with a restart strategy.

Costs Mean Min. Max.
Proof length55 45 (18.2%) 83 (50.9%)
Run Time 483 8(98%) 7145(1380%)

Table 1.Statistics for successful runs (108 out of 160) on testbed using deterministic strategy.

A key criterion for the success of such a randomization and restart approach is a
large variance in different randomized runs with the same instance. To explore this
issue, we considered multiple runs on a single instance by introducing a stochastic el-
ement into the planning process. Typically, the heuristic for choosing the next instanti-
ated homomorphism equation to be applied ranks several equations equally good. When
faced with such equally ranked equations, the planner applies them in a random order.
This randomized version of theNotInjNotIso technique was run225 times for the
problem instance of the testbed::iso(ZZ5; (�x�+�y) �+�25;ZZ5; (�25��(�x�+�y)) �+�25)
(in the remainder of this section we refer to this problem as the standard problem).
Interestingly, the run time distribution of the randomizedproof search by contradiction
on the single instance also exhibits heavy-tailed behaviorsimilar to Fig. 1 (see [5] for
a detailed analysis). This indicates an inherent variance in the search process of the
strategy.

Given this result, we can now use a restart strategy to improve the proof search
performance. Fig. 1 shows that the ascend of the cumulative cost distribution function
is very steep at the beginning but becomes very flat beyond approximately300 seconds.
This steep ascend at the beginning indicates that there is a large fraction of short and
successful runs whereas the flat ascend after300 seconds provides evidence that the
probability of finding a proof plan decreases considerably.Hence, it is advantageous

406

0.001

0.01

0.1

1

1 10 100 1000 10000

C
um

ul
at

iv
e

fr
ac

tio
n

of
 u

ns
uc

ce
ss

fu
l r

un
s

Run Time (seconds)

cutoff 100 secs.
no cutoff

Fig. 2.Log-Log plots of run time distribution over testbed with andwithout randomization.

to perform a sequence of restarts on a single instance (with apredefined cutoff) until
reaching a successful run or the total time limit, instead ofperforming a single long run.

Based on an analysis of the underlying distributions of the experiments for the full
testbed and for the standard problem we considered several cutoff values, using a binary
search strategy. The cutoff value of 100 provided the best results. The planner found
proof plans for156 of the160 problems (97.5%) in an average time of 473.4 seconds.
For the four remaining unsolved problems MAPLE does not provide any substitution
hint and, thus, the proof by contradiction strategy becomesquite ineffective.

Fig. 2 plots the run time distribution of the resulting restart strategy with cutoff 100
(log-log scale) on the problems of the testbed. The restart data is given by the curve that
drops rapidly. The figure also shows the run time distribution of the deterministic strat-
egy. The sharp drop of the run time distribution of the restart strategy clearly indicates
that this strategy does not exhibit heavy tailed behavior.

In previous applications of randomization and restarts in combinatorial domains run
time has been the key issue [2]. In the case of proof planning,an additional important
issue is the length of the proof discovered by the system: shorter proofs are generally
more elegant than long proofs. An interesting aspect of the application of randomization
and restart strategies that is novel in our context is the fact that it leads to a variety of
proof lengths for the same problem instance. For instance, for our standard problem
instance, we found a range of proofs from proofs consisting of 47 to 78 nodes. Such a
degree of variance is unusual for proofs generated by proof planning.

Having a set of proof planning operators and a flexible control that includes random-
ization the planner can generate a variety of proofs. This greatly enhances the ability
of the system to find proofs and increase the overall robustness of the theorem proving
system.

4.2 Case Analysis Strategy

This strategy explores all possible mappings between the structures. Since the goal is
to prove a non-isomorphism, the prover needs to establish that no mapping is an iso-
morphism. Obviously, this strategy is computationally very expensive and, as our ex-
periments show, it is practically infeasible for structures of cardinality larger than four.
There still is the question as to whether randomization may be of use in this context.

407

Table 2 shows that there is still some variation in run time and proof length (100 ran-
domized runs on a single problem instance fromZZ3) due to different search pruning
effects, but the variations are small compared to those encountered for the proof by
contradiction strategy. Further analysis (see [5]) shows that the underlying distribution
is not heavy-tailed and therefore a restart strategy would not boost the performance
significantly.

Costs Mean Min. Max.
Proof Length598 540 (9:7%) 684 (14:4%)
Run Time 2456 1110 (54:8%) 4442 (80:9%)

Table 2.Randomized version of the case analysis strategy.

5 Conclusions

The analysis of the cost distributions of proof planning attempts for a class of theorems
and on the detection ofheavy-tailedbehavior gave rise to an application of random-
ization and restarts techniques. The experimental part of the investigations includes a
study of two different planning strategies and the determination of cut-off values for the
restart. As a conclusion, we have introduced new kind of control knowledge into the
proof planning process, a much larger fraction of problem instances became solvable
(from 67.5% to 97.5%), and a variety of proofs can be generated for a problem. The ap-
plication of randomization and restart techniques makes the search process more robust
even when the size of the search spaces involved grows super-exponentially. We de-
scribed in this paper experiments with non-isomorphism problems of the residue class
setZZ5. We obtained analogous results on non-isomorphism problems of the residue
class setsZZ2, ZZ3, ZZ4 andZZ6 (see [5]).

Proof planning can benefit from these investigations in general because they pro-
vide a stochastic approach to semi-automatically designing control knowledge and be-
cause this kind of control knowledge can augment the mathematically motivated control
knowledge previously used in proof planning.

References

1. A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E. Lusk and R. Overbeek,
editors, PROCEEDINGSof CADE–9, volume 310 ofLNCS. Springer, Germany, 1988.

2. C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems.Journal of Automated Reasonong, 24:67–100, 2000.

3. C. Gomes, B. Selman, and H. Kautz. Boosting combinatorialsearch through randomization.
In Proceedings of AAAI-98, pages 431–437, 1998.

4. C. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization in backtrack search:
Exploiting heavy-tailed profiles for solving hard scheduling problems. InProceedings of
AIPS’98, pages 208–213, 1998.

5. A. Meier. Randomization and heavy-tailed behavior in proof planning. SEKI-Report SR-00-
03 (SFB), Universität des Saarlandes, Saarbrücken, Germany, 2000.

6. A. Meier, M. Pollet, and V. Sorge. Exploring the domain of residue classes. SEKI-Report
SR-00-04 (SFB), Universität des Saarlandes, Saarbrücken, Germany, 2000.

7. E. Melis and A. Meier. Proof planning with multiple strategies. InProc. of the First Interna-
tional Conference on Computational Logic (CL2000), pages 644–659, 2000.

8. E. Melis and J. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 1999.

408

Modeling Clairvoyance and Constraints in Real-Time
Scheduling

K. Subramani

Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV, USA�

ksmani@csee.wvu.edu �

Abstract. Scheduling in Real-time systems differs from scheduling in conven-
tional models in two principal ways: (a) Parameter variability, (b) Existence of
complex constraints between jobs. Our work focusses on variable execution times.
Whereas traditional models assume fixed values for job execution time, we model
execution times of jobs through convex sets. The second feature unique to real-
time systems, is the presence of temporal relationships that constrain job execu-
tion. Consider for instance the requirement that job 1 should conclude 10 units be-
fore job 2. This can be modeled through a simple, linear relationship, between the
start and execution times of jobs 1 and 2. In real-time scheduling, it is important
to guarantee a priori, the scheduling feasibility of the system. Depending upon the
nature of the application involved, there are different schedulability specifications
viz. Static, Co-Static and Parametric. Each specification comes with its own set
of flexibility issues. In this paper, we present a framework that enables the spec-
ification of real-time scheduling problems and discuss the relationship between
flexibility and complexity in the proposed model. We motivate each aspect of our
model through examples from real-world applications.

1 Introduction

In this paper, we describe the features of our real-time scheduling framework called
the E-T-C (Execution-Time-Constraints) Real-Time Scheduling model. Real-time
scheduling differs from traditional scheduling in two fundamental ways, viz. non-constant
execution times and the existence of complex constraints (such as relative timing con-
straints) between the constituent jobs of the underlying system. A traditional scheduling
model such as the one discussed in [14] and [3] assumes that the execution time of a
job is a fixed constant. This assumption is not borne out in practice; for instance the
running time of an input dependent loop structure such asfor(����� to �) will depend
upon the value of� . Secondly, jobs in a real-time system are often constrained by com-
plex relationships such as: Start job�
	 within � units of Job�
� completing. Traditional
scheduling literature does not accommodate constraints more complex than those that
can be represented by precedence graphs.

Our scheduling model is composed of sub-models, viz. the Job model, the Con-
straint model and the Query model. The Job model describes the type of jobs that we are
interested in scheduling. The Constraint model is concerned with the nature of relation-
ships constraining the execution of the jobs. The Query model specifies what it means

409

for a set of jobs to be schedulable, subject to constraints imposed as per the Constraint
model.An instance of a problem in theE-T-C model is specified by instantiating the
variables in the sub-models.

We focus on the following issues:

(a) Designing a framework that enables specification of real-time scheduling problems,
and

(b) Studying instantiations of interest in this framework.

The rest of this paper is organized as follows: Section� 2 describes the Job model
within the E-T-C scheduling framework. The Constraint model is discussed in the
succeeding section viz. Section� 3. Section� 4 details the Query model and presents the
 types of queries that we consider in this thesis. Each aspect of theE-T-C scheduling
framework is motivated through an example from real-time design. A classification
scheme for Scheduling problems in theE-T-C model is introduced in� 5.

2 Job Model in E-T-C

Assume an infinitely extending time axis, starting at time����� . This axis is divided into
intervals of length� ; these intervals are ordered and each interval is called a scheduling
window e.g.� ������� represents the first scheduling window,� ������� ��� represents the second
scheduling window and in general,� �!�#"$�&%'� �(�)��� ��� represents the�+*!, scheduling window.
We are given a set ofordered, non-preemptive,jobs -.�0/1��23�'�
45�6�7�6�6�98;: , with start
times /3<=2&��<749�6�7�6�'��<&8;: and execution times/&>523��>&45�6�6�7�6��>&8;: . � is the period of the job-
set and all jobs execute periodically in each scheduling window. We remark that non-
preemptive jobs form the bulk of real-time applications in mission-critical tasks [11].

3 Constraint Model in E-T-C

The executions of the jobs in the job-set- (discussed in the above section) are con-
strained through relationships that exist between their start times and execution times.
In theE-T-C model, we permit only linear relationships; thus the constraint system on
the job-set is expressed in matrix form as :

? �@�BAC �=AD �FE AG � (1)

where,

– AC �H� <=23��<&45�6�7�6�'��<&8
� is an I�" vector, representing the start times of the jobs;
– AD �H� >52=�J>34=�6�7�6�7�J>38
� is an I�" vector representing the execution times of the jobs;
–

?
is a KMLN��� I matrix of rational numbers, called theconstraint matrix;

– AG �H� O 2 ��O 4 �6�7�6�'��O#P�� is an KQ" vector of rational numbers,

Observe that System (1) can be rewritten in the form:

R � ACTSVU �WAD E AG � (2)

410

where, R � ACXSYU � AD � ? �Z� AC � AD �
We can also use the finish times[5\ of jobs in relationships. Since the jobs are non-
preemptive, the relation:<&\ S >3\]�^[=\ holds for all jobs�9\ and hence our expressiveness
is not enhanced by the inclusion.

System (1) is a convex polyhedron in the��� I dimensional space, spanned by the
start time axes/=<=23��<&41�6�6�7�'��<&8;: and the execution time axes/&>52&�J>341�6�6�7�6��>&8;: .

The execution times are independent of the start times of the jobs; however they may
have complex interdependencies among themselves. This interdependence is expressed
by setting

AD`_ba (3)

where a is an arbitrary convex set. We regard the execution times asI�" vectors
belonging to the seta .

The ordering on the jobs is obtained by imposing the constraints:

<&\ S >3\cEd<&\ e 2 �gfh�F�i�9�6�7�6�'�JIj"k�1�
The ordering constraints are included in the

?
matrix in (1).

The Constraint model can be adapted to special situations by restricting eithera or?
or both. The following advantages result from such restrictions:

– A model that more accurately describes the requirements of the current situation,
– Faster algorithms for schedulability queries, and
– More efficient dispatching schemes.

In � 3.1, � 3.2 and� 3.3 we discuss restrictions to the convex seta , while � 3.4, � 3.5
and � 3.6 deal with restrictions to the constraint matrix

?
.

3.1 The Axis-parallel Hyper-rectangle domain

As specified above, the seta in the Constraint model can be an arbitrary convex do-
main. One domain that finds wide applicability is the axis-parallel hyper-rectangle do-
main (henceforth abbreviated asaph). The Maruti Operating System [8–10] estimates
running times of jobs by performing repeatedrunsso as to determine upper and lower
bounds on their execution time. Accordingly, the running time of job� \ , viz. > \ , belongs
to the interval� l \ �Jm \ � , where l \ and m \ denote the lower and upper bounds on the exe-
cution time as determined by empirical observation.These independent range
variations are the only constraints on the execution times.
Observe that during actual execution,> \ can take any value in the range� l \ �)m \ � .

Theaph domain possesses two useful features:

– A specification that is tractable for this domain is also tractable for arbitrary convex
domains [23],

– A specification that is provably “hard” for arbitrary convex domains is also “hard”
for this domain [18].

Thus when proving complexity results (especiallyhardness results), it suffices to
focus on theaph domain only.

411

3.2 The Polyhedral domain

A feature of machining systems such as the ones discussed in [25] and [7] is the active
interdependence of execution times on each other. For instance, the requirement that
the sum of the speeds of two axes� 2 and � 4 not exceedn is captured by:> 2 S > 4 Edo .
Polyhedral domains are generalizations of theaph domains discussed above.

3.3 Arbitrary Convex Sets

Even polyhedral domains cannot capture the requirements of Power Systems in which
there exists quadratic constraints on the execution times. For instance, the spherical
constraint> 4 2 S > 44 S �6�7�J> 48 Eqp=�Jpsrq� captures the requirement that the total power
spent in the system is bounded byp [2] .

3.4 Standard Constraints

The class of “standard constraints” was introduced in [16], as a restriction to the con-
straint matrix

?
for which the Parametric Schedulability query (see Section� 4.3)

could be decided efficiently.

Definition 1. A constraint is said to be a standard constraint, if it can be expressed
as a strict difference relationship between at most two jobs. The relationship could be
expressed between their start or finish times.

These constraints are also known asmonotone constraintsin the literature [6]. Stan-
dard constraints serve to model relative positioning requirements between two jobs and
absolute constraints on a single job. When the constraints are standard, the matrix

R
in System (2) is network unimodular [5, 13] and hence the constraint system can be
represented as a network graph [21, 4].

The advantage of the network representation is that certain feasibility queries in
the primal system can be expressed as shortest-path queries in the corresponding dual
network [4]. Standard constraints are widely used to model temporal relationships in
flight-control systems [11, 12].

3.5 Network Constraints

Network constraints are a straightforward generalization of standard constraints.

Definition 2. A constraint is said to be a network constraint, if it can be put in the
following form:

o;�t< \ S O3�t<'uvExw=� > \ SYy � >6u S nh� (4)

where o;��O3��w=� y ��n _bz .

Network constraints can also be represented as graphs [6, 1]; however the relation-
ships between adjacent vertices form a polyhedron and are not adequately represented
through edges, as in the case of standard constraints. Once again, the advantage of the
graph representation is the existence of faster algorithms for feasibility checking as
opposed to general constraints. Network constraints find wide applicability in approxi-
mating certain measures [19].

412

3.6 Arbitrary Constraints

Job completion statistics such asSum of Completion timesandWeighted Sum of Com-
pletion timesof jobs are of interest to the designers of real-time systems [25]. These
statistics are aggregate constraints{ 8\@| 2 �}< \ S > \ % and cannot be captured through ei-
ther standard or network constraints.

4 Query model inE-T-C

Goal:We wish to determine a start time vectorAC , in each scheduling window, such that
the constraint system (1) holds (is not violated)at run-timefor any execution time
vector AD~_�a .

The above specification (called theschedulability specification) is rather vague and
is intended to be so; in this section, we shall present three different formalizations of the
informal specification above. Each formalization (specification) has a different notion
of what it means for a job-set to be schedulable and is characterized by a distinct set of
complexity issues and flexibility concerns.However, in all the specifications the guar-
antees provided are absolute i.e. if the schedulability query is decided affirmatively, then
the constraint set will not be violated at run time.We also use the termsschedulability
queryandschedulability predicateto refer to the schedulability specification.

4.1 Static Scheduling

Static scheduling (also calledScheduling with no Clairvoyance) is concerned with
deciding the following predicate:

���X��� AC ��� <=23��<&41�6�6�7�6��<78
� f�AD �i� >=2=�J>345�7�6�7�6�J>38
� _ba ? �Z�BAC �3AD �FE AG��
(5)

In other words, the goal is to determine the existence of a single start-time vector
AC�_bz 8 , such that the constraint system represented by (1) holds. The only information
that is available prior to the dispatching of jobs in the��*!, scheduling window is the
knowledge of the execution time domaina .

In [23], we showed that the above proposition can be decided efficiently for arbitrary
convex domains. From a computational perspective, query (5) is the easiest to answer.
Static Scheduling is the only mode of scheduling at one’s disposal, if the dispatcher
does not have the power to perform online computations; in fact���)�&% dispatching time
is one of the advantages of static scheduling [24].

4.2 Co-Static Scheduling

Static scheduling is unduly restrictive in that even simple constraint sets will fail to have
static schedules [22]. The restrictiveness of Static Scheduling stems from the insistence
on rational solution vectors. If however, the solution vector is allowed to be a function
of the execution time vector, then a greater amount of flexibility results. In Co-Static
Scheduling (also calledScheduling with total Clairvoyance), the assumption is that
the execution time vector is known at the start of the scheduling window, although it

413

may be different in different windows. Accordingly, we wish to decide the following
predicate:

����� f�AD �i� > 2 �J> 4 �6�6�7�6��> 8 � _Na � AC �H� < 2 ��< 4 �6�7�6�7��< 8 � ? �@�BAC �3AD �]E AG��
(6)

Co-static scheduling permits maximum flexibility during the dispatching phase, in
that if a constraint system is not co-statically schedulable, then it is not schedulable.
However, query (6) iscoNP-complete for arbitrary constraint sets, as shown in [22].
We have recently shown that the co-static schedulable query is solvable in polynomial
time for standard and network constraints [20]. Co-static scheduling queries are appli-
cable in Flow-shops [15].

4.3 Parametric Scheduling

Co-static scheduling requires knowledge of the execution time vector for a particular
scheduling window, prior to determining the start time vector for that window. This may
not be feasible in all real-time systems. Parametric scheduling (also calledScheduling
with limited Clairvoyance) attempts to provide a balance between the Static an Co-
Static scheduling modes. In a parametric schedule, the start time of a job is permitted
to depend upon the start and execution times of jobs that have been sequenced before
it and only on those times.In this mode, we restrict our discussion toaph domains,
inasmuch as this simple domain preserves the hardness of schedulability queries. Thus,
the parametric schedulability predicate is:

�T�$��� <32Tfh>52 _ � l!2=�)m�2�� � <74Tf�>34 _ � lW41�)mh4#�$�7�6� � <&8�fh>38 _ � lW8h�Jm;8
� ? �Z�BAC �=AD ��E AG��
(7)

5 A Taxonomy of Scheduling problems

From the discussion in the above sections, it is clear that in order to specify an instance
of a scheduling problem in theE-T-C scheduling framework, it is necessary to specify:

– The nature of the execution time domain (a),
– The type of constraints on the jobs (

?
), and

– A description of the schedulability query (
� � � ��� � � �).

Thus, a problem instance can be specified by instantiating the tuples in the�k�X� �T� �s�
triplet, where,

– � represents the execution time domaina - The following values are permissible
for � :� aph - a is an axis-parallel hyper-rectangle,� poly - a is a polyhedron� arb - a is an arbitrary convex domain.
Clearlyaph is the weakest domain in terms of what can be specified andarb is
the strongest.

– � represents the constraint matrix
? � R � U % - � can assume the following values:

414

� stan - The constraints arestandardwhich implies that
R

and U are network,
unimodular matrices.� net - The constraints arenetworkwhich implies that

R
andH have at most

two non-zero entries in any row� arb -
R

andH are an arbitraryKML�I rational matrices
Once againstan is the weakest constraint class, in terms of real-time constraints
that it can model, whereasarb is the strongest.

– � represents the schedulability predicate - The schedulability predicate specifies
what it means for a set of jobs to be schedulable; the following values are permitted:� stat - The query is concerned with static schedulability,� co-stat - The query is concerned with co-static schedulability,� param - The query is concerned with parametric schedulability.

Clearlyco-stat is the most flexible query andstat is the least flexible.
Accordingly, ��o&�;��� o
p5O5� <6��o
�j� represents an instance of a real-time scheduling

problem, in which the execution time domain is an axis-parallel hyper-rectangle, the
constraints are arbitrary and the schedulability predicate is static. Our notation scheme
is similar to the ���X� ��� �Q� scheme for traditional scheduling models [14, 3].

6 Offline Analysis versus Online Dispatching

Scheduling algorithms in theE-T-C model possess an offline schedulability analyzer
and an online dispatching component The analyzer examines the constraints on the
system and the type of schedulability query involved, to determine whether a feasible
schedule is possible.This analysis is always carried out offline.The dispatching com-
ponent is concerned with determining the exact start times of the jobs in the current
scheduling window.Dispatching is always carried out online.

For a given instance of a scheduling problem, the offline analyzer is executed ex-
actly once. If the schedulability query is decided affirmatively, the online dispatcher is
executed in every scheduling window.

References

1. Bengt Aspvall and Yossi Shiloach. A fast algorithm for solving systems of linear equations
with two variables per equation.Linear Algebra and its Applications, 34:117–124, 1980.

2. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty.Nonlinear Programming: Theory and Algo-
rithms. John Wiley, New York, second edition, 1993.

3. P. Brucker.Scheduling. Akademische Verlagsgesellschaft, Wiesbaden, 1981.
4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press and

McGraw-Hill Book Company, 6th edition, 1992.
5. G. B. Dantzig.Linear Programming and Extensions. Princeton University Press, Princeton,

NJ, 1963.
6. Dorit S. Hochbaum and Joseph (Seffi) Naor. Simple and fast algorithms for linear and integer

programs with two variables per inequality.SIAM Journal on Computing, 23(6):1179–1192,
December 1994.

7. Y. Koren.Computer Control of Manufacturing Systems. McGraw-Hill, New York, 1983.

415

8. S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. TheMaruti Hard Real-Time
Operating System.ACM Special Interest Group on Operating Systems, 23(3):90–106, July
1989.

9. D. Mosse, Ashok K. Agrawala, and Satish K. Tripathi. Maruti a hard real-time operating sys-
tem. InSecond IEEE Workshop on Experimental Distributed Systems, pages 29–34. IEEE,
1990.

10. D. Mosse, Keng-Tai Ko, Ashok K. Agrawala, and Satish K. Tripathi. Maruti: An Environ-
ment for Hard Real-Time Applications. In Ashok K. Agrawala, Karen D. Gordon, and Phillip
Hwang, editors,Maruti OS, pages 75–85. IOS Press, 1992.

11. N. Muscettola, B. Smith, S. Chien, C. Fry, G. Rabideau, K. Rajan, and D. Yan. In-board
planning for autonomous spacecraft. InThe Fourth International Symposium on Artificial
Intelligence, Robotics, and Automation for Space (i-SAIRAS), July 1997.

12. Nicola Muscettola, Paul Morris, Barney Pell, and Ben Smith. Issues in temporal reasoning
for autonomous control systems. InThe Second International Conference on Autonomous
Agents, Minneapolis, MI, 1998.

13. G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization. John Wi-
ley & Sons, New York, 1988.

14. M. Pinedo.Scheduling: theory, algorithms, and systems. Prentice-Hall, Englewood Cliffs,
1995.

15. M. Pinedo.Scheduling: theory, algorithms, and systems, chapter 5. In [14], 1995.
16. Manas Saksena.Parametric Scheduling in Hard Real-Time Systems. PhD thesis, University

of Maryland, College Park, June 1994.
17. K. Subramani. Duality in the Parametric Polytope and its Applications to a Scheduling

Problem. PhD thesis, University of Maryland, College Park, July 2000.
18. K. Subramani. On the complexity of co-static scheduling. Technical Report 2000-0006,

West Virginia University, December 2000.
19. K. Subramani. Parametric scheduling for network constraints. InThe Seventh Annual Inter-

national Computing and Combinatorics Conference, 2001.
20. K. Subramani. Polynomial time algorithms for co-static scheduling. Technical report, West

Virginia University, April 2001. Manuscript in Preparation.
21. K. Subramani and A. K. Agrawala. A dual interpretation of standard constraints in parametric

scheduling. InThe Sixth International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, September 2000.

22. K. Subramani and A. K. Agrawala. The parametric polytope and its applications to a schedul-
ing problem. Technical Report CS-TR-4116, University of Maryland, College Park, Depart-
ment of Computer Science, March 2000.

23. K. Subramani and A. K. Agrawala. The static polytope and its applications to a scheduling
problem. 7¡g¢ IEEE Workshop on Factory Communications, September 2000.

24. I. Tsamardinos, N. Muscettola, and P. Morris. Fast transformation of temporal plans for
efficient execution. InThe Fifteenth National Conference on Artificial Intelligence (AAAI-
98).

25. Y.Koren. Cross-coupled biaxial computer control for manufacturing systems.ASME Journal
of Dynamic Systems, Measurement and Control, 102:265–272, 1980.

416

Lecture Notes in Computer Science1

Flexible Dispatch of Disjunctive Plans

Ioannis Tsamardinos1, Martha E. Pollack2, and Philip Ganchev1

1 Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260 USA
tsamard@eecs.umich.edu, ganchev@cs.pitt.edu

2 Department of Electrical Engineering and Computer Science, University of Michigan,Ann
Arbor, MI 48103 USA

pollackm@eecs.umich.edu

Abstract. Many systems are designed to perform both planning and execution:
they include a plan deliberation component to produce plans that are then dis-
patched to an execution component, orexecutive, which is responsible for the
performance of the actions in the plan. When the plans have temporal con-
straints, dispatch may be non-trivial, and the system may include a distinctdis-
patcher, which is responsible for ensuring that all temporal constraints are satis-
fied by the executive. Prior work on dispatch has focused on plans that can be
expressed as Simple Temporal Problems (STPs). In this paper, we sketch a dis-
patch algorithm that is applicable to a much broader set of plans, namely those
that can be cast as Disjunctive Temporal Problems (DTPs), and we identify four
key properties of the algorithm.

1 Introduction

Many systems are designed to perform both planning and execution: they include a
plan deliberation component to produce plans that are then dispatched to an execution
component, orexecutive, which is responsible for the performance of the actions in
the plan. When the plans have temporal constraints, dispatch may be non-trivial, and
the system may include a distinctdispatcher, which is responsible for ensuring that all
temporal constraints are satisfied by the executive. Prior work on plan dispatch [1-3]
has focused on plans that can be represented as Simple Temporal Problems (STP) [4].
In this paper, we sketch a dispatch algorithm that is applicable to a much broader set
of plans, those that can be cast as Disjunctive Temporal Problems (DTPs), and iden-
tify four key properties of the algorithm.

2 Disjunctive Temporal Problems

Definition. A Disjunctive Temporal Problem (DTP)is a constraint satisfaction
problem <V, C>, whereV is a set of variables (or nodes) whose domains are the real
numbers, andC is a set of disjunctive constraints of the formCi: l 1 ≤ x1 – y1 ≤ u1 ∨

417

Lecture Notes in Computer Science2

…∨ ln ≤ xn – yn ≤ un, such that for 1≤ i ≤ n, xi andyi are both members ofV, andl i , ui

are real numbers. Anexact solutionto a DTP is an assignment to each variable inV
satistying all the constraints inC. If a DTP has at least one exact solution, it isconsis-
tent.

A DTP can be seen as encoding a collection of alternative Simple Temporal Prob-
lems (STPs). To see this, note that each constraint in a DTP is a disjunction of one or
more STP-style inequalities. LetCij be thej-th disjunct of thei-the constraint of the
DTP. If we select one disjunctCij from each constraintCi, then the set of selected
disjuncts forms an STP, which we will call acomponent STPof a given DTP. It is
easy to see that a DTPD is consistent if and only if it contains at least one consistent
component STP. Moreover, any solution to a consistent component STP ofD is also
clearly an exact solution toD itself.

Definition. A(n inexact)solution to a DTP is a consistent component STP of it. The
solution setfor a DTP is the set of all its solutions.

When we speak of a solution to a DTP, we shall mean an inexact solution. Plans can
be cast as DTPs by including variables for the start and end points of each action.

3 A Dispatch Example

Consider a very simple example of a plan with three actions,P, Q,andR. (For presen-
tational simplicity, we assume each action is instantaneous and thus represented by a
single node). P must occur in the interval [5,10] andQ in the interval [15,20];P and
Q must be separated by at least 6 time units; andR must be performed either the inter-
val [11,12] or [21,22]. The plan as described can be represented as the following
DTP: {C1. 5≤ P – TR≤ 10 ∨ 15 ≤ P – TR≤ 20; C2. 5≤ Q – TR≤ 10 ∨ 15 ≤ Q –
TR≤ 20; C3. 6≤ P – Q ≤ ∞ ∨ 6 ≤ Q – P ≤ ∞; C4. 11≤ R – TR≤ 12 ∨ 21 ≤ R –
TR ≤ 22}. (Note thatTR, the time reference point, denotes an arbitrary starting
point.) This DTP has four (inexact) solutions: {STP1: c11, c22, c32, c41; STP2: c11,
c22, c32, c42; STP3: c12, c21, c31, c41; STP4: c12, c21, c31, c42}.

Definition: An STP variablex is enabledif and only if all the events that are con-
strained to occur before it have already been executed. A DTP variablex is enabledif
and only if it has a consistent component STP in whichx is enabled.

In STP1, bothP andR are initially enabled, while in STP3 and STP4, Q is initially
enabled. Hence, all three actions are initially enabled for the DTP. Enablement is a
necessary but not sufficient condition for execution: an action must also belive, in the
sense that the temporal constraints pertaining to its clock time of execution are satis-
fied. In the current example, none of the actions are initially live. The first action to
become live isP, at time 5. An action islive during itstime window.

418

Lecture Notes in Computer Science3

Definition: The time window of an STP variablex is a pair [l,u] such thatl ≤ x – TR
≤ u, and for all l’, u’ such thatl’ ≤ x – TR≤ u’, l’ ≤ l andu ≤ u’. Given a set of
consistent component STPs for a DTP, we will write TW (x,i) to denote the time win-
dow for variablex in the i th such STP. Theupper boundof a time window [l,u] for x
in STP i, written U(x,i), is u. The time window of a DTP variablex is TW (x)=∪ i∈ S

TW (x,i), whereS is the solution set ofD.

The dispatcher can provide information about when actions are enabled and live in
anExecution Table (ET). This is a list of ordered pairs, one for each enabled action.
The first element of the entry specifies the action, and the second is a list of the con-
vex intervals in that element’s time window. For our example, then, the initial ET
would be: {<P, {[5,10], [15,20]}>, <Q, {[5,10],[15,20]}}>, <R,
{[11,12],[21,22]}>}. The ET summarizes the information in the solution STPs so that
the executive does not have to handle them directly.

The ET provides information about what actionsmaybe performed, but it does not
provide enough information for the executive to determine what actionsmustbe per-
formed. To see this, note that the ET just given does not indicate thatthere is a prob-
lem with deferring bothP andQ until after time 10. However, such a decision would
lead to failure: if the clock time reaches 11 and neitherP nor Q has been executed,
then all four solutions to the DTP will have been eliminated. Thus, in addition to the
information in the ET, the dispatcher must also provide a second type of information
to the executive. Thedeadline formula (DF)provides the executive with information
about the next deadline that must be met.

In the next section, we explain how to calculate the DF, which is more complicated
than computing the ET. Here we simply complete the example, by illustrating how the
ET and the DF would be updated as time passes. The initial DF would indicate that
eitherP or Q must be executed by time 10. Suppose that at time 8, actionP is exe-
cuted. At this point, STP3 and STP4 are no longer solutions. The ET then becomes {
<Q, {[15,20]}>, <R, {[11,12], [21,22]}> } and the DF is trivially “Q by 20” . In
this case, an update to ET and DF resulted because an activity occurred. However,
updates may also be required when an activity does not occur within an allowable time
window. For example, ifR has still not executed at time 13, then its entry in the ET
should be updated to be just the singleton [21,22], with no changes requiredto the DF.
The example presented in this section contains variables with very little interaction.
In general, there can be significantly more interaction amongst the temporal con-
straints, and the DF can be arbitrarily complex.

4 The Dispatch Algorithm

We now sketch our algorithm for the dispatch of plans encoded as DTPs. The in-
put is a DTP and the output is an Execution Table (ET) and a Deadline Formula (DF).
For each pair <x, TW(x)> in ET, x must be executed some time within TW(x). It is up
to the executive to decide exactly when. The DF imposes the constraint thatF has to

419

Lecture Notes in Computer Science4

hold by timet, where a variable that appears in the DF becomes true when its corre-
sponding event is executed.

The dispatch algorithm will be called in three circumstances: (1) when a new plan
needs to have its dispatch information initialized, at or before timeTR; (2) when an
event in the DTP is executed; (3) when an opportunity for execution passes because
the clock time passes the upper bound of a convex interval in the time window for an
action that has not yet been executed. Pseudo-code is provided in Figure 1. Space
constraints preclude detailed description of the algorithm (but see [5]). Here we sim-
ply illustrate the procedure for computing the DF, the most interesting part of the
algorithm.

Recall the example above. Initially, at time TR, the DTP has four solutions. To
determine the initial DF, we consider the next critical moment, NC, which is the next
time at which any action must be performed. This time is equal to the minimal value
of all the upper bounds on time windows for actions, i.e., it is min{U(x,i)| x is an ac-
tion in the DTP, and i is a solution STP}. For instance, in our example DTP, U(P, 1)
= U(P, 2) = 10. The actions that may need to be executed by NC are those x such that
U(x,i) = NC for some STP i. We create a list UMIN containing ordered pairs <x,i>
such that U(x,i) = NC. In our current example, UMIN = {<P, 1>, <P, 2>, <Q, 3>,
<Q, 4>}. Now we perform the interesting part of the computation. If <x,i> is in
UMIN , it means that unless x is executed by time NC, STPi will cease to be a solu-
tion for the DTP. It is acceptable for STPi to be eliminated from the solution set only
if there is at least one alternative STP that is not simultaneously eliminated. This is
exactly what the deadline formula ensures: that at the next critical moment, the entire
set of solutions will not be simultaneously eliminated. We thus use a minimal set
cover algorithm to compute all sets of pairs <x,i> in UMIN such that the i values
form a minimal cover of the set of solution STPs. In our example, there is onlyone
minimal cover, namely the entire set UMIN. Thus, the initial DF specifies that P or Q
must be executed by time 10: <P∨ Q, 10>. In general, there may be multiple mini-
mal covers of the solution STPs: in that case, each cover specifies a disjunction of
actions that must be performed by the next critical time. For instance, suppose that
some DTP has four solution STPs, and that at time TR, U (L, 1) = U (L, 2) = U (M, 3)
= U (M, 4) = U (N, 4) = U (S, 3) = 10. Then by time 10 either L or M must be exe-
cuted; additionally, at least one of L or N or S must be executed. The corresponding
DF is <(L∨ M)∧ (L∨ N∨ S), 10>.

5 Formal Properties of the Algorithm

The role of a dispatcher is to notify the executive of when actions may be executed
and when they must be executed. Informally, we will say that a dispatch algorithm is
correct if, whenever the executive executes actions according to the dispatch notifica-
tions, the performance of those actions respects the temporal constraints of the under-
lying plan. Obviously, dispatch algorithms should be correct, but correctness is not
enough. Dispatchers should also bedeadlock-free: they should provide enough in-
formation so that the executive does not violate a constraint through inaction. A

420

Lecture Notes in Computer Science5

Initial-Dispatch (DTP D)
1. Find all n solutions (consistent component STPs) to D, calculate their distance
graphs, and store them in Solutions [i]. Associate each solution with its (integer-
valued) index.
2. Set the variable TR to have the status Executed, and assign TR=0.
3. Compute-Dispatch-Info(Solutions).

Update-for-Executed-Event (STP [i] Solutions)
1. Letx be the event that was just executed, at timet.
2. Remove from Solutions all STPsi for which t ∉ TW (x,i).
3. Propagate the constraintt ≤ x – TR≤ t in all remaining Solutions.
4. Markx as Executed.
5. Compute-Dispatch-Info (Solutions).

Update-for-Violated-Bounds (STP[i] Solutions)
1. LetU = {U (x, k)| U (x, k) < Current-Time}
2. Remove from Solutions all STPsk that appear inU.
3. Compute-Dispatch-Info (Solutions).

Compute-Dispatch-Info (STP[i] Solutions)
1. For each eventx in Solutions
2. {If x is enabled
3. ET = ET∪ <x, TW(x)>}.
4. Let U = the set of upper bounds on time windows, U(x,i) for each still un-

executed action x and each STPi.
5. Let NC, the next critical time point, be the value of the minimum upper
bound in U.
6. Let UMIN = {U(x, i)| U(x,i) = NC}.
7. For eachx such that U(x,i) ∈ UMIN, let Sx = { i | U(x,i) ∈ UMIN}
8. {Initialize F = true;
9. For each minimal solution MinCover of the set-cover problem (Solu-

tions,∪ Sx), let F = F ∧ (∨ x | Sx∈ MinCoverx).
10. DF = <F, NC>.}

Figure 1. The Dispatch Algorithm
third desirable property for dispatchers ismaximal flexibility: they should not issue a
notification that unnecessarily eliminates a possible execution, i.e., an execution that
respects the constraints of the underlying plan. Finally, we will require dispatch algo-
rithms to beuseful, in the sense that they really do some work. Usefulness will be
defined as producing outputs that require only polynomial-time reasoning on the part
of the executive. Without a requirement of usefulness, one could achieve the other
three properties by designing a DTP dispatcher that simply passed the DTP represen-
tation of a plan on to the executive, letting it do all the reasoning about when to exe-
cute actions.

421

Lecture Notes in Computer Science6

Our dispatch algorithm has these four properties, as proved in [5]. The proofs de-
pend on a more precise notion of how the dispatcher and the executive interact. The
dispatcher issues anotification sequence,a list of pairs <ET,DF>1 . . . ,<ET,DF>n,
with a new notification issued every time an event is executed or an upper bound is
passed. The executive performs anexecution sequence, a list x1= t1, …, xn=tn indi-
cating that eventxi is executed at timeti, subject to the restriction thatj>i ! tj > t i.
An execution sequence is complete if it includes an assignment for each event in the
original DTP; otherwise it is partial. The notification and execution sequences will be
interleaved in anevent sequence. We associate each execution event with the preced-
ing notification, writing Notif(xi) to denote the notification of eventxi.

Definition. An execution sequenceE respectsa notification sequenceN iff
1. For each execution eventxi=t i in E, <xi, TW (xi)> appears in ET of Notif (xi) and

ti ∈ TW(xi), i.e., each event is performed in its allowable time window.
2. For each DF=<F,t> in N, {xi |xi = t i ∈ E andti ≤ t} satisfiesF. That is, the execu-

tion sequence satisfies all the deadline formulae.

Theorem 1: The dispatch algorithm in Fig. 1 is correct, i.e., any complete execution
sequence that respects its notifications also satisfies the constraints of D.
Theorem 2: The dispatch algorithm in Fig. 1 is deadlock-free, i.e., any partial execu-
tion that respects its notifications can be extended to a complete execution that satis-
fies the constraints of D.
Theorem 3: The dispatch algorithm in Fig. 1 is maximally flexible, i.e., every com-
plete execution sequence that respects the constraints inD will be part of some com-
plete event sequence.
Theorem 4: The dispatch algorithm in Fig. 1 is useful, i.e., generating an execution
sequence is polynomial in the size of the notifications.

References
1. Muscettola, N., P. Morris, and I. Tsamardinos. Reformulating Temporal
Plans for Efficient Execution. in Proceedings of the 6th Conference on Principles of
Knowledge Representation and Reasoning. 1998.
2. Tsamardinos, I., P. Morris, and N. Muscettola, Fast Transformation of Tem-
poral Plans for Efficient Execution, in Proceedings of the 15th National Conference
on Artificial Intelligence. 1988,AAAI Press/MIT Press: Menlo Park, CA. p. 254-261.
3. Wallace, R.J. and E.C. Freuder, Dispatchable Execution of Schedules Involv-
ing Consumable Resources, in Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling. 2000.
4. Dechter, R., I. Meiri, and J. Pearl, Temporal Constraint Networks. Artificial
Intelligence, 1991. 49: p. 61-95.
5. Tsamardinos, I., Constraint-Based Temporal Reasoning Algorithms, with
Applications to Planning. 2001.

422

Optimising Plans using Geneti ProgrammingC Henrik Westerberg and John LevineCISA, University of Edinburgh,80 South Bridge, Edinburgh, EH1 1HNfarlw,johnlg�dai.ed.a.ukhttp://www.dai.ed.a.uk/homes/arlw/Abstrat. Finding the shortest plan for a given planning problem isextremely hard. We present a domain independent approah for planoptimisation based on Geneti Programming. The algorithm is seededwith orret plans reated by hand-enoded heuristi poliy sets. Theplans are very unlikely to be optimal but are reated quikly. The sub-optimal plans are then evolved using a generational algorithm towardsthe optimal plan. We present initial results from Bloks World and foundthat GP method almost always improved sub-optimal plans, often dras-tially.1 IntrodutionFinding any plan for planning domains is often a diÆult task, but we are oftenmore interested in the even harder task of �nding optimal or near optimal plans.The urrent fastest planning systems use heuristis and hill-limbing tehniques.However, no heuristi is perfet and plans found in this way are often sub-optimal, in the sense they use more ations to ahieve the goal state than areneessary.We present a domain independent tehnique, based on Geneti Programming(GP) that attempts to optimise linear plans. The system aepts a seed of plansfrom whih to optimise. This seed ould be produed by a urrent planningsystem or plans made using heuristis. The amount of omputational e�ort todevote to the optimisation stage an also be set by the user by setting variousparameters of the system. The GP algorithm also has anytime behaviour, andould return the best urrent plan at any time during the run.Using the Geneti Planning optimisation system, we experimented on twodomains: Bloks World Domain, and the Briefase Domain [6℄. The Bloks Worldproblems were kindly donated to us Jose Ambit�e. The results of the BriefaseDomain have been omitted due to spae restritions. During the experimentationwe were looking for how muh the initial plans ould be shrunk depending onthe type of heuristis used, the behaviour of the system as it operated, and whathanges we ould make to the urrent system to improve its ability.
423

2 Plan Optimisation via Geneti ProgrammingWe present here one possible implementation of using Geneti Programming asa linear plan optimiser. We used two di�erent hand-enoded poliy sets for theBloks Domain in order to seed the initial population with orret but overly longplans. We then used a generational algorithm with standard geneti operators inorder to optimise those plans [2℄. We based our work on a previously implementedgenerational algorithm for linear planning [8℄.The following implementational details have many alternatives, and are not�xed. One of the strengths of our approah is that the Fitness Funtion andSimulation stage an be altered to look for di�erent ost aspets besides thesimplisti plan length.Plan Representation: Plans are represented as linear lists of sequential,instantiated, atomi ations. Eah atomi ation ontains one operator and itsarguments.Simulation: The simulation stage takes an individual or plan and then at-tempts to apply all the ations. During the simulation stage various attributesof the plan an be reorded suh as how many ations there are in the plan andwhat e�et the plan had on the initial state. This information an then be usedas input by the �tness funtion.Fitness Funtion: The �tness funtion takes the output of the simulationstage and presribes a �tness value to individual based on the information givento it. In the ase of this system the �tness funtion has two parts. The �rst partsays whether the plan ahieves all the goals not. The seond part is the numberof ations in the plan and is used as a tie-breaker in tournament seletion.2.1 Geneti OperatorsThere is a large hoie of geneti operators to be used during the optimisationstage. We have taken the position of keeping things simple and stohasti. Onealternative is to implement domain spei� operations, suh as rewrite rules, foroptimising partiular domains.Crossover: This system implements 1-point rossover.Reprodution: This is the simplest operator and it opies the seleted par-ent into the next population.Shrink Mutation: This type of mutation simply deletes a randomly seletedation from the parent.Move Mutation: This type of mutation moves a randomly seleted ationto a new randomly seleted position.Mutations our on hildren reated by either reprodution or rossover. Theprobabilities of the operators ouring are set by the user. The implementationpresented here is based on an existing system and is by no means optimal forgenerating optimal plans. Improvements that an be made to it and some aresuggested in Setion 5.
424

3 Poliy Set Planning in Bloks WorldThe Bloks World Domain is important beause it is one of the benhmarkingdomains used to ompare di�erent planners. Bloks is also important historiallyas one of the original planning problem domains. In addition, �nding optimalplans for Bloks World problems is known to be NP-hard [3℄. We also hose theBloks World Domain as a fast domain spei� planning algorithm that produesoptimal plans exists for it, alled BWOPT [7℄.Our system uses hand-enoded poliy sets to produe entire populations �lledwith orret but suboptimal plans. A GP optimising system probably worksbetter if the initial populations is diverse. To ahieve this the poliy sets wereinterpreted non-deterministially.The poliy sets generally funtion like this. The rules within eah poliy setare tested sequentially. For the urrent rule the urrent world state is examinedand all ations that ould operate on that state in aordane with the rule aredisovered. At that point, one of the ations is seleted randomly and added tothe new plan. The urrent world state is updated and the formation of the planontinues until all goals in the goal state are ahieved. If the rule allows for noations, the next rule in the rule set is used and if one rule �res then the otherrules are ignored.There are several types of poliy sets that an haraterised by how easy itis to optimise the resulting plan. The three types we are interested in here are:{ Optimal Poliy Sets: These poliy sets always produe optimal plans, forany problem in the domain.{ DM-Optimal Poliy Sets: These poliy sets always produe plans wherethe optimal plan an be disovered by only deleting and moving ations:� 8 2 C ! �2 DM() where C is the set of all plans onstruted by thepoliy set, � is the optimal plan and DM() is the set of all plans whihan be reated by only moving and deleting ations in .{ Satis�ing Poliy Sets: These poliy sets produe orret plans but mayprodue plans that are missing ations whih the optimal plan would need.Poliy Set 11. Disover all ations ahieving well plaed bloks or2. Find all ations moving movable non-well plaed bloks to a new loationPoliy Set 21. Disover all ations plaing movable bloks onto the table then2. Disover all ations ahieving well plaed bloksA well plaed blok is one whih no longer has to move, as it is in its targetloation and all bloks below it are well plaed. A movable blok is one whihis not underneath a blok or already on the table. Poliy Set 1 does not salevery well for larger problem instanes: when the �rst rule provides no ations,
425

it \wanders" around at random until the �rst rule starts to sueed. The �rstpoliy set belongs in the lass of Satis�ing Poliy Sets. The seond poliy setunstaks all the bloks and then staks the bloks bak up in the right order.This poliy set belongs in the lass of DM-Optimal Poliy Sets. This was thepoliy set Ambit�e used in PbR [1℄.4 Experimental ResultsEah experiment was done using the parameters shown in Table 1. We performed25 runs for eah problem, and again for eah poliy set. We experimented using50 Bloks World problems. During the run we reorded the average numberof ations in the �rst best individual (from the seeding stage) and the averagenumber of ations in the last best individual.1 Eah point on the x-axis representsa single problem. The order of the problems is �rst by bloks size, and then byaverage length of the �rst best individual.Parameter SettingTermination Maximum number of generations is 1000Population Size 20 plansInitial Length Maximum 400 ationsTournament Size 2Maximum Plan Size 1000 ationsGeneti Operators 5% rossover and 95% reprodutionShrink Mutation Applied to 5% of hildren, 1 deleteMove Mutation Applied to 5% of hildren, 1 moveReferring to Figure 1, Poliy Set 1 shows signi�ant but not omplete im-provement in plan length after 1000 generations. An additional termination ri-terion was implemented, alled \no hange" whih stops a run if there is nohange in �tness after X generations. We repeated the experiments setting X to5000. Taking the 30 blok problems as an example, these were shrunk down tothe 50 ation mark.Referring to Figure 2, some improvement ould be made to the initial planwithin 1000 generations even though the initial plans were reasonably lose tooptimal. The no hange results managed to to shrink the plans a little more,and taking the 30 blok problems again, these were shrunk down to around the40 ation mark. This di�erene between the two poliy sets is returned to in theonlusions.Also inluded in Figure 2 are results from FF [4℄. We ran the 3 plans produedfor the 30 blok problems using the no hange setup. The results are indiatedwith the triangles, and show signi�ant shrinkage.1 CPU times are not onsidered as the system was implemented using Java, and run-ning on Solaris. System times an be dramatially improved if written for C underLinux.
426

3 6 9 12 15 20 30
0

50

100

150

200

250

Blocks Size

P
la

n
 L

e
n
g
th

Optimal
First Length
Last Length
No Change

Fig. 1. Poliy Set 1 on the Bloks World Problems

3 6 9 12 15 20 30
0

10

20

30

40

50

60

70

80

90

Blocks Size

P
la

n
 L

e
n
g
th

Optimal
First Length
Last Length
No Change
FF
FF − No Change

Fig. 2. Poliy Set 2 on the Bloks World Problems
427

5 Conlusions and Future WorkThe most suessful urrent planners use heuristis and hill-limbing tehniques.However, sine no heuristi is perfet, suh tehniques often produe suboptimalplans, as in the ase of FF. We have presented a linear plan optimisation teh-nique, based on GP, whih attempts to optimise plans. The system is domainindependent, and an be used as addition to existing linear plan synthesisers.The system uses simple operations like mutation and rossover in order to a-omplish this. The system ould optimise plans to varying degrees of suessdepending on where the plans ame from. A tentative onlusion is that plansmade by DM-Optimal poliy sets an be optimised further towards the shortestplan than those made by satis�ing poliy sets.We want to improve on the Generational framework suggested here for planoptimisation. There are a number of alternatives, suh as a steady state algo-rithm, that we ould adopt to derease the length of the resulting plans. Alsothe system ould be redesigned to optimise single plans.We also want to broaden the de�nition of optimal to mean more than justplan length. More ompliated domains with time, plan exeution by an agent,resoures, and so on, would make plan optimisation a multi-dimensional problem.It seems plausible that a geneti tehnique would be suitable for this kind ofoptimisation due to the way �tness funtions and simulation are used.Referenes1. Ambit�e, J.L., Knoblok, C.A.: Planning by Rewriting: EÆiently GeneratingHigh-Quality Plans. In Proeedings of the 14th National Conferene on Arti�-ial Intelligene, Providene RI USA, 19972. Banzhaf, W., Nordin, P., Keller, R.E., Franone, F.D.: Geneti Programming: AnIntrodution. San Franiso CA, Morgan Kaufmann Publishers, 19983. Bylander, T.: The omputational omplexity of propositional STRIPS planning.In Journal of Arti�ial Intelligene, 69(1-2):165-204, 19944. Ho�mann, J., Nebel, B.: The FF Planning System: Fast Plan Generation ThroughHeuristi Searh. In Journal of Arti�ial Intelligene Researh, Volume 14, Pages253-302, 20015. Koza, J. R.: Geneti Programming. The MIT Press, Cambridge MA USA, 19926. Muslea, I.: SINERGY: A Linear Planner Based on Geneti Programming. InProeedings of the 4th European Conferene on Planning, pages 312-324, ToulouseFrane, Springer, Sep 19977. Slaney, J., Thi�ebaux, S.: BLOCKS WORLD TAMED Ten thousand bloks inunder a seond. Tehnial Report TR-ARP-17-95, Automated Reasoning Projet,Australian National University, Ot 19958. Westerberg, C.H., Levine, J.: \GenPlan": Combining Geneti Programming andPlanning. In Proeedings for the UK Planning and Sheduling Speial InterestGroup, Milton Keynes UK, De 20009. Westerberg, C.H., Levine, J.: Investigation of Di�erent Seeding Strategies in aGeneti Planner. In Appliations of Evolutionary Computing, Proeedings of Eu-roGP, pages 505-514, Lake Como Italy, Springer, Apr 2001
428

Demo Papers

A Demonstration of Robust Planning, Scheduling

and Execution for the Techsat-21
Autonomous Sciencecraft Constellation

Steve Chien, Rob Sherwood, Michael Burl, Russell Knight, Gregg Rabideau1,
Barbara Engelhardt, Ashley Davies, Rebecca Castano, Tim Stough, Joe Roden 1

Paul Zetocha, Ross Wainwright, Pete Klupar, 2
Pat Cappelaere, Jim Van Gaasbeck, 3

Derek Surka, Margarita Brito, 4

Brian Williams, Mitch Ingham5

1
Jet Propulsion Laboratory, California Institute of Technology

2
Air Force Research Laboratory
3
Interface & Control Systems
4
Princeton Satellite Systems

5
Space Systems Laboratory, Massachusetts Institute of Technology

Abstract. The Autonomous Sciencecraft Constellation (ASC) will fly onboard

the Air Force’s TechSat-21 constellation (scheduled for launch in 2004). ASC

will use onboard science analysis, replanning, robust execution, model-based

estimation and control, and formation flying to radically increase science return

by enabling intelligent downlink selection and autonomous retargeting. These

capabilities will enable tremendous new science that would be unreachable

without this technology. We offer a demonstration of the planning, scheduling,

and execution framework used in ASC.

1 Context

Robust planning, scheduling, and execution in a real environment is a challenging task.
In general, each of these elements is difficult in their own right, and the fusion of these

can be equally challenging. We offer a demonstration of the integration of each of
these in the real task of operating the Techsat-21 (TS21) constellation of sciencecraft

[4]. Our demonstration includes nominal operations as well as operations with
anomalies. Our system is capable of generating its own science goals based on

previous information-gathering activities. In general, the system as a whole provides
considerable autonomy. The rest of this document describes the specific mission and

its background, as well as our approach to addressing the challenges we face in flying
such a mission.

.

TechSat-21 is scheduled for a late 2004 launch and will fly three satellites in a
near circular orbit at an altitude of 600 Km. The primary mission is one-year in length

with the possibility for an extended mission of one or more additional years. One of
the objectives of TechSat-21 is to demonstrate advanced radar systems. The principal

processor onboard each of the three TechSat-21 spacecraft is a BAE Radiation

hardened 175 MIPS, 133MHz PowerPC 750 running the OSE 4.3 operating system.

.
 Portions of this work were performed at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space
Administration. Other portions were performed at the Massachusetts Institute of

Technology Space Systems and Artificial Intelligence Laboratories, under contracts
from AFOSR and the DARPA Mobies program.

429

OSE was chosen because it is message passing and thus suitable for distributed

applications. Each satellite will have 128 Mbytes of SDRAM as well as considerable
(Gigabytes) of disk storage

2 Autonomy Technologies and Scenario

 The ASC onboard flight software includes several autonomy software components:

1. Onboard science algorithms [1] that will analyze the image data, generate derived

science products, and detect trigger conditions such as science events,
“interesting” features, and change relative to previous observations

2. Model-based mode identification and execution (MI-R) that uses component-based

hardware models to analyze anomalous situations and to generate novel command

sequences and repairs.
3. Robust execution management software using the Spacecraft Command Language

(SCL) package to enable event-driven processing and low-level autonomy
4. The Continuous Activity Planning, Scheduling, and Replanning (CASPER)

planner that will replan activities, including downlink, based on science

observations in the previous orbit cycles

5. The ObjectAgent and TeamAgent cluster management software will enable the

three Techsat-21 spacecraft to autonomously perform maneuvers and high

precision formation flying to form a single virtual instrument

We will demonstrate ASC – specifically autonomous recognition of science events and
response including planning and execution. For example, ASC will monitor lava flows

in Hawaii and respond as follows:

1. Initially, ASC has a list of science targets to monitor.

2. As part of normal operations, CASPER generates a plan to monitor the targets on
this list by periodically imaging them with the radar.

3. During such a plan, a spacecraft images the volcano with its radar.
4. The Onboard Science Software compares the new image with previous image and

detects that the lava field has changed due to new flow. Based on this change the
science software generates a goal to acquire a new high-resolution image of an

area centered on the new flow.
5. The addition of this goal to the current goal set triggers the CASPER planner to

modify the current operations plan to include numerous new activities in order to
enable the new science observation. During this process CASPER interacts with

ObjectAgent to plan required slews and/or maneuvers.
6. SCL executes this plan in conjunction with several autonomy elements. Mode

Identification assists by continuously providing an up to date picture of system
state. Reconfiguration (Burton) achieves configurations requested by SCL. And

ObjectAgent and TeamAgent execute maneuvers planned by CASPER and
requested at run-time by SCL.

7. Based on the science priority, imagery of identified “new flow” areas; are

downlinked. This science priority could have been determined at the original
event detection based on subsequent onboard science analysis of the new image.

As demonstrated by this scenario, onboard science processing and spacecraft

autonomy enable the focus of mission resources onto science events so that the most
interesting science data is downlinked. In this case, a large number of high priority

430

science targets can be monitored and only the most interesting science data (during

times of change and focused on the areas of change) need be downlinked.

3 Planning and Execution Framework

ASC utilizes a hierarchical architecture for planning and execution. CASPER operates
at the highest level of abstraction, creating mission plans in response to high level

science and engineering goals. CASPER performs traditional planning and scheduling
and reasons about high level states and resources. CASPER uses local search, iterative

repair, and continuous planning to respond at the 10s of seconds timescale (for further
details see [2]). CASPER is being deployed in a wide range of applications including

spacecraft operation, rover control, ground communications station automation, and

high level control of unpiloted aerial vehicles.
Scheduled CASPER activities correspond to scripts in the Spacecraft Command

Language (SCL) [10] that provide robust execution. SCL integrates procedural
programming with a real-time, forward-chaining, rule-based system to provide a

“smart” executive command and control function. This functionality can be used to
implement retries use of alternate execution methods for robust execution as well as

fault detection, isolation and recovery (FDIR). SCL is a mature software product, and
has successfully flown on Clementine I and ROMPS.

Mode identification (MI) uses a declarative model to interpret sensor information
to determine the configuration of the system in the presence of incomplete, noisy data.

Mode reconfiguration uses these same models to determine command sequences to
achieve desired configurations. The executive uses the model to track planner goals,

confirm hardware modes, reconfigure hardware, generate command sequences, detect
anomalies, isolate faults, diagnose, and perform repairs.

Our model-based execution framework is an enhanced version of the Burton
system, described in [9] and under development at the MIT AI and Space Systems

laboratories. This framework incorporates the Mode Estimation capabilities of
Livingstone 1 and 2, described in [5] and developed at NASA Ames. The marriage

between the model-based executive and SCL provides a powerful hybrid execution
capability with an expressive scripting language and an extensive capability to

generate novel responses to anomalous situations.
ObjectAgent and TeamAgent [7] provide an autonomous maneuver and

formation flying capability for ASC. At plan time, CASPER consults OA and TA on
the feasibility and resource requirements to perform formation changes, maneuvers,

and slews. At execution time, formation changes, maneuvers, and slews planned by
CASPER and requested by SCL are performed by OA and TA. In this execution time

function OA and TA perform closed loop control in their use of lower-level attitude
and control software to achieve the desired goals.

4 Related Work and Conclusions

In 1999, the Remote Agent experiment (RAX) [6] executed for several days onboard
the NASA Deep Space One mission. RAX demonstrated a batch onboard planning

capability but did not demonstrate onboard science. RAX also included an earlier
version of the Livingstone and Burton mode identification and fault recovery software.

PROBA[8] is a European Space Agency (ESA) mission launching in 2001 that will be
demonstrating onboard autonomy.

The Three Corner Sat (3CS) University Nanosat mission will be using the
CASPER onboard planning software integrated with the SCL ground and flight

431

execution software [3]. Launching in 2002, 3CS will use onboard science data

validation, replanning, robust execution, and multiple model-based anomaly detection.
The 3CS mission is considerably less complex than Techsat-21 but still represents an

important step in the integration and flight of onboard autonomy software.
ASC will fly on the Techsat-21 mission will demonstrate an integrated

autonomous mission using onboard science analysis, replanning, robust execution,
model-based estimation and control, and formation flying. ASC will perform

intelligent science data selection that will lead to a reduction in data downlink. In
addition, the ASC experiment will increase science return through autonomous

retargeting. Demonstration of these capabilities in onboard the Techsat-21
constellation mission will enable radically different missions with significant onboard

decision-making leading to novel science opportunities. The paradigm shift toward
highly autonomous spacecraft will enable future NASA missions to achieve

significantly greater science returns with reduced risk and cost.

5 References

[1] M.C. Burl, W.J. Merline, E.B. Bierhaus, W. Colwell, C.R. Chapman, “Automated

Detection of Craters and Other Geological Features Intl Symp Artificial Intelligence

Robotics & Automation in Space, Montreal, Canada, June 2001

[2] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, “Using Iterative

Repair to Improve Responsiveness of Planning and Scheduling,” Proc Fifth Intl Conf

on Artificial Intelligence Planning and Scheduling, Breckenridge, CO, April 2000.

[3] S. Chien, B. Engelhardt, R. Knight, G. Rabideau, R. Sherwood, E. Hansen, A.

Ortiviz, C. Wilklow, S. Wichman “ Onboard Autonomy on the Three Corner Sat
Mission,” Intl Symposium on Artificial Intelligence Robotics and Automation in Space,

Montreal, Canada, June 2001

[4] S. Chien, R. Sherwood, M. Burl, R. Knight, G. Rabideau, B. Engelhardt, A.
Davies, P. Zetocha, R. Wainright, P. Klupar, P. Cappelaere, D. Surka, B. Williams, R.

Greeley, V. Baker, J. Doan, "The Techsat-21 Autonomous Sciencecraft Constellation",
ProcIntl Symp Artificial Intelligence Robotics and Automation in Space, Montreal,

Canada, June 2001

[5] J. Kurien and P.P. Nayak, “Back to the Future for Consistency-based Trajectory
Tracking,” Proc. National Conference on Artificial Intelligence, Austin, TX, 2000.

[6] rax.arc.nasa.gov, Remote Agent Experiment Home Page.

[7] D. Surka, J. Mueller, M. Brito, B. Urea, M Campbell, “Agent-based Control of

Multiple Satellite Formation Flying,” Intl Symposium on Artificial Intelligence

Robotics and Automation in Space, Montreal, Canada, June 2001

[8] The PROBA Onboard Autonomy Platform, http://www.estec.esa.nl/proba/

[9] B.C. Williams and P.P. Nayak, “A Model-based Approach to Reactive Self-

Configuring Systems,” Proceedings of the National Conference on Artificial

Intelligence, Portland, Oregon, 1996.

[10] Spacecraft Command Language, www.interfacecontrol.com

432

DISCOPLAN: an EÆient On-line System for Computing PlanningDomain Invariants�Alfonso Gerevini1 Lenhart Shubert21 Dipartimento di Elettronia per l'Automazione, Universit�a di BresiaVia Branze 38, 25123 Bresia, Italy. E-mail: gerevini�ing.unibs.it2 Department of Computer Siene, University of RohesterRohester, NY 14627-0226. E-mail: shubert�s.rohester.eduAbstratDisoplan is an eÆient system for disovering stateinvariants in planning domains with onditional e�ets.Among the types of invariants found are impliativeonstraints relating a uent prediation to a uent orstati prediation (with allowane for stati supplemen-tary onditions), single-valuedness onstraints, exlu-siveness onstraints, and several others. The algorithmsused are polynomial-time for any �xed bound on thenumber of literals in an invariant. Some ombinationsof onstraints are found by simultaneous indution, andthe methods an be iterated by expanding operators us-ing previously found invariants. The invariants foundby Disoplan have been shown to enable large per-formane gains in SAT planners, and they an also behelpful in planning domain development and debugging.IntrodutionState invariants (or state onstraints) in planning areproperties of objets or relationships among objets thathold in all states reahable from the initial state. Forexample, a familiar invariant in a bloks world is theproperty that that if one blok is on another, the latteris not lear. In our terminology, this is an impliativeonstraint. Another example is that a blok an be onat most one other blok; this is a single-valuedness on-straint (sv-onstraint).A point that has beome widely reognized in theplanning ommunity (and that we amplify in what fol-lows) is that knowledge of state invariants is importantfor eÆient planning. However, suh knowledge an-not in general be assumed to be available a priori in agiven planning domain. Rather, planning domains aregenerally onsidered fully spei�ed one a set of opera-tors with well-de�ned preonditions and e�ets has beensupplied, along with an initial state. This is defensiblesine state invariants are impliit in the spei�ationof the operators and initial state; i.e., under a Stripsassumption the only properties and relationships thathange when an operator is applied are those spelledout in the e�ets of the operator. So a separate spei-�ation of what remains unhanged when operators areapplied would be logially redundant. However, it isfar from obvious from inspetion of a given set of plan-ning operators and an initial state what the invariantsof the domain are. The goal of our researh has been toformulate automati, eÆient methods for inferring themost important suh invariants, and to implement thesemethods in our Disoplan system.�The on-line Disoplan system an be aessed athttp://prometeo.ing.unibs.it/disoplan. Disoplan iswritten in Common Lisp.

The importane of state invariants for eÆient plan-ning is that they an be used to radially restrit thesearh spae. This is so for any approah to planningthat involves expliit or impliit exploration of inom-pletely spei�ed possible states of the world, as is thease for dedutive planning, regression planning, bidi-retional planning, and planning by inremental on-straint satisfation (in partiular, SAT-based planning).In our work we have foused on SAT-based planners.These impliitly searh a spae of state sequenes, on-strained by disjuntions of ground literals. Their per-formane depends ritially on the invariants added (asground instanes) to the mix of disjuntions, and intu-itively this is beause state invariants onstrain the al-ternative states that are possible at eah time step underonsideration. Some results showing the dramati im-provements in the performane of SAT-based plannerslike SATPLAN [8℄ and MEDIC [2℄ obtainable throughthe use of automatially inferred invariants are inludedin [5℄.Disoplan �nds a variety of di�erent types of on-straints, inluding stati (type) onstraints (most im-portantly, supertype / subtype and exlusion relationsamong stati monadi prediates { ones una�eted byany operator), and prediate domain onstraints (setsof possible argument tuples orresponding to eah pred-iate in the domain, after 0, 1, ..., t ations have o-urred). But the majority of its algorithms are devotedto the disovery of state invariants, using a hypothesize-and-test paradigm. All the algorithms instantiating thisparadigm are appliable to sets of operators onform-ing with Upop or pddl syntax [11, 7℄, allowing forwhen-lauses (onditional e�ets) but not disjuntive oruniversally quanti�ed onditions. We will be referringto the unonditional part of an operator as its primarywhen-lause. The allowane for onditional e�ets is amajor distintion of Disoplan from related systems.Very briey, the hypothesize-and-test paradigm on-sists of hypothesizing invariants � of some partiularsyntati type, suh as impliative onstraints (IMPLIES�) where � and are literals that may ontain uni-versal variables, augmenting these hypotheses with po-tential supplementary stati onditions, and then test-ing them against all when-lauses of all operators andagainst the given initial onditions. In the testing phase,minimal sets � of supplementary onditions are found,up to sets of some limited size (e.g., 2 or 3) that suf-�e to ensure that �) � holds in all states reahablefrom the initial state. The hypothetial invariants �of a partiular type are hosen by inspeting the pre-onditions and e�ets of partiular operators, to �ndonditions that appear to beome or remain true when
433

ertain kinds of e�ets our. The idea is to hoose theonstituents of � in suh a way that a proof by indu-tion of the invariane of � will be at least loally enabled.In this way large numbers of syntatially possible in-variants are eliminated from onsideration. The testingphase an be viewed as an automated indutive proofattempt (with addition of supplementary onditions asneeded to allow the proof to sueed). An importantpoint is that � may atually onsist of multiple hypothe-ses that an be proved to be invariants by simultaneousindution. Typially, suh multiple hypotheses onsistof an impliative hypothesis (IMPLIES �) along withsv-hypotheses orresponding to argument positions in �and oupied by universal variables ourring in onlyone of �, . The point is important sine the invari-ane of the individual formulas in suh ases annot beproved in isolation. Our various hypothesize-and-testalgorithms have been proved to yield orret invariants,and run in polynomial time for �xed bound on the num-ber of supplementary onditions � added to �.In a little more detail, the hypothesize-and-test algo-rithms onform with the following struture (iteratingover all possible andidate onstraints � found in the�rst step).1. Hypothesize a onstraint � based on o-ourrenesof literals in a when-lause w of an operator and inthe orresponding primary when-lause w1 (if di�er-ent). For example, e�ets � and might lead to animpliative hypothesis (IMPLIES �), and possiblysv-hypotheses about the prediates involved.2. Add a set of andidate supplementary onditionsf�1; :::; �ng, onsisting of the stati preonditions of wand w1 and if w 6= w1, the negations of stati preon-ditions of other when-lauses (exept ones that unifywith stati preonditions of w or w1 or their nega-tions).3. Test hypothesis � relative to eah when-lause of eahoperator, using the relevant veri�ation onditions;for eah apparent violation of � �nd the orrespond-ing possible \exuses" for the violation. An exuse is aset of provisos f�01; :::; �0mg, hosen from the andidatesupplementary onditions, that weaken the hypothe-sis suÆiently to maintain its truth. If a violationhas no exuses, abandon the hypothesis �, otherwisereord the set of possible exuses of the violation ona global list.4. Find all minimal subsets (up to a given size, e.g., 3) off�1; :::; �ng that \over" all apparent violations of �;a subset of f�1; :::; �ng overs an apparent violationof � if it ontains all elements of at least one \exuse"for that violation;5. Chek hypothesis (� �01:::; �0m) (i.e., the original hy-pothesis together with added provisos) for eah of theminimal subsets f�01; :::; �0mg of f�1; :::; �ng found inthe previous step for truth in the initial onditions ofthe problem being solved; return the variant hypothe-ses that pass this test as the veri�ed hypotheses.The veri�ation onditions referred to in step 3 de-pend on the form of �, and are designed to ensure thatif � together with spei�ed supplementary onditionsholds in a given state, it also holds in every possiblesuessor state. For example, in the ase of a simple im-pliative onstraint (IMPLIES �) together with a set ofstati supplementary onditions, the veri�ation ondi-tions say (roughly) that any operator e�et mathing �

(de�ne (operator Put):parameters (?x ?y ?z):preondition (and (on ?x ?z) (lear ?x)(neq ?x Table) (neq ?y ?z) (neq ?x ?y)):e�et (and (when (eq ?y Table)(and (on ?x ?y) (lear ?z) (not (on ?x ?z))))(when (and (neq ?y Table) (lear ?y))(and (on ?x ?y) (lear ?z) (not (on ?x ?z))(not (lear ?y))))))Figure 1: A Formalization of the bloks world.must be aompanied by an e�et or persistent preon-dition mathing , or else the preonditions must entailthe falsity of a supplementary ondition; and similarlyfor the ontrapositive, (IMPLIES : :�). (The ondi-tions are atually slightly more ompliated beause ofthe allowane for onditional e�ets.)Types of DISCOPLAN InvariantsThe input of Disoplan is a domain desription on-sisting of the spei�ation of an initial state and a setof extended Strips operators whih may involve ondi-tional e�ets, negated preonditions, onstants, typedand untyped parameters (Figure 1 gives a very sim-ple formalization of the bloks world ontaining some ofthese fetures). In the following we desribe the types ofinvariants that are disovered by the urrent version ofDisoplan (for a more detailed desription the readeris referred to [5, 6℄).Prediate Domain Constraints. Prediate domainonstraints are sets of possible argument tuples orre-sponding to eah prediate in the domain after 0, 1, ...,t ations have ourred. These onstraints are omputedusing a simpli�ed version of the planning graph for thegiven problem [1℄.Stati Prediates and Stati Constraints. Stationstraints are invariants involving type-prediates, i.e.,stati monadi prediates that our positively in theinitial state { ones una�eted by any operator. Stationstraints onsist of a (possibly empty) set of objetsfor eah type-prediate and a list of supertype, subtype,and inompatible relationships between type-prediates.Simple Impliative Constraints. Simple Implia-tive Constraints are onstraints of form ((�)) �1:::�k); where �, , and �1; :::; �k are funtion-free literals, i.e., negated or unnegated atomi formulaswhose arguments are onstants or variables. Suh on-straints are to be interpreted as saying \In every state,for all values of the variables, if � then , provided that�1; ..., and �k". We assume that the variables ourringin � inlude all those ourring in and in the supple-mentary onditions �1; :::; �k . The prediate in � is auent prediate, while may be uent or stati. How-ever, if � ontains variables that do not our in , then is required to be \upward monotoni", in the sensethat no instanes of it an beome false (: does notunify with e�et of any operator; this is ertainly trueif is stati). Finally, we require �1; :::; �k to be stati.The following is an example of this type of onstraintin the bloks world stating that the table annot be onany blok: 8x; y ON (x; y)) NEQ(x;TABLE).Single-valuedness Constraints. An sv-onstraintstates that the value of a ertain prediate argumentis unique for any given values of the remaining argu-ments. An example of an sv-onstraint is the followingbloks-world onstraint stating that any objet an beON at most one other objet:
434

8x; y; z:(ON (x; y) ^ON (x; z))) y = z:Impliative Constraints + Single-ValuednessConstraints. These invariants are formed by an im-pliative onstraint and a set of sv-onstraints that aresimultaneously disovered by Disoplan. We distin-guish two ases whih require di�erent veri�ation on-ditions: the ase of subsumed variables and the ase ofnon-subsumed variables. The bloks-world onstraint((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE))is an example of a ombined impliative and sv-onstraint for the �rst ase. In general, the implia-tive onstraints we are onsidering here have as theiranteedent a positive literal that ontains at least one\starred" variable not ourring in the onsequent, andzero or more \unstarred" variables ourring in the on-sequent. The stars indiate that for all values of theunstarred variables, the anteedent holds for at mostone tuple of values of the starred variables.In the seond ase we have impliations in whih bothanteedent and onsequent ontain variables not on-tained in the other. All suh variables are \starred",while the shared variables are unstarred. An example isthe following onstraint from the Logistis domain:((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)).This is an exlusive state onstraint, i.e., it states thatno objet an simultaneously be AT something and INsomething (and in addition an objet an be AT no morethat one thing, and IN no more than one thing).Antisymmetry Constraints. Antisymmetry on-straints are partiular impliative onstraints of the form((IMPLIES (P t1 t2) (NOT (P t2 t1))) �1 �2:::�n),where t1 and t2 an be onstants or universally quan-ti�ed variables, and �1; :::; �n are supplementary ondi-tions whose variables are a subset of ft1; t2g. An exam-ple of an antisymmetry onstraint in the bloks world is8x; y: ON (x; y)) :ON (y; x),i.e., if one objet is on another, then the seond is noton the �rst.OR and XOR Constraints. OR and XOR-onstraints are state onstraints of the form(([X℄OR �) �1 �2:::�n),where � and are positive uent literals, suh thatnon-shared variables are existentially quanti�ed, whileshared variables are universally quanti�ed, and wherethe variables in �1, �2, ..., �n an only be variablesshared by � and . An example of an XOR-onstraintin the logistis domain is((XOR (AT ?X ?Y) (IN ?X ?Z)) (OBJECT ?X)),stating that in any reahable state, any objet is eitherat some plae or in something.Strit Single-Valuedness and n-Valuedness Con-straints. This type of invariant is a generalization ofsv-onstraints. A nv-onstraint states that a ertainprediate an be bound to at most n arguments for anygiven values of the remaining arguments. A strit nv-onstraint states that a ertain prediate is bound toexatly n arguments for any given values of the remain-ing arguments. An example of a strit nv-onstraintwith n = 1 in the bloks world is the invariant statingthat any blok is on exatly one thing (either anotherblok or the table).Using \Expanded Operators" to Infer FurtherConstraints. Disoplan's pakage inludes routines

PDDL
to

UCPOP
compiler

DISCOPLAN
to

F.O.L.
compiler

PLANNER

Operators and

Init/goal states

(PDDL or UCPOP)

DISCOPLAN

HUMAN USER

PDDL UCPOP

Figure 2: General sheme of Disoplan's input/outputfor expanding an operator with a set of given invariants.The operator expansion onsists of enrihing the opera-tor desription with additional preonditions and e�etsthat are entailed by the given invariants. By using ex-panded operators Disoplan may infer new invariants,whih an be used to expand the operators again. Thisan be iterated until no new onstraints are inferred.Constraints with Exeptions. Some hypothesesare rejeted by Disoplan only beause they are notveri�ed against the initial state. For example, onsiderthe bloks world formalization of Figure 1, where wehave just one operator in whih the parameters are nottyped. If we have the simple initial state ((ON A TABLE)(ON C A) (CLEAR C) (ON B TABLE) (CLEAR B)), Disoplandisovers (ON ?X ?*Y), whih then beomes a hypothesiswith a strit sv-onstraint ((ON ?X ?Y!1) in Disoplanformat). But (ON ?X ?Y!1) is not on�rmed beause thetest against the initial state fails. This is beause theobjet TABLE is on nothing in the initial state. In orderto deal with these exeptions, we have reently weakenedthe test against the initial state, so that a hypothesis anbe veri�ed by restriting the domain of ertain variables.In our example (ON ?X ?Y!1) an be satis�ed in the ini-tial state, provided that ?X is not instantiated to TABLE.Hene, Disoplan weakens the hypothesis by exludingTABLE from the domain of ?X, and derives ((ON ?X ?Y!1)(NOT (MEMBER ?X (TABLE)))).These exeptions are omputed during the testagainst the initial state by keeping trak of uni�ers thatassign anomalous tuples of values to the unonstrainedvariables, i.e., tuples for whih strit single-valuednessis violated (e.g., TABLE=?X in the previous example), andweakening the onstraint by exluding these values fromthe domains of the relevant variables.This analysis of the initial state is also used to deriveadditional supplementary onditions resuing hypothe-ses that were rejeted beause a required simultaneoussv-onstraint was not satis�ed in the initial state (whileall the other required veri�ation onditions were satis-�ed). For example, if in the logistis domain the initialstate of a problem ontains the fats (AT ORANGES MIAMI),(AT ORANGES ORLANDO) and (OBJECT ORANGES), then the in-variants((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X))annot be inferred. However, Disoplan infers((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)(NOT (MEMBER ?X (ORANGES)))).11The omplete output for these examples an beseen by running Disoplan on-line at the web sitehttp://prometeo.ing.unibs.it/disoplan.
435

Interating with DISCOPLAN on-lineThe general input/output sheme of Disoplan is de-pited in Figure 2. The input domain and problem de-sriptions an be spei�ed using the syntax of eitherUpop or pddl. Sine the ore funtions of Disoplanassume Upop desriptions, when the input is spei�edusing pddl, it is automatially translated into a Upopset of operators.The output of Disoplan an be given as input toeither a planner that an exploit this information, orto a domain developer, as an aid to domain spei�a-tion and debugging. The syntax of the output an beeither FOL or the ompat format using impliit quan-ti�ation and \starred" variables as in the previous se-tions. The ompatness of the starred-variable formatis due to the fat that it allows an impliative or ex-lusive onstraint to be augmented with simultaneouslydiovered sv-onstraints merely by starring some vari-ables, rather than adding expliit FOL formulas. TheFOL desription of the state onstraints is obtained bya postproessing step translating the onstraints om-puted in Disoplan format into FOL.Disoplan on-line is a version of the system that anbe remotely run through any web browser. In partiu-lar, from the \test and demo" page of the web site ofDisoplan the user an run Disoplan either on a setof prede�ned domains and problems, or on any otherdomain and problem that is supplied by the user fromher/his loal mahine (see Figure 3). Before runningthe system, the user an set some parameters, suh asthe style of the output, the maximum number of supple-mentary onditions an invariant an have, the automatiomputation of the operator parameter domains usingtehniques desribed in [4℄, et. Finally, the user aninspet the domain and problem seleted.Related Work and ConlusionsWe have skethed how many natural types of state in-variants in planning domains with onditional e�etsan be eÆiently inferred, and have desribed the im-plemention of our tehniques in the Disoplan system.The invariants inferred inlude prediate domain on-straints, relations among stati type prediates, implia-tive onstraints, strit and non-strit sv-onstraints,ombinations of impliative and sv-onstraints (wherethese annot be inferred in isolation), and OR and XORonstraints. All invariants are found by algorithms thatare polynomial-time for any �xed bound on the num-ber of literals in an invariant, and the algorithms an beiterated to �nd additional invariants after expanding op-erators using previously found invariants. The outputsan be presented as FOL formulas or in a onise formatwith impliit universal quanti�ation and \starred" vari-ables indiating single-valuedness. The automatiallyderived invariants have been shown to radially boostthe performane of SAT planners, and are also poten-tially useful for other planning styles, and as a help indomain analysis and debugging.Other approahes for the automati inferene of stateinvariants have been proposed inluding [10, 9, 3, 13,14, 12℄, but to the best of our knowledge the only otherimplemented system that is available is Fox and Long'sTim. A major di�erene between the Disoplan andthese approahes is that Disoplan an proess do-mains spei�ed using a more expressive planning lan-guage. In partiular, Tim does not handle opera-

Figure 3: Test and Demo page of Disoplan on-linetors with onditional e�ets and negated preonditions.Moreover, disoplan infers some types of onstraintsthat are not inferred by Tim, suh as antisymmetryonstraints, XOR-onstraints and some impliative on-straints involding variable binding onstraints or pred-iates without parameters.2 On the other hand, someof Tim's \state membership invariants" and \unique-ness invariants" are not inferred by the urrently imple-mented version of Disoplan.It remains unlear how important the \omissions" ineah system, relative to the other, are for planning anddomain analysis purposes. In any ase a reasonablestrategy at this time, for builders of planning systemsthat an bene�t from state invariants, would be to om-bine the invariants found by Tim and Disoplan.We have developed some further algorithms for in-ferring invariants, beyond those implemented in Dis-oplan. The most general of these is an algorithm forinferring n-ary disjuntions of uent literals, togetherwith sv-onstraints and stati supplementary onditions,for n not limited to 2 (as at present). This algorithm isa andidate for future implementation.Referenes[1℄ A. Blum and M.L. Furst. Fast planning through planning graph analysis.In Pro. of IJCAI-95, pp. 1636{1642. 1995.[2℄ M.D. Ernst, T.D. Millstein, and D.S. Weld. Automati SAT-ompilationof planning problems. In Pro. of IJCAI-97, pp. 1169{1176. 1997.[3℄ M. Fox and D. Long. The automati inferene of state invariants inTIM. JAIR, 9:367{421, 1998.[4℄ A. Gerevini and L. Shubert. Aelerating Partial-Order Planners: SomeTehniques for E�etive Searh Control and Pruning. JAIR, 5:95{137,Sept. 1996.[5℄ A. Gerevini and L. Shubert. Inferring state onstraints for domain-independent planning. In Pro. of AAAI-98, pp. 905{912. 1998.[6℄ A. Gerevini and L. Shubert. Inferring state onstraints in disoplan:Some new results. In Pro. of AAAI-00, pp. 761{767. 2000.[7℄ M. Ghallab, A. Howe, G. Knoblok, D. MDermott, A. Ram, M. Veloso,D. Weld, and D. Wilkins. PDDL { planning domain de�nition language.Available at http://s-www.s.yale.edu/homes/dvm/.[8℄ H.A. Kautz and B. Selman. Pushing the envelope: Planning, proposi-tional logi, and stohasti searh. In Pro. of AAAI-96, 1996.[9℄ G. Kelleher. Determining general onsequenes of sets of ations. Teh-nial Report TR CMS.14.96, Liverpool Moores University, 1996.[10℄ J. Kelleher and A. Cohn. Automatially synthesising domain on-straints from operator desriptions. In Pro. of ECAI-92, pp. 653{655.1992.[11℄ J.S. Penberthy and D.S. Weld. UCPOP: A sound, omplete, partialorder planner for ADL. In Pro. of KR'92, pp. 103{114. 1992.[12℄ U. Sholz. Extrating state onstraints from PDDL-like planning do-mains. In Working Notes of the AIPS00 Workshop on Analysing and Ex-ploiting Domain Knowledge for EÆient Planning, pp. 43{48. 2000.[13℄ J. Rintanen. A planning algorithm not based on diretional searh. InPro. of KR'98, pp. 617{624. 1998.[14℄ J. Rintanen. An iterative algorithm for synthesizing invariants. InPro. of AAAI-00, pp. 806{811. 2000.2Examples of these onstraints are: ((IMPLIES(ON ?X ?Y) (NEQ ?X ?Y))) in the bloks works, and ((IMPLIES(HASBANANAS) (HASKNIFE)) in the Monkey domain.
436

CODA: Coordinating Human Planners

Karen L. Myers, Peter A. Jarvis, and Thomas J. Lee

AI Center, SRI International, Menlo Park, CA USA ?

Abstract. E�ective coordination of distributed human planners requires
timely communication of relevant information to ensure the overall co-
herence of activities and the compatibility of assumptions. The CODA
system provides targeted information dissemination among distributed
human planners as a way of improving coordination. Within CODA, each
planner declares interest in di�erent types of plan changes that could im-
pact his or her local plan development. As individuals develop plans using
a plan authoring tool, their activities are monitored; changes that match
declared interests trigger automatic noti�cation of appropriate planners.
In this way, distributed planners can receive focused, real-time updates
of plan changes that are relevant to their local planning e�orts.

1 Introduction
The scope and complexity of large-scale planning tasks often necessitates coop-
eration among multiple planners with di�ering areas of expertise, each of whom
contributes portions of the overall plan. These planners may be distributed both
geographically and temporally, thus further complicating coordination.

As a concrete illustration, consider special operations forces (SOF) mission
planning for the military (the motivating domain for our work). SOF planning
involves numerous people working on separate but interconnected facets (e.g.,
strategy, logistics, medical, intel) of an overall plan. The SOF planning pro-
cess is time constrained, concurrent, and iterative. Individual planners construct
subplans based on their expectations for the operating environment and re-
quirements. As the overall plan develops, expectations evolve and modi�cations
must be made. Currently, such changes are communicated informally by word
of mouth, or transmitted in batch mode at regularly scheduled coordination
sessions. This approach can lead to omissions and delays that reduce the e�ec-
tiveness of the planning process and the quality of the resulting plans.

The SOF planning domain lies well beyond the range of current automated
planning technologies. Moreover, fully automated approaches are unlikely ever
to succeed because (a) planning for this domain involves a huge strategic com-
ponent that is extremely di�cult to model, and (b) successive planning tasks
(e.g., disaster relief, counter-terrorism) tend to be unique, making it di�cult to
formulate reusable background knowledge with adequate coverage.

Techniques from the AI planning community can still contribute to complex
domains of this type. In particular, plan authoring tools can improve the plan

? This work was supported by DARPA Contracts F30602-97-C-0067 and F30602-00-
C-0058, under the supervision of Air Force Research Laboratory { Rome.

437

 Matcher

Plan

Awareness

Reqmts

Local Plan

PAR

Updates

Plan Change

Info

Alert Module

 Global Plan

Plan Editor

Observer

Background

Theory

 Matcher

Plan

Awareness

Reqmts

Local Plan

PAR

Updates

Plan Change

Info

Alert Module

Plan Editor

Observer

Background

Theory

Fig. 1. CODA Architecture

development process [2, 3]. Plan authoring tools provide a structured set of plan
editing operations that support users in developing large-scale plans, yielding
principled representations of plans with well-de�ned semantics. Their main role
is to augment rather than replace human planning skills, but they may provide
limited automated capabilities. Planning aids can be de�ned that reason over
the plan structures produced by these tools, including capabilities for supporting
multiplanner coordination.

The CODA system (Coordination of Distributed Activities) provides auto-
mated support for focused information sharing during collaborative plan devel-
opment by a team of humans using plan authoring tools [5]. CODA is designed
for applications where distributed human planners are assigned responsibility
for developing subportions of a global plan. These subplans are expected to have
a moderate degree of coupling due to the need to reect coherent strategy, to
coordinate actions, and to share limited resources. Within CODA, each plan-
ner declares the kinds of plan changes that are of interest to him or her; we
call these declarations plan awareness requirements (or PARs). As users develop
plans with a plan authoring tool, their activities are monitored. Changes that
match detected PARs are forwarded automatically to the person who declared
interest in them. In this way, distributed planners can receive focused, real-time
updates of plan changes that are relevant to their local planning e�orts.

2 CODA Architecture
Figure 1 presents the architecture of CODA. Within the context of a global
plan, individuals work independently to produce local plans for their assigned
tasks. Plans are developed using a structured plan editor, which supports a broad
range of plan manipulation capabilities. User interactions with the plan editor
are tracked by an observer module, which maintains a history of all editing
operations. As events are logged, a semantically grounded representation of the
local plan is built.

The matcher provides the main inferential capability within CODA, being
responsible for linking observed plan changes to declared PARs. The matching

438

process may involve reasoning with a background theory, whose role is to bridge
the gap between low-level plan edits and the high-level languages used to de�ne
PARs. When matches are detected, noti�cation is sent to the local planner who
registered the matched PAR.

CODA could be linked to a variety of manual and automated planning tools.
Currently, it is connected to the SOFTools Temporal Planner { a plan authoring
tool that supports graphical editing of SOF mission plans [2]. CODA's event
monitoring for the Temporal Planner covers most of the available editing oper-
ations, including creation, modi�cation and deletion of objects, modi�cation of
object attributes, temporal shifting of activities, and resource assignment.

CODA supports two modes for controlling PAR matching. In real-timemode,
PARs are checked after every plan edit, thus providing immediate noti�cation to
planners of relevant changes. Real-time noti�cation is suitable for the endstages
of planning or execution, when plans are mostly stable and changes could be sig-
ni�cant. For earlier stages of plan development, when changes would be frequent
and wide ranging, CODA provides a batch mode of matching. Users can invoke
batch mode to summarize PAR matches for a sequence of plan modi�cations
relative to a designated checkpoint plan.

3 Plan Awareness Requirements

The PAR representation language builds on a general-purpose query language for
the CODA plan ontology. It consists of a typed �rst-order language that builds in
a model of frame representation systems as well as equality, term constructors
for lists and intensionally de�ned sets, and quanti�cation with respect to an
enumerable type. CODA supports two types of PAR: plan-state and transition.

Plan-state PARs describe conditions of a plan and are modeled in terms of a
formula in the plan query language. For example: There is an arrival to staging

base Gold scheduled for after 8 PM. Matching of a plan-state PAR occurs when
a modi�cation results in a plan that satis�es the associated plan query.

Plan transition PARs describe changes between two plan states. We distin-
guish several categories, based on the nature of the underlying plan changes:

{ Instance Creation PARs are used to declare interest in the addition of an
object to a plan that satis�es stated conditions. For example: Addition of

decision points related to weather calls.

{ Instance Deletion PARs are used to declare interest in the removal of an
object from a plan that satis�es stated conditions. For example: Elimination

of a landing zone south of the embassy.

{ Instance Modi�cation PARs are used to declare interest in the modi�cation
of an object that satis�es stated conditions. For example: Changes to move-

ments by the 4th-platoon.

{ Attribute Modi�cation PARs specialize Instance Modi�cation PARs to changes
to a speci�c attribute of a plan object, possibly satisfying stated change con-
ditions. For example: Delays of > 1 hour in time to secure the Church.

{ Aggregate Modi�cation PARs can be used to declare interest in changes to an
intensionally de�ned collection of objects. The change may be to membership

439

in the collection, or to some aggregation value de�ned over the collection. As
an example: Decrease of > 2 in the number of �re-support aircraft.

CODA includes an interactive PAR authoring tool that helps users de�ne the
plan changes in which they are interested. This tool builds on the Adaptive Forms
technology [1], a grammar-based framework that supports the speci�cation of
structured data through a form-�lling interface that adapts in response to user
inputs. With this tool, users create PARs by �lling in forms using an English-like
syntax; as users incrementally specify PARs, remaining options adjust in accord
with constraints of the underlying grammar. An internal compiler transforms the
completed forms into the formal PAR structures required by CODA's matcher.

When designing user input tools, the competing requirements of expressivity
and ease of use must be balanced. To address this issue, CODA's PAR authoring
tool provides two sets of forms. First, a set of general forms provides the full
expressive power of the PAR language. While powerful, these forms require more
e�ort to complete; in addition, people unaccustomed to formal languages require
training to use them e�ectively. Second, the tool includes specializations of the
general forms that capture commonly used idioms within the SOF planning
domain. The specialized forms build in values that users would have to specify
in the general case, thus simplifying the speci�cation process.

4 Conclusions
CODA provides a practical solution to the problem of coordinating distributed
human planners. By having human planners explicitly declare those aspects of
the overall planning process that interest them, CODA can provide timely and
focused distribution of information that will expedite and improve the quality
of coordinated problem solving. The use of a rich, AI-based representation for
plans and planning operations provides the key to this technology.

The AI Planning community has developed several systems that share in-
formation to coordinate multiple automated planners, using techniques such as
constraint propagation [4] and relevance reasoning [6] that analyze the causal
structure of local plans. These approaches do not transfer to settings where hu-
mans author plans because complete causal structures, while a by-product of
automated planning methods, will not be available.

References
[1] M. Frank and P. Szekely. Adaptive Forms: An interaction paradigm for entering

structured data. Proc. of the ACM Intl. Conf. on Intelligent User Interfaces, 1998.
[2] GTE. SOFTools User Manual, January 2000.
[3] C. Knoblock, S. Minton, J. Ambite, M. Muslea, J. Oh, and M. Frank. Mixed-

initiative, multi-source information assistants. Intl. World Wide Web Conf., 2001.
[4] A. L. Lansky. Localized planning with action-based constraints. Arti�cial Intelli-

gence, 98(1-2), 1998.
[5] K. L. Myers, P. A. Jarvis, and T. J. Lee. CODA: Coordinating distributed human

planners. Technical Report, AI Center, SRI International, Menlo Park, CA, 2001.
[6] M. J. Wolverton and M. desJardins. Controlling communication in distributed

planning using irrelevance reasoning. In Proc. of AAAI-98, 1998.

440

An Integrated Planning and Scheduling Prototype for

Automated Mars Rover Command Generation

Rob Sherwood, Andrew Mishkin, Steve Chien, Tara Estlin,

Paul Backes, Brian Cooper, Gregg Rabideau, Barbara Engelhardt

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena, CA 91109

firstname.lastname@jpl.nasa.gov

Abstract. With the arrival of the Pathfinder spacecraft in 1997, NASA began a
series of missions to explore the surface of Mars with robotic vehicles. The
mission was a success in terms of delivering a rover to the surface, but
illustrated the need for greater autonomy on future surface missions. The

planning process for this mission was manual, and very time constrained since it
depended upon data from the current day to plan the next day. This labor-
intensive process was not sustainable on a daily basis for even the simple
Sojourner rover for the two-month mission. Future rovers will travel longer
distances, visit multiple sites each day, contain several instruments, and have
mission duration of a year or more. Manual planning with so many operational
constraints and goals will be unmanageable. This paper discusses a proof-of-
concept prototype for ground-based automatic generation of rover command
sequences from high-level goals using AI-based planning software.

1 Demonstration

We will demonstrate a ground based automated planning prototype for a multi-

instrument Mars rover using the ASPEN planner (Chien, et al., 2000). With this

software, new goals can be added to the existing plan, resulting in conflicts that will be
solved using an iterative repair algorithm. The end result will be a valid sequence of

commands for execution on a rover.

2 Introduction

Over the next 10 years, NASA will be sending a series of rovers to explore the
surface of Mars. The rover planning process uses specialized tools for path planning

and instrument planning, but the actual activity planning and scheduling is a manual
process (Mishkin, et al., 1998). We are using AI planning/scheduling technology to

automatically generate valid rover command sequences from goals specified by the
specialized tools. This system encodes rover design knowledge and uses search and

reasoning techniques to automatically generate low-level command sequences while
respecting rover operability constraints, science and engineering preferences,

environmental predictions, and also adhering to hard temporal constraints.

3 ASPEN Planning System

In ASPEN, the main algorithm for automated planning and scheduling is based on
a technique called iterative repair (Rabideau, et al., 1999, Zweben et al., 1994).

During iterative repair, the conflicts in the schedule are addressed one at a time until
conflicts no longer exist, or a user-defined time limit has been exceeded. A conflict

occurs when a resource requirement, parameter dependency or temporal constraint is

441

not satisfied. Conflicts can be repaired by means of several predefined methods. The

repair methods are: moving an activity, adding a new instance of an activity, deleting
an activity, decomposing an activity into subgoals, abstracting an activity, making a

resource reservation on an activity, canceling a reservation, connecting a temporal
constraint, disconnecting a constraint, and changing a parameter value. The repair

algorithm may use any of these methods in an attempt to resolve a conflict. How the
algorithm performs is largely dependent on the type of conflict being resolved and the

activities, states, and resources involved in the conflict.

4 Rover Motion Planning

ASPEN is able to reason about simple resource and state constraints. ASPEN also

has the ability to use simple external functions to calculate parameters for resource
usage. Many rover constraints are too complex to reason about in a generalized

planning system, or use simple parameter functions to solve. For these, an external
program must be used to reason about these constraints. ASPEN can interface with

other domain-specific programs (or special purpose algorithms) using input files,
library calls, a socket interface, or software interfaces. Motion planning is a good

example of a complex rover constraint requiring a specialized tool.
JPL uses a tool called Rover Control Workstation (RCW) for the motion-planning

problem (Cooper, 1998). RCW provides a unique interface consisting of a mosaic of
stereo windows displaying the panorama of Mars using camera images from both a

lander and a rover. The operations team uses the RCW to make decisions about where
to safely send the rover and what to do when reaching the goal. RCW calculates the

maximum safe tilt angles for the rover traverse goals input by the user. RCW also
calculates the parameters for the rover motion commands. The RCW software outputs

a set of goals that cannot be changed in ASPEN.

5 Mixed-Initiative Rover Planning

While the goal of this work is an integrated fully automated planning system for
generating a rover sequence of commands, the human operator is required to be part of

the planning process. There is not enough CPU capability onboard current flight rovers
to run autonomy software such as path planning or generalized planning. The JPL

developed Web Interface for Telescience (WITS) science-planning tool (Backes, et al.,
1998) and the RCW motion-planning tool each require human interaction. These tools

allow the user to select rover destinations and science targets in three dimensions using
surface imagery. The WITS tool does not actually enforce an order of the goals, but

instead relies on ASPEN to build the plan, schedule, and check the resource usage.

Combining these tools with ASPEN creates a “mixed-initiative” end-to-end
planning system. The ASPEN operator starts with a set of goals from WITS and RCW,

but can then modify the schedule within ASPEN by inserting new goals, changing
existing activities, or deleting activities. The schedule is then generated using a

forward dispatch algorithm followed by an iterative repair algorithm to fix any
conflicts. The repair actions available for each activity are defined within the model

for that activity. If the rover resources are over-constrained or under utilized, the user
may decide to modify the schedule to optimize the rover resource usage, then re-run

the iterative repair algorithm. Several iterations can be performed using ASPEN,
WITS, or RCW to modify the goals. This capability allows the rover operations team

to try several different scenarios before deciding on the best course of action. The
result of this mixed-initiative optimization strategy is a plan with increased science

442

opportunities. Because ASPEN is autonomously checking flight rules and resource

constraints, the plan should also be safer than a manually generated plan.
We are also investigating how the user should be interacting with each of the tools

involved in building a schedule. The science and engineering users are used to
interacting with WITS and RCW, but not with ASPEN. Yet WITS and RCW do not

show resource information and activity ordering. Currently the system requires the
user to utilize the ASPEN GUI for resource and activity information. In the future,

this information could be added directly to the WITS GUI.

6 Difficulties in Modeling Rover Constraints

There are several aspects of modeling the Mars rover domain has proven to be very

difficult. The power system is a good example. The rovers planned for 2003 contain
solar arrays and rechargeable batteries. During the daytime, the power for rover

operations is produced using the solar arrays. If the total power drain from operating
the rover exceeds the available power from the solar arrays, the batteries must be

drawn upon. Because the battery drain is context dependent, the planner needs to
understand all the influences and be able to repair conflicts using this knowledge.

Additionally, computing the energy taken from a battery is a function of the battery
parameters such as temperature, current, voltage, etc. Representing this in a planning

model is very difficult.
To solve the power-modeling problem, we initially used a parameter dependency

function to calculate the amount of solar power and battery power as a function of the
activity duration, available solar array power, available battery power, and power

required by the activity. This technique will only work if there are no overlapping
power activities because the calculated solar array and battery usage are based on the

amount available at the beginning of the activity. In the ASPEN representation,
resource use is assumed to be constant over the duration of the activity. In the same

manner, we can only request the existing value of a resource at the start of the activity
and we must assume that the existing resource profile remains constant until the end of

the activity. In the case of overlapping activities that consume power, the first of the
two activities would calculate the required power based on the available power at the

start time of the first activity. The power available would change during the activity
due to the overlap of the second activity.

Another difficulty with modeling the depletable resources in planning systems is
the usage profile. Some examples in the spacecraft and rover domains include the

memory buffer resource, battery, and fuel. If an activity that uses the memory buffer
resource has duration of several minutes, ASPEN will change the value of the resource

timeline at the beginning of the activity. In this case, the entire amount of memory
buffer resource used by the activity is unavailable for the entire activity. In the

example, the memory resource is set to them maximum value at the start of the

timeline. This is the equivalent of consuming an entire tank of gas in a car at the
beginning of a trip rather than using the gas gradually over the course of the trip.

Likely the actual resource usage is linear over the duration of the activity. For long
activities, the depletable resource value near the beginning of the activity can be very

inaccurate. One workaround for this problem is to split the activity up into several
subactivities, each using an equal fraction of the resource. This solution has several

problems. First, it increases scheduling complexity by adding multiple activities into
the activity database. Second, it creates the problem of trying to determine how many

subactivities is enough to accurately model the resource usage. Third, it’s non-intuitive
for the user to see multiple subactivities that don’t represent actual events. The ideal

443

method for modeling resource usage is to use a generalized timeline. Generalized

timelines allow modelers to provide a set of functions to describe the depletable
resource timeline and its constraints. The generic scheduler can then accurately reason

about the described timelines. The example given contains a linear depletable timeline,
but any other function could have been modeled as well.

7 Conclusions

Planning and reasoning about complex rover resources is a difficult task to

automate. The rover planning process involves interfacing with other specialized
planning tools to create a mixed-initiative end-to-end planning system.

Current approaches to rover-sequence generation and validation are largely

manual, resulting in a labor and knowledge intensive process. This is an inefficient use
of scarce science-investigator and key engineering-staff resources. Automation as

targeted by this tool will automatically generate a constraint and flight rule checked,
time ordered list of commands and provide resource analysis options to enable users to

perform more informative and fast trade-off analyses.

8 Acknowledgement

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

References

P. Backes, K. Tso, and G. Tharp. "Mars Pathfinder mission Internet-based

operations using WITS. Proceedings IEEE International Conference on Robotics and
Automation," pages 284-291, Leuven, Belgium, May 1998.

B. Cooper, “Driving On The Surface Of Mars Using The Rover Control

Workstation,” SpaceOps 98, Japan, 1998.

S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin,

B. Smith, F. Fisher, T. Barrett, G. Stebbins, D. Tran , "ASPEN - Automating Space
Mission Operations using Automated Planning and Scheduling," SpaceOps, Toulouse,

France, June 2000.

A. Mishkin, "Field Testing on Mars: Experience Operating the Pathfinder
Microrover at Ares Vallis," presentation at Field Robotics: Theory and Practice

workshop, May 16 1998, at the 1998 IEEE International Conference on Robotics and
Automation, Leuven, Belgium.

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govindjee, "Iterative Repair

Planning for Spacecraft Operations in the ASPEN System," International Symposium
on Artificial Intelligence Robotics and Automation in Space (ISAIRAS), Noordwijk,

The Netherlands, June 1999.

Zweben, M., Daun, B., Davis, E., and Deale, M., “Scheduling and Rescheduling
with Iterative Repair,” Intelligent Scheduling, Morgan Kaufmann, San Francisco,

1994, pp. 241-256.

444

GIPO: An Integrated Graphical Tool to support
Knowledge Engineering in AI Planning

R. M. Simpson, T. L. McCluskey, W. Zhao,y
R. S. Aylett, C. Doniatz

Department of Computing Science, University of Huddersfield,Queens Gate,Huddersfield,
HD1 3DH, UK y

Centre for Virtual Environments, University of Salford, Salford, M5 4WT, UK z
email: r.m.simpson, t.l.mccluskey, w.zhao @hud.ac.uk

email: R.S.Aylett, c.doniat @salford.ac.uk

Abstract We describe a Graphical Interface for Planning with Objectscalled GIPO
that has been built to investigate and support the knowledgeengineering process in the
building of applied AI planning systems. GIPO embodies an object centred approach
to planning domain modelling. There are two reasons for providing knowledge engi-
neering support for AI planning: (i) to apply a planning system to a new domain to
test the planning system itself (ii) to tackle the end-user problem for the engineer who
might be a domain expert but need not necessarily have a specialist knowledge of AI
planning. Our research is primarily aimed at developing a method and tools to meet
the requirements of the latter case (ii), although the benefits can also be enjoyed by
planning experts.
1. Introduction

Planform [1] is a UK EPSRC grant funded research project in which we are devel-
oping an open platform for the systematic acquisition of planning domain models, and
tools to combine these models with planners to create efficient planning applications.
Part of the work involves the development of an knowledge acquisition method where
knowledge is captured by describing changes that the objects in the domain undergo
as the result of the application of operators. The method requires that we structure the
domain definition around types of objects, the states that these objects may inhabit, and
the possible transitions from state to state that the objects may undergo as a result of the
application of planning operators. The content of this definition provides the basis for
much of the validation and cross-checking that the tool is capable of performing and
allows the domain developer to approach the task of defining operators in a structured
and well-supported manner. The additional support provides the possibility of open-
ing up domain definition to modellers who do not need to be as skilled in AI planning
technology as has traditionally been the case.

In brief,GIPOprovides (a) a graphical means of defining a planning domain model
(b) a range of validation tools to perform syntactic and semantic checks of emerging
domain models (c) dynamic tools to allow the modeller to verify that the domain spec-
ification can support known plans within the domain (d) toolsto import and export
domain definitions to the literal-based PDDL format for typed strips domains, with or
without conditional effects (e) an interface that allows for the integration of third party
planning algorithms to be run and animated from within the tools environment.

445

GIPO is designed on the assumption that the knowledge engineer will be trying to
build descriptions of new domains using a method which imposes a loose sequence on
the sub-tasks to be undertaken to develop an initial model. Once an initial rough model
has been constructed, development may proceed in a more iterative and experimental
manner. A key design goal in building the supporting GUI toolhas been to allow the
creation of a specification with the tool taking care of the detail of the syntax of the
underlying specification. Use of the tool will never result in a syntactically ill-formed
specification.
2. Domain Acquisition

The process of domain model development and the model’s ontology on which this
is based is detailed in the literature (see GIPO home page [2], which also contains a
more detailed version of this paper). Here we sketch the mainsteps of the knowledge
acquisition process, describing how the tool supports thisprocess. We outline two im-
portant steps of the knowledge acquisition process - acquiring domain structure and
acquiring domain actions.

The process starts with the identification of the kinds of objects that characterise the
domain. The method requires that distinct collections of objects, which we callsorts,
can be organised into a hierarchy. A visual tree editor is used to construct a sort tree
and the relations and attributes that characterise the objects of each sort. The key step in
the object centred modelling process is to characterise each valid state of objects of the
sorts that are subject to change during the planning processby defining their relations
and attributes. We refer to sorts subject to such change asdynamicwhere as the sorts
where the objects remain unchanged arestatic. A description of a state of an object
we call asubstate definition. Under classical assumptions each member object of a sort
may be in only one such substate at any time, and that during plan execution the object
goes throughtransitionswhich change its state from one such substate to another.

In parallel with the specification of substates the modellercan now assemble plan-
ning operators. The operator editor forms the heart of GIPO.This editor relies on the
notion that operators and methods generally cause objects to change from one sub-
state to another (calledobject transitions). Whereas substate definition captures domain
structure, operator definition captures domain behaviour.

For each object changed by the application of an operator there will be a transition
defining the set of substates the object may be in prior to the application of the operator
and the definition of the precise substate the object will be in as a result of applying
the operator. We enable the composition of operators by the domain modeller building
a simple graph of the operator by selecting the elements of the transitions from an
available list of the predefined substates the object/sort is capable of being in. Consider
the remove wheel operator taken from atyre changedomain illustrated in figure 1. The
rectangles describe states or generalisations on states ofobjects of identified sorts where
the pair of rectangles in the same row represent thetransitionthat the referenced object
will make as a result of applying the operator, named in theoval box. Here there are
two objects changed by the operation, the wheel itself and the hub that the wheel was
attached to. The hub in the example moves from the state whereit is jacked up and free
to being jacked up and bare as a result of removing the wheel.

446

Fig. 1.The Operator Definition Editor

3. Domain Analysis
During domain model acquisition numerouslocal verification checksare applied to

ensure consistency. Once an initial domain model has been defined as described above,
the domain modeller can runglobal verification toolsto further check the validity of
the specification. Tools which we have developed include goal ordering generators,
a random tasks generator, and a “reachability” analysis tool. The latter tool examines
substates that are defined for a sort and indexes them againstthe operators that use them
either as consumers or producers. This may reveal to the domain modeller that contrary
to expectation some substates cannot be produced and hence could only ever be used in
the initial state of an object, or that some cannot be consumed and hence either are only
useful in the development of objects of other sorts, or are ofthe kind of specified only
in a goal condition.

In addition to static analysis of the specification the domain modeller can dynam-
ically check a domain against a set of problems either by using the manualstepper
(shown in figure 2) or by running a selected planning algorithm against defined test
problem cases. With the stepper, the engineer chooses actions to apply in the current
state to generate the consequent state and proceeds in this manner to verify that the
domain and operator definitions do support known plans for given problems within the
domain. In the example shown in figure 2, again drawn from thetyre changedomain,
each column of circles represents the state of objects at onetime instance. The linked
oval is the operator applied to the states with the links tracing the objects changing and
participating in the application of the operator. The insetdialog box shows an opera-
tor fetch tool in the process of the user choosing instantiations for the parameters. The
panes at the sides show the task being attempted and a list of available operators in the
domain.

447

Fig. 2. The Plan Stepper

Theanimatorallows integrated planners to run against defined problems and graph-
ically displays the transitions made to objects as the plan unfolds. The animator is struc-
turally very similar to the stepper except that the operatorchoice is determined by the
results output by the planner.
4. Future Work

Although the object centred method lifts domain acquisition to a conceptual level,
the details of specifying substate definitions and transitions are still too theoretical for
an unskilled user. We aim in the future to incorporate more inferencing mechanisms to
aid the unskilled user in this task. We are also developing methods to assist the domain
modeller to extract structured knowledge from informal textual descriptions of the do-
main and to assist the modeller to create new models by providing a library of previous
domain models.

References
[1] http://scom.hud.ac.uk/planform
[2] http://scom.hud.ac.uk/planform/gipo

448

ECP-01 Sponsors

Artificial Intelligence
Journal

PLANET 2

The Network of
Excellence in AI Planning

Ministerio de Ciencia y
Tecnología (MCYT)

APSOLVE

A BTexaCT Technologies
Company

AI*IA

Italian Association for
Artificial Intelligence

IP-CNR

Institute of Psychology of
the Italian National
Research Council

Universidad Carlos III de

Madrid

ScALAB

Systems, Complex and
Adaptive Laboratory

PST

Planning and Scheduling
Team at IP-CNR

 IP

