
On the Adequacy of Hierarchical Planning Characteristics for
Real-World Problem Solving?

L. Castillo, J. Fdez-Olivares, A. González

Departamento de Ciencias de la Computación e InteligenciaArtificial
E.T.S. Ingenierı́a Informática. Universidad de Granada

18071 Granada.fL.Castillo,faro,A.Gonzalezg@decsai.ugr.es

Abstract Starting from a set of requirements which should be accomplished by any hierachical planning ap-
proach to real-world problem solving, we show how known hierarchical models may be improved by means
of a hybrid approach. Additionally, on the basis of this hybrid model, which is being applied to a real domain,
we present a compared criticism about known hierarchical planning properties and its usefulness to reflect the
complexity of real-world problems.

Keywords: hierarchical planning, abstraction formalism, planning in real domains

1 Introduction

The use of hierarchical planning techniques is intended to achieve two goals. On the one hand, to improve the
efficiency in time and space of non-hierarchical planning methods [3,4,14,17,18,24,23]. And, on the other hand, to
achieve problem solving strategies closer to those exhibited by humans in real-world problems [5,10,11,20]. In any
case, these hierarchical planning techniques search for a sequence of plansfS1,..,Sng such thatS1 is a solution at
the highest level of abstraction,Sn is a solution at the lowest level of abstraction, that is, a primitive solution, and
every planSi+1 is a valid refinement of a more abstract planSi.

In order to achieve those goals, a hierarchical planning model for real-world problems should be based both
on some knowledge abstraction formalism for domains descriptions and also on some planning process able to
obtain abstract plans and refine them into primitive plans, but in any case, these planning models should satisfy the
following requirements:

– Expressiveness. The domain description language and the abstraction formalism should support the represen-
tation of real-world problems similarly to hierarchical problem solving knowledge representations of humans.

– Simplicity. The stage of domain description should be as simple as possible, that is, it must have the lowest
number of syntactical restrictions and, if possible, it must be supported by knowledge acquisition tools.

– Autonomy. A hierarchical planning model should reduce at maximum the number of decisions taken during
domain description, most of them manually defined by humans,and translate these decisions into the planning
process which reaches a higher responsibility in the problem solving process. The fact is that domain descrip-
tions may be used to code some procedural knowledge, that in many cases may be an excessive amount of this
type of knowledge. The goodness of this practice is not clear. On the one hand, the encoding of procedural
knowledge in domain descriptions may be very efficient and may be a straightforward domain description
technique. However this could lead the planner not to solve some instances of problems if some “precoded
knowledge” is missing. On the other hand, a more declarativeknowledge representation in domain descrip-
tions may be more difficult or not very intuitive to handle but, because of its generality, the scope of solvable
instances of problems is increased.

– Soundness and completeness. A hierarchical planning process should find valid solutions at every abstraction
level whenever they exist.

– Efficiency. In order to adequately exploit a hierarchy of knowledge, a hierarchical planning process should
intensively reuse the knowledge embedded in higher level solutions as a guide to refine lower level solutions
more efficiently.? This work has been supported by the spanish government CICYTunder project TAP99-0535-C02-01.

169



Known models of hierarchical planning hardly satisfy all ofthese requirements, but only some of them, since
there seems to be a trade-off between the attainment of ones with respect to others. In general, this is true both in
non-decompositional models based on abstraction hierarchies [3,17,18,24] and in decompositional models, either
HTN-based models [11,16,20] or POCL-decomposition models [12,13,25].

In the case of decompositional methods, mainlyHTN methods, it is widely recognized that they have a great
expressiveness power for real world problems [16], however, there is a high number of decisions which must be
taken during the description stage of a domain, decreasing the autonomy of the planning process and increasing
the effort needed to represent a domain [20,23]. In the case of non-decompositional methods, mainly abstraction
hierarchies, they are almost completely devoted to improvethe efficiency of planning processes, disregarding
expressiveness issues. They represent an excellent theoretical framework for the study of hierarchical planning
processes, but its lack of expressiveness makes these methods more difficult to apply in real-world problems.
These models may lead to conclude that any improvement in expressiveness implies a decrease in efficiency, and
this is not always true [8].

The need to satisfy the above mentioned requirements has lead to the definition of a set of properties which
only appear in hierarchical planning models. The main properties which can be found in the literature areUpward
Solution Property, Monotonic, Ordered MonotonicandDownward Refinement Property[3,17,23].

These properties are intended to define a reference framework for the design of “good” hierarchical planning
models so that any model which meet these properties, also satisfies some of the requirements, mainly, efficicency
and completeness. However, despite its undoubted theoretical usefulness and the benefit achieved in the devel-
opment of hierarchical planning models, this set of properties may be questioned because they do not take into
account all of the requirements and some property may put in serious risk some of the requirements, mainly expre-
siveness, i.e. an appropriate representation of knowledge, one of the most important issues for solving real-world
problems [9].

However, it is possible to achieve a higher attainment of these requirements by means of a hybrid planning
process which could use decomposition techniques jointly with operator-based techniques to benefit of the advan-
tages of both models [12]. This work analyzes the main shortcomings of known hierarchical planning methods and
presents a hybrid hierarchical planning model which provides a higher accomplishment of the above requirements
and that has been used to solve real-world problems [7,8]. The hybrid process presented in [12] is only focused
on representational issues, by reusing concepts fromHTN and operator-based planning, neglecting details about its
impact on the planning process. This work is a deep effort to explicit the syntax and semantics of decomposition
and modularity based on a representational scheme which differs from that ofHTN and operator-based planning,
and also to explicit the impact of this knowledge representation in the planning process.

In order to correctly argue this criticism, the main issues during the design of a hierarchical planning model
have been identified, and they will be used to show how known hierarchical planning methods present some
shortcomings in every category and how the approach presented in this work solves some of them providing a
higher degree of accomplishement of the requirements. These issues are the following ones:

– Issues related to domain description.
1. The definition of the abstraction formalism.
2. A syntactic description to articulate the decompositionof actions.
3. A semantic description to identify valid decompositionsand modularity relations.

– Issues related to the planning process.
1. Completeness issues in backtracking between different abstraction levels.
2. Consistency issues of the causal structure of plans between different abstraction levels.

Next section will show the shortcomings of known approachesto hierarchical planning under the point o view
of these issues, and this same point of view will be used to show the contributions of this paper in Section 3.
Finally, some reflections about the role of these issues, andmore complex interactions between the requirements
are shown.

2 Shortcomings of known hierarchical models

2.1 Abstraction formalisms

Every hierarchical planning model establishes a set of syntactical tools to allow for the description of different
abstraction levels in a domain. This abstraction formalismis used during the planning process in a “top-down”

170



refinement of high level plans into lower level plans which ends when primitive plans are obtained. The definition
of this abstraction formalism directly has effects on requirements such as expressiveness, simplicity and autonomy.

An optimal abstraction formalism should allow for a real knowledge abstraction at different levels [5,15,21]
so that actions and literals are represented at different granularity levels and the number of syntactical rules and
human decisions are reduced to the minimum in the stage of domain description.

Abstraction hierarchies based models use “literal-oriented” abstraction formalisms in which every literal from
level i remains at leveli+ 1. This is a very hard syntactic restriction since it limits the abstraction of knowledge,
mainly actions, which maintain their semantics at every abstraction level, but described with a different number of
literals, so that this formalism is unable to represent compound actions. For this reason, it is very difficult to apply
in real-world problems [5,21].

On the other hand, decompositional models use an “action-oriented” abstraction formalism, based either on
static decompositions (reduction schemes) [11,23] or on dynamic decompositions (decompositon schemes) [12,13,25]
which allow for a real abstraction of actions so that lower level actions are represented with a higher granularity that
higher level actions. This formalism provides a great expressiveness power for complex problems [16]. However,
in these models, every precondition and effect of a compoundaction must be somehow distributed amongst its
constituent subactions [23,25]. This restriction limits the real abstraction of knowledge, since all of the abstraction
levels share the same set of literals, it decreases the simplicity of domain descriptions and needs a great effort of
human decisions.

2.2 Decomposition mechanism

This is a set of syntactic tools to decompose high level actions into lower level subactions and it influences expres-
siveness, simplicity, autonomy and completeness. With respect to expressiveness and completeness, the decompo-
sition mechanism must allow for alternative decompositions and a true modularity of actions, that is, a different
granularity of knowledge between the compound action and its subactions. With respect to simplicity and auton-
omy, action decomposition should provide the means to describe domains with the minimum amount of knowledge
supplied by humans.

Action decompositions are present in decompositional models but do not appear in abstraction hierarchies.
Although there are some minor differences between them, in both models the decomposition mechanism always
need extra knowledge which has to be coded by hand. It is basedon a set of static reduction rules which must be
supplied by hand during domain description: the antecedentof the rule is a compound action and its consequent is
the set of subactions, its relative ordering a set of causal links between them and even binding constraints. These
mechanisms are very expressive but also make the stage of domain description very difficult.

2.3 Semantic validity of decompositions

The decomposition mechanism establishes a modularity relation between two plansSi andSi+1 at different ab-
straction levels so that every action inSi is mapped into a set of actions ofSi+1. Not every syntactically valid
decomposition is also a semantically valid one, so a set of criteria which feature semantically valid decomposi-
tions, i.e. modularity relations, should be defined taking into account the following issues.

– Every action at leveli+ 1 must be related to an action at leveli.
– A decomposition of an action should not have any internal unsolvable flaw.
– Subactions should not interfere with the effects of higher level of the action whose decomposition they belong

to.

In known decompositional models these issues are responsibility of the human who writes a domain descrip-
tion, decreasing the autonomy of the planner. This shift in responsibility could be avoided by defining general
semantic properties which must be satisfied by any modular decomposition, and giving more responsibility to the
planner to find a valid decomposition by means the syntactic tools of the mechanism and reducing the effort of
coding a domain.

171



2.4 Backtracking between abstraction levels

A key issue in any hierarchical planning algorithm is the need of backtracking between different abstraction levels
during the search process. This is particularly important when at some abstraction leveli a solution cannot be
found and the algorithm needs to go back at leveli � 1 to search for other refinements. This can be seen as a
knowledge-based pruning mechanism which is able to reject dead-end branches at high abstraction levels and
provide an improvement in efficiency. However, depending onthe abstraction formalism and on the features of a
valid solution, there may be somedomainsin which a planner may lose its completeness due to this backtracking
mechanism [17,23].

The existence of these domains led to the definition of theUpward Solution Property(USP) [17,23]. This
property states that if a primitive solution existsSn in a hierarchical domain, then there is a sequence of refinementsfS1,..,Sng which starts at the highest abstraction level and ends at thelowest level such that everySi+1 is a valid
refinement ofSi. It may be seen that the contrapositve of this property allows for backtracking when a solution
does not exist at any abstraction level, i.e., there will be no solution at primitive level.

This property is always satisfied by abstraction hierarchies based models [3,17]. But in the case ofHTN based
models, it is shown [23] that this property does not usually hold but it can be satisfied by the addition of some
syntactic restrictions, mainly theUnique Main Subaction(UMS). This restriction states that all of the preconditions
and effects of a compound action must be reproduced in only one subaction of its decomposition. This restriction
leads to use the same granularity of knowledge in compound actions as well as in their subactions, thus completely
losing the modular relation of a real decomposition of actions. This implies a lose in expressiveness in real-world
problems and, therefore, mostHTN based planners do not satisfy the USP. One might think that ifUSP is not
satisfied, then completeness of decompositional planning algorithms may be put in risk in those situations in
which the algorithm bactracks but, actually, it depends on the representation of the final solution.

When the solution to a problem is seen as the lowest level plan, i.e., a primitive plan, then hierarchical planning
methods may be seen as another heuristic to improve the efficiency of planning, that is, a different way to arrive
at a one-level plan which solves a planning problem. In thesecases completeness may be lost since in some
domains, there can be a primitive solution but no abstract solutions and thus a backtracking criterium based on
the nonexistence of abstract solutions would not be enough.On the opposite, when a solution to a problem needs
a complete hierarchy of valid plans where every abstract plan is completely autonomous and operational, and it
is used as a modularization tool for lower level plans, then the nonexistence of any abstract solution impedes the
existence of a complete hierarchy of valid plans and it can beused as a sound backtracking criterium.

Another property related toUSPis theDownward Refinement Property(DRP) [2,3]. The DRP states that if a
non-abstract, concrete level solution to the planning problem exists, then any abstract solution can be refined to a
concrete solution without backtracking across abstraction levels. This property is also hard to satisfy in real-world
problems. Its fulfilment implies a drastic improvement in efficiency since a hierarchical planner does not need to
backtrack between abstraction levels, but in order to do that, there cannot be more than one decomposition for every
compound action. This is also very restrictive for real-world problems in which the need to represent alternative
decompositions has been widely recognized as a key requirement [16,20].

2.5 Consistency of causal structures through abstraction levels

This last issue consists of reusing the set of causal links established at some abstraction leveli as a guide to refine
a plan at leveli + 1. When every causal link established at leveli is somehow “inherited” at leveli + 1 then a
hierarchical planner is said to satisfy theMonotonic Property[2,17,23,24]. This property is very important with
respect to the attainment of efficiency and consistency of the planning process:

– The efficiency may be improved since the reuse of causal linkswhich have been established at higher levels
avoids the redundancy of the planning process in the sense that flaws previously solved at higher levels do not
need to be reconsidered again at every lower level. Furthermore, unsolvable threats may be detected earlier to
prune dead-end branches.

– From the point of view of the consistency of the planning process, it would not be easily understandable that
any action in a plan at some level could contradict any causalrelation previously established at any previous
level despite of the correctness of that plan in its own levelof abstraction.

Therefore, a hierarchical planning model for real-world problems should satisfy this semantic property. In the
case of abstraction hierarchies, this property directly holds, due to the abstraction formalism and independently of

172



the planning process followed, eitherABSTRIPS[3,17] orABTWEAK [24]. HTN based models provide the means to
inherit causal links between abstraction levels, but once again, they must be hand-coded during domain descriptions
[23] decreasing the autonomy of the planner, whereas in other decompositional models this issue is not addressed
[12,13,25].

Next section will show the main contribution of this paper and how it provides helpful advances in every issue
discussed in this section with respect to both non decompositional and decompositional approaches to planning for
real-world problems.

3 A hybrid model for real-world problem solving

Behavior

Compound Agent

Name

Variables

Properties

States

&

Compound

Actions

Interface

Behavior

Pr imitive Agent

Name

Variables

Properties

States

&

Primitive

Actions

Behavior

Pr imitive Agent

Name

Variables

Properties

States

&

Primitive

Actions

Is Part Of Is Part Of

Figure1. Primitive and Compound agents.

In our model a domain is represented as acompositional hierarchy of agents(see Figure 1), i.e., an agent
hierarchy with different levels of abstraction such that high-level agents (compound agents) are composed by
lower-level agents. Leaf nodes of the hierarchy areprimitive agents, which represent real world entities able to act.
We can find many real applications which fit into these features [22] (robot planning and control [1], manufacturing
systems [6,19] or aerospace applications [12]).

Every agentg of a compositional hierarchy is represented by means of its properties (name and variables) and
its behaviour. The behaviour is modeled as a finite automatonin which every actiona of g is represented by a set
of requirements,Req(a), which must be satisfied in order to achieve a correct execution of the action, and a set of
effects,Efs(a), which include the change of state produced bya over the agentg (we noteAg(a) the agent which an
actiona belongs to). In order to achieve an adequate expressivenessfor real-world planning, the model of actions
embodies two fundamental features:

– Actions are considered as intervals, that is, every actiona of an agentg executes over an interval,[a;End(a)℄,
defined froma until the next change of state ofg, produced by another action of the same agent,End(a).

– The set of requirements is divided into a set of condition types to represent different ways for preconditioning
an action (see [7,8] for more details).

Actions in a compositional hierarchy may beprimitive actions, if they are executed by primitive agents, or
compound actions, if they are executed by compound agents. Both action types share the same structure, but
compound actions, which are represented at a higher level ofabstraction, additionally include a set ofexpansion
methods, which are used to decompose them into subactions. Details about this decomposition mechanism will be
described later in Section 3.2.

Remaining sections are devoted to explain in more detail ourhybrid model, and to show how the key issues of
known hierarchical models, shown in Section 2, may be improved in order to solve real-world problems.

3.1 Abstraction formalism

As opposite to the formalisms described in Section 2.1, the abstraction formalism of our hybrid approach isbe-
haviour oriented, that is, the abstraction is centered on the behaviour of compound agents in such a way that the
behaviour of high level agents is a more abstract representation of the behaviour of their components.

173



Firstly, the knowledge of a compound agent and the knowledgeof its components are related by means of
the Interfaceof the compound agent [6] (noted asIntg). This is a set of simple association rules used to map
literals, variables and states of an agent into literals, variables and states of its components. This mechanism allows
an expert to easily describe and relate actions and literalsof agents at different levels with a different semantic
granularity, such that sets of literals and actions at different abstraction levels are also different.

Secondly, in order to articulate levels of abstraction downwards, during the planning process, we have defined
anarticulation function[6,15]. This function (noted asfg) is a domain independent mechanism defined for every
compound agentg which uses its interface to translate every literal into a new level of abstraction. Hence, every
literal l=(N x1 : : : xn) at leveli, in the description of a compound action�1 of a compound agentg, is translated
into a set of literals of leveli+ 1, whose arguments are consistent with the new level of abstraction. These literals
are built according to these rules:

– If there is a rule inIntg which specifically associatesl to a set of literals, thenfg(l) returns that set.
– Otherwise, the literal is translated component by component, i.e., fg(l) returns the single setf (Intg(n)

Intg(x1) : : : Intg(xn))g
– Finally, if there is no semantic correspondence in the next abstraction level forl, fg(l) returns the empty set.

Both the articulation function and the interface of compound agents may be used to relate knowledge at dif-
ferent granularities. The knowledge of a compound agent, with a lower granularity, may be translated into the
knowledge of its constituent agents, with a greater granularity.

Additionally, there is a sort of assisting tool for domain descriptions: an expert may describe a domain as a
compositional hierarchy from an existingclass libraryof predefined agents which also contains predefined agent
interfaces. That is, rules contained in interfaces may be easily reused, simplifying the process of domain encoding.

This abstraction mechanism provides a real abstraction of knowledge since actions and literals in the hierar-
chy are represented at different granularity levels, but related between them. As a result, the amount of syntactic
constraints which must be observed during the domain description stage is reduced. There is no need to distribute
preconditions and effects at lower abstraction levels since this knowledge will be translated by the articulation
function. Moreover, a human domain designer only has to specify which are the components of a compound agent
and, if needed, to specialize some agents by introducing domain specific knowledge.

As will be seen later, this formalism is able to maintain anHTN-like expressiveness, but with a simpler domain
description process which reduces human decision making atearly stages.

3.2 Decomposition Mechanism

Every compound action� of every agent at leveli, contains a set ofexpansion methodsfm0;m1; : : :g where every
methodmj;j>0 is a set of literals at leveli+ 1 which represent subgoals to be achieved by actions of agentsat the
next leveli+1. This set of literals will be noted asDecomp(�) and they are a semantically equivalent representation
of the effects of� at leveli+ 1.

From the point of view of a human at the domain description stage, it must be taken into account that every
compound action� contains adefault expansion method, m0, whose literals are the result of applyingfg to every
literal in the set of effects of�. Moreover, in most cases this method has shown to be expressive enough to describe
how a compound action may be decomposed.

The decomposition mechanism is a dynamic process, performed at planning time, which decomposes a com-
pound action� at leveli following these two steps:

1. Determine the set of literals at the next leveli+1 which have to be achieved by actions of agents at that level.
It may be obtained fromm0, without any additional knowledge, or by means of another alternative method. .

2. Determine, by means ofPOP-based techniques, the set of actions such that either they satisfy those literals
generated by� or they contribute to their establishment. These actions will make up the real decomposition of�.

This decomposition process preserves the expressiveness of decomposition rules of other models, that is, it
allows for alternative action decompositions, with different grain size. Additionally, it improves decomposition
mechanisms discussed in Section 2.2 in the sense that it doesnot require to know the modular decomposition
1 Greek letters represent higher level actions and latin letters lower level actions.

174



of every compound action, prior to the planning process, andin most cases the only required knowledge is the
interface of every compound agent, covering much better requirements of simplicity and autonomy.

Another feature of this mechanism is that the correctness ofa decomposition does not have to be checked
“a priori” by hand. Instead of this, this task is shifted intothe planning process who becomes the responsible to
dynamically check the correctness of every decomposition at every level of abstraction.

3.3 Semantic validity of decompositions

A key issue in the previously described decomposition process is that it allows to shift the task of determining the
set of subactions which corresponds to a compound action into the planner, while preserving semantic correctness.
This feature leads to define amodularization relationshipbetween two plans at different levels of abstraction. In
the following we will introduce some fundamental concepts that, finally, will allow us to define what we consider
a valid decomposition as acorrect modularization relationship.

Modularization relationships In our compositional hierarchy we use two functions,Sub(�) and Scope(a), to
represent hierarchical relationships “is composed by” and“is part of” respectively, so we say thata 2 Sub(�) ,� = Scope(a). FunctionScope(a) (Figure 2) gathers the general criteria that a hierarchicalplaner has to take into
account to dynamically find the set of subactionsfa1; a2: : : :g of a compound action�. It takes as input an actiona, from a planSi at leveli, which satisfies a literall from the same level, and it decides which is thescopeof a,
that is, the compound action� at the inmediately higher level which contains the actiona in its decomposition.

Scope(a)
IF 9� = aSat�!l; l 2 Decomp(�)
THEN Let f�1; : : : ; �ng such that aSat�!li; li 2 Decomp(�i)

Let� = Non Deterministically Choose One OfFirstf�1; : : : ; �ng
ELSE Let fa1; : : : ; ang such that aSat�!li; li 2 Req(ai)

Let� = Non Deterministically Choose One OfFirstfScope(a1); : : : ;Scope(an)g
Return�

Figure2. FunctionScope

Summarizing, the scope of an actiona is a higher level action� if one of the following conditions holds:

– a establishes several literals generated by different higher level actions,f�1; : : : ; �ng, and� is one of the first
actions of this set (functionFirst returns a set of actions for which no other actions precede them in the set of
actions used as argument). It must be said that a same action may contribute to different higher level actions
but it is assigned to only one of them.

– a establishes several requirements of a set of actions at its same level,fa1; : : : ; ang, and� is one of the first
scopesof this set of actions.

This definition is based on literal satisfaction, so it is possible to dynamically generate, at planning time by
means ofPOP-based techniques, the set of subactions for a given compound action at leveli. Moreover, functions
Scope(a) andSub(�) establish a modularization relationship between plans at two consecutive abstraction levels,
such that every action in a plan at leveli is mapped into a set of actions of a plan at the next leveli+ 1.

Taking into account the terms of this definition,POP-based causal link management is the natural way to
dynamically guarantee a valid causality between the subactions of a compound action.

Correct modularization relationships In order to guarantee a correct modularization relationship, high-level
effects of a compound action� at leveli should not be deleted by any of its subactions at leveli + 1. The set
of literals Decomp(�), generated at leveli + 1 by the above described decomposition mechanism of�, are a
semantically equivalent representation of the effects of� at leveli, therefore these are actually the literals which
should be protected at leveli+ 1.

175



The new concept ofhybrid causal linkis used to protect these literals. In order to understand howa hybrid
causal link is represented, and its semantic implications,it is necessary to know the extended representation of a
causal link used in our model, which embodies the notion of actions interval, a more suitable representation for
real-world domains [7,8].

A causal link[a l!b; 
℄ is a structure used for representing that a requirementl of an actionb has been satisfied
by another actiona and this has to be protected during the action interval[a; 
℄ and
 is not necessarilyEnd(a). So,

an actiona0 threatens a causal link[a l!b; 
℄, whena0 deletesl and the interval[a; 
℄ is unordered with respect to
the interval[a0;End(a0)℄2
Definition 1 (Hybrid causal link.) A hybrid causal link at leveli is a structure represented as[a� l!�; 
℄, where

– � and
 are two compound actions at leveli� 1 which belong to a causal link[� r!�; 
℄ at leveli� 1.
– l is a literal at leveli generated by�, at leveli� 1, such thatl 2 fAg(�)(r).
– a� is an action which satisfiesl and� = Scope(a). 2

A hybrid causal link describes that a literal generated by� and satisfied by some subactiona� of � has to be
protected from any other threatening actiona0, at the same level thana�, which could delete that literal. Thus, a
hybrid causal link will be used to detect and solve ahybrid threat, an analogous concept to that of classic threat
which takes into account the existence of causal links at different abstraction levels.

Definition 2 (Hybrid Threat.) An actiona0 produces a hybrid threat to a hybrid causal link[a� l!�; 
℄ when

i) a0 Del�!l
ii) [a0;End(a0)℄ is unordered with respect to[a; 
℄ 2

Finally, based on these concepts of hybrid causal link and hybrid threats we are able to establish what we con-
sider acorrect modularization relationship. A correct modularization between two plans at consecutiveabstraction
levels exists when there are no hybrid threats within the scope of any compound action, that is, when any effect of
a compound action is not deleted by any of its subactions.

Therefore, any modularization relationship must satisfy that6 9a�; a0� 2 Sub(�); such thata0� produces a hybrid threat to a hybrid causal link[a� l!�; 
℄.
The definition of a correct modularization relationship is aparticular case of a hybrid threat in which the

threatening action and the causal link belong to the same scope. It allows a planner to decide which decompositions
are correct and also to establish the order relations and causal links between its subactions, both dynamically.
Moreover, from the point of view of a human domain designer, the planner will be able to modularize the actions
of one level with respect to the actions of a higher level, a task which is only carried out by humans in HTN
methods.

This procedure to dynamically identify valid decompositions of actions allows for an increase of autonomy
of the planner and a greater simplicity of domains descriptions, since the knowledge which identifies these valid
decompositions does not have to be provided during domain coding. Instead, this knowledge is “distilled” during
the planning process.

3.4 The planning process

The goal of the planning process is obtaining a hierarchicalplan which correctly describes the behaviour of a com-
positional hierarchy of agents at different levels of abstraction. A solution to a problem is a hierarchical plan, that
is, a sequence of plansfS1 : : : Sng at different abstraction levels, where every planSi must be a valid solution
at leveli, which will be called a leveli partial solucion, since it describes the behaviour of agents at leveli. The
lowest level plan is completely made up of primitive actions, and every plan at leveli has a correct modulariza-
tion relationship with respect to the plan at the next abstraction leveli + 1. The algorithm which generates such
hierarchical and modular plans is shown in Figure 3.
2 Two intervals are unordered when their limits are unordered[8].

176



HYBIS (Domain, Agenda, H-Plan)
IF Agenda is emptyAND IsPrimitivePlan (H-Plan[CurrentLevel])
THEN RETURNH-Plan
ELSE LET Flaw = SelectFlaw(Agenda)

IF Flaw consists on a hierarchical refinement
THEN RETURN REFINE (Domain, Flaw, Agenda, H-Plan)
ELSE RETURNGENERATE (Domain, Flaw, Agenda, H-Plan)

REFINE (Domain,�, Agenda, H-Plan)
LET Methods = HowToRefine?(�, Domain, H-Plan )
WHILE Methods is not empty

LET m = ExtractExpansionMethod(Methods)
Insert(m, Plan-H])
LET Result = HYBIS (Domain, Agenda, H-Plan)
IF Result 6= FAIL THEN RETURN Result

RETURN FAIL

GENERATE (Domain, Flaw, Agenda, H-Plan)
LET Alternatives = HowToDoIt?(Flaw, Domain, H-Plan )
WHILE Alternatives is not empty

LET How = Extract (Alternatives)
DoIt (How, Domain, Agenda, H-Plan)
LET Result = HYBIS (Domain, Agenda, H-Plan)
IF Result 6= FAIL THEN RETURN Result

RETURN FAIL

Figure3. A hierarchical hybrid algorithm based on hierarchicalHTN-like refinement and generativePOP-like re-
finement.

This algorithm synthesizes a hierarchical plan by generating and refining a set of plans at different levels of
abstraction. Every planSi describes the behaviour of a set of agents at the same level, and it may be considered a
complete solution to a leveli problem or a partial solution to the whole problem.

The highest level plan,S1, is obtained by generative techniques, and every planSi, for i > 1, is obtained by
means of a hybrid process which interleaves hierarchical (functionREFINE ) and generative (functionGENER-
ATE ) refinements. FunctionREFINE performs the step 1 described in Section 3.2, that is, it decomposes every
compound action� into a set of literals by any of its existing methods and then it inserts these literals in the plan.
FunctionGENERATE performs the step 2 described in Section 3.2 taking into account the validity of decompo-
sitions described in Section 3.3. That is, it satisfies everyliteral by means of generative techniques and establishes
a correct modularization relationship between every compound action and its subactions. FunctionGENERATE
is based on a non-hierarchical POCL planner described in [8].

The process ends when all of the actions in the current plan are primitive actions and that plan has been correctly
modularized.

Next, we will discuss the key issues of backtracking betweenlevels of abstraction, and the consistency of causal
structure through levels of abstraction.

3.5 Backtracking between abstraction levels.

In the algorithm described in Figure 3, backtracking between abstraction levels is done when there is no possibility
to generate a planSi modular and causally correct with respect toSi�1 as seen in Section 3.3. It must be said that,
taking into account the type of solutions obtained by our approach, backtracking between abstraction levels has no
negative effect over the completeness of the algorithm, as discussed in Section 2.4.

A solution is not a primitive plan, as in mostHTN approaches, but a complete hierarchical and modular plan,
that is a sequence of plansfS1 : : : Sng, where the lowest level plan is completely made up of primitive actions,
every planSi is a partial solution at leveli and it has a correct modularization relationship with respect to the plan
at the next abstraction leveli + 1. Hence, if there is no partial solution at some abstraction level, then there is no
possibility to obtain such a complete hierarchy of valid plans, despite of the existence of any later primitive partial
solution. Therefore, in these situations, the need to obtain a complete hierarchy of plans leads to backtrack to the
previous abstraction level to continue the search for alternative refinements. Given that a solution is a complete
hierarchy of plans, as opossite to most HTN approaches in which a solution is a primitve plan, a backtracking
criterium based on the contrapositve ofUSPdoes not put in risk the completeness of the algorithm.

As can be seen, the usefulness of theUSP to backtrack between abstraction levels in real-world planning
depends on how a correct solution is defined. However, our experience in solving real-world planning cases points
to an interesting role of this property in domain validation, which will be outlined in Section 4.

Finally, next section will be devoted to show the monotonicity of the causal structure through different abstrac-
tion levels.

177



3.6 Consistency of causal structures through abstraction levels.

In our hybrid model, a planSi inherits the causal link structure generated in the planSi�1 by means of a dynamic
process at planning time. This process is based on reusing the high level structure of causal links, taking into
account the inheritance rules shown in Figure 4.

RULE 1:
A causal link[� r!�; 
℄ fromSi�1 , such thatfAg(�)(r) 6= NIL ,

has associated a hybrid causal link[a� l!�; 
℄ in Si if
i) l 2 fAg(�)(r)
ii) a�Sat�!l RULE 2:

A hybrid causal link[a� l!�; 
℄ fromSi
has associated a causal link[a l!b; 
℄ in Si if

i) b 2 Sub(�)
ii) aSat�!l; l 2 Req(b)

Figure4. Inheritance rules of causal links

This monotonic inheritance of higher-level causal structures is used to detect and solve hybrid threats. These
hybrid threats represent a violation of a causal link established at leveli by an action at leveli + 1 and they will
become a classic threat at leveli + 1 when all of the actions at leveli had been decomposed. Hence, unsolvable
hybrid threats, which will later become unsolvable classicthreats, may be used for an early detection of dead-end
branches and backtracking before all of the decompositionshave been completed.

In summary, this inheritance of causal structures not only provides a greater expressiveness, since it is the basis
of the dynamic decomposition mechanism, but it also provides a greater efficiency, since it allows for an early
detection of some unsolvable threats exploiting the knowledge synthesized at previous levels.

4 Conclusions

In this work we have shown some advances in hierarchical planning which overwhelm a set of shortcomings on
known hierarchical models, and we have presented a discussion on the adequacy of hierarchical planning properties
for real-world planning, on the basis of a hybrid planning approach developed to solve real-world problems.

Space precludes to justify our proposal with an appropriateexperimentation. It must be said that our model
has been extensively used for the automatic synthesis of hierarchical control programs for manufacturing systems
in which simple domain descriptions and modularity relations play a very important role. This experimentation is
being carried out in close collaboration with experts on industrial domains within a research project, and it will
appear in other paper in preparation.

In any case, all of the improvements which have been proposedhave a common basis: the abstraction formal-
ism based on thearticulation function. This abstraction formalism allows for a high accomplishment of formerly
enumerated requirements (see Table 1 for more details):

– Simplicity: it reduces human effort on syntactic constraints observance and decision making, at domain de-
scription stage.

– Autonomy and expressiveness: it provides the basis for a dynamic action decomposition process performed at
planning time and it allows to obtain “ready-to-use” plans which describe the behaviour of a compositional
hierarchy of agents.

– Soundness and completeness: it also provides the basis for dynamically checking the semantic correctness
through plan levels with different semantic granularity, while preserving completeness.

– Efficiency: the inheritance of causal structures provides the means for an intensive reuse of the knowledge
embedded in higher levels. This reuse of higher level knowledge produces a great benefit on the efficiency
and, in addition, it allows for a more understandable planning process from the point of view of a human.

On the other hand, we have also discussed the adequacy of known hierarchical planning properties for real-
world problem solving. In summary, theDRP is too restrictive and it leads to reduce expressiveness forreal world
problems. However, we have shown that the Monotonic Property is very useful for real-world planning. In par-
ticular, we have introduced a new mechanism which monotonically inherits causal structures between plans at
different abstraction levels, which are represented at different semantic granularity by changing the representation

178



language. Finally, we have shown thatUSPmay be used to bactrack between abstraction levels without putting in
risk the completeness of our hybrid algorithm. This is because the type of solution needed in our approach is not
a primitive plan, but a complete hierarchy of plans. However, the accomplishment of this property is still useful
during domain description process, from a knowledge engineering perspective.

Although the completeness of the planning algorithm could be formally proven, it is always possible to describe
a hierarchical domain with no partial solution at some abstract level, but with a partial solution at ground level.
This means that theUSPis an inherent property to every hierarchical domain, whoseaccomplishment is necessary
to prevent the description of bad domains. However, it couldbe argued that there could be some feedback between
the planning process and the domain description process, such that the planner could be able to detect and suggest
some domain coding errors. This strategy could be implemented by means of a mixed initiative planning process,
such that the planner would inform the expert about the circumstances which invalidate the execution of actions at
a given level (for instance, a unsolvable threat could mean adeadlock between two agents). This situation would
interrupt the hierarchical refinement process until a redefinition of conditions at that abstraction level had been
done.

This mixed initiative process could provide the basis for a dynamic knowledge validation, at different levels of
abstraction, during the planning process. But it must be said that such as mixed initiative redefinition process, at
a single level of abstraction, is only operative with an abstraction formalism like the one presented here, since it
needs a completely differentiated representation at everyabstraction level, otherwise this redefinition should also
be propagated into lower level representations.

At present we are developing an intelligent digital assistant for the interactive development of industrial control
programs on the basis of this hybrid model.

Abstraction formalism Decomp. mechanism Decomp. validity Backtracking C.Links Inherit.

Non-Dec. Models

Literal Oriented Ab-
straction. Same set of
literals for every level.
Hierarchies may be
self-generated.

No No
Always correct. Sat-
isfy USP,DRP.

Satisfy Monotonic
Prop. Direct inheri-
tance.

Decomp. Models

Action Oriented Ab-
straction. Same set of
literals for every level.
Syntactic constraints
about actions literals.

Reduction schemes.
Need extra knowl-
edge. Total or partial
description.

It is restricted by hand
at domain description.

USP depends on UMS.
Directly inherited or
restricted at domain
description.

Hybrid Model

Behavior Oriented Ab-
straction. Granularity
levels of knowledge.
No syntactic con-
straints about actions
literals.

Default expansion
method. No need of
extra knowledge.

All the decision taken
on planning time. Cor-
rect modularization re-
lationship.

Correct, due to solu-
tion features. Mixed
initiative may help to
accomplish USP.

Hybrid c.links are
built at planning
time. Causal inheri-
tance with change of
language.

Table1.Characteristics of hierarchical planinng

References

1. R.C. Arkin. Behavior-Based Robotics. MIT press, Cambridge, MA, 1998.
2. F. Bacchus and Q. Yang. The downward refinement property. In Proceedings of IJCAI 91, pages 286–292, 1991.
3. F. Bacchus and Q. Yang. Downward refinement and the efficiency of hierarchical problem solving.Artificial Intelligence,

71:43–100, 1994.
4. C. Backstrom and P. Jonsson. Planning with abstraction hierarchies can be exponentially less efficient. InProc. of IJCAI

95, pages 1599–1604, 1995.
5. R. Bergman and W. Wilke. Building and refining abstract planning cases by change of representation language.JAIR,

3:53–118, 1995.
6. L. Castillo, J. Fdez-Olivares, and A.González. A hybridhierarchical/operator-based planning approach for the design of

control programs. InProceedings of ECAI’2000. Workshop on Planning, Scheduling and Design. PUK’2000., 2000.

179



7. L. Castillo, J. Fdez-Olivares, and A. González. A three-level knowledge-based system for the generation of live andsafe
petri nets for manufacturing systems.Journal of Intelligent Manufacturing, 11(6):559–572, 2000.

8. L. Castillo, J. Fdez-Olivares, and A. González. Mixing expresiveness and efficiency in a manufacturing planner.To appear
in Journal of Experimental & Theoretical Artificial Intelligence (JETAI), 2001.

9. S. Chien, R. Hill, Jr. X. Wang, and H. Mortenson T. Estlin, K. Fayyad. Why real-world planning is difficult: a tale of two
applications. In M. Ghallab and A. Milani, editors,New directions in AI Plannig, pages 287–298. IOS Press, 1996.

10. K. Currie and A. Tate. O-Plan: Control in the open planning architecture. InBCS Expert systems conference, 1985.
11. K. Erol, J. Hendler, and D. Nau. UMCP: A sound and completeprocedure for hierarchical task-network planning. In

AIPS-94, 1994.
12. T.A. Estlin, S.A. Chien, and X. Wang. An argument for a hybrid HTN/operator based approach to planning. InRecent

Advances in AI Planning.Proc. of 4th European Conference onPlanning ECP’97, pages 182–194, 1997.
13. M. Fox. Natural hierarchical planning using operator decomposition. InRecent Advances in AI Planning.Proc. of 4th

European Conference on Planning ECP’97, pages 195–207, 1997.
14. F. Giunchiglia. Using abstrips abstractions – where do we stand?Artificial Intelligence Review, 13:201–213, 1999.
15. J. Hobbs. Granularity. InIJCAI 85, pages 432–435, 1985.
16. C. Knoblock. AI Planning systems in the real world.IEEE Expert, pages 4–12, 1996.
17. C. A. Knoblock.Generating Abstraction Hierarchies. Kluwer Academic Publishers, 1993.
18. D. E. Sacerdoti. Planning in a hierarchy of abstraction spaces.Artificial Intelligence, 5:115–135, 1974.
19. S.Viswanathan, C.Johnsson, R.Srinvivasan, V.Venkatasubramanian, and K.E. Arzen. Automating operating procedure

synthesis for batch processes. part I: Knowledge representation and planning framework.Computers and Chemical Engi-
neering, 22:1673–1685, 1998.

20. D. E. Wilkins. Domain-independent planning: Representation and plan generation.Artificial Intelligence, 22:269–301,
1984.

21. D. E. Wilkins.Practical planning: Extending the classical AI planning paradigm. Morgan Kaufmann, 1988.
22. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.Knowledge Engineering Review, October

1995.
23. Q. Yang.Intelligent Planning. A decomposition and Abstraction Based Approach. Springer Verlag, 1997.
24. Q. Yang, J. Tenenberg, and S. Woods. On the implementation and evaluation of ABTWEAK.Computational Intelligence,

12:307–330, 1996.
25. R.M. Young, M.E. Pollack, and J.D. Moore. Decompositionand causality in partial order planning. InProceedings of the

Second International Conference on AIPS, 1994.

180


