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Abstract Starting from a set of requirements which should be accahetl by any hierachical planning ap-
proach to real-world problem solving, we show how known dmiehical models may be improved by means
of a hybrid approach. Additionally, on the basis of this hglbmodel, which is being applied to a real domain,
we present a compared criticism about known hierarchi@irphg properties and its usefulness to reflect the
complexity of real-world problems.
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1 Introduction

The use of hierarchical planning techniques is intendecttoese two goals. On the one hand, to improve the
efficiency in time and space of non-hierarchical planninghoés [3,4,14,17,18,24,23]. And, on the other hand, to
achieve problem solving strategies closer to those exduliy humans in real-world problems [5,10,11,20]. In any
case, these hierarchical planning techniques search &auesce of plangS!,...S"} such thatS! is a solution at
the highest level of abstractiofi;* is a solution at the lowest level of abstraction, that is,imftive solution, and
every planS“*+! is a valid refinement of a more abstract piin

In order to achieve those goals, a hierarchical planningehfaod real-world problems should be based both
on some knowledge abstraction formalism for domains detsoris and also on some planning process able to
obtain abstract plans and refine them into primitive plansijrbany case, these planning models should satisfy the
following requirements:

— Expressiveness. The domain description language and si@ation formalism should support the represen-
tation of real-world problems similarly to hierarchicabptem solving knowledge representations of humans.

— Simplicity. The stage of domain description should be agpfnas possible, that is, it must have the lowest
number of syntactical restrictions and, if possible, it trhessupported by knowledge acquisition tools.

— Autonomy. A hierarchical planning model should reduce aximam the number of decisions taken during
domain description, most of them manually defined by humamg translate these decisions into the planning
process which reaches a higher responsibility in the pmlslelving process. The fact is that domain descrip-
tions may be used to code some procedural knowledge, thaimy tases may be an excessive amount of this
type of knowledge. The goodness of this practice is not cl@earthe one hand, the encoding of procedural
knowledge in domain descriptions may be very efficient ang bma straightforward domain description
technique. However this could lead the planner not to sabweesinstances of problems if some “precoded
knowledge” is missing. On the other hand, a more declar&ivavledge representation in domain descrip-
tions may be more difficult or not very intuitive to handle bo¢cause of its generality, the scope of solvable
instances of problems is increased.

— Soundness and completeness. A hierarchical planning gsat®uld find valid solutions at every abstraction
level whenever they exist.

— Efficiency. In order to adequately exploit a hierarchy of wiexdge, a hierarchical planning process should
intensively reuse the knowledge embedded in higher levatisas as a guide to refine lower level solutions
more efficiently.

* This work has been supported by the spanish government Ci@&r project TAP99-0535-C02-01.
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Known models of hierarchical planning hardly satisfy altleése requirements, but only some of them, since
there seems to be a trade-off between the attainment of oitiesaspect to others. In general, this is true both in
non-decompositional models based on abstraction higesr¢,17,18,24] and in decompositional models, either
HTN-based models [11,16,20] or POCL-decomposition modeld.,25].

In the case of decompositional methods, mamityn methods, it is widely recognized that they have a great
expressiveness power for real world problems [16], howehere is a high number of decisions which must be
taken during the description stage of a domain, decreabim@uwtonomy of the planning process and increasing
the effort needed to represent a domain [20,23]. In the chseredecompositional methods, mainly abstraction
hierarchies, they are almost completely devoted to imptbeeefficiency of planning processes, disregarding
expressiveness issues. They represent an excellent tikabfeamework for the study of hierarchical planning
processes, but its lack of expressiveness makes these deatimre difficult to apply in real-world problems.
These models may lead to conclude that any improvement iresgpeness implies a decrease in efficiency, and
this is not always true [8].

The need to satisfy the above mentioned requirements hdddahe definition of a set of properties which
only appear in hierarchical planning models. The main prtiggewhich can be found in the literature &fpward
Solution PropertyMonotonic Ordered MonotoniandDownward Refinement Propeifiy,17,23].

These properties are intended to define a reference frarkdarathe design of “good” hierarchical planning
models so that any model which meet these properties, distiesmsome of the requirements, mainly, efficicency
and completeness. However, despite its undoubted thealresefulness and the benefit achieved in the devel-
opment of hierarchical planning models, this set of prapennay be questioned because they do not take into
account all of the requirements and some property may puriows risk some of the requirements, mainly expre-
siveness, i.e. an appropriate representation of know|emgeof the most important issues for solving real-world
problems [9].

However, it is possible to achieve a higher attainment o$¢hequirements by means of a hybrid planning
process which could use decomposition techniques joinitly @perator-based techniques to benefit of the advan-
tages of both models [12]. This work analyzes the main sbariegs of known hierarchical planning methods and
presents a hybrid hierarchical planning model which presid higher accomplishment of the above requirements
and that has been used to solve real-world problems [7,8&.Hjrid process presented in [12] is only focused
on representational issues, by reusing concepts fomand operator-based planning, neglecting details about its
impact on the planning process. This work is a deep efforkpdi@t the syntax and semantics of decomposition
and modularity based on a representational scheme whifgrglffom that ofHTN and operator-based planning,
and also to explicit the impact of this knowledge repred@man the planning process.

In order to correctly argue this criticism, the main issuasr the design of a hierarchical planning model
have been identified, and they will be used to show how knownahchical planning methods present some
shortcomings in every category and how the approach pregémtthis work solves some of them providing a
higher degree of accomplishement of the requirements.€lissaes are the following ones:

— Issues related to domain description.
1. The definition of the abstraction formalism.
2. A syntactic description to articulate the decompositibactions.
3. A semantic description to identify valid decompositiamsl modularity relations.
— Issues related to the planning process.
1. Completeness issues in backtracking between diffebesttaction levels.
2. Consistency issues of the causal structure of plans ketdierent abstraction levels.

Next section will show the shortcomings of known approac¢béserarchical planning under the point o view
of these issues, and this same point of view will be used tavghe contributions of this paper in Section 3.
Finally, some reflections about the role of these issuesyraorg complex interactions between the requirements
are shown.

2 Shortcomings of known hierarchical models

2.1 Abstraction formalisms

Every hierarchical planning model establishes a set ofagyitial tools to allow for the description of different
abstraction levels in a domain. This abstraction formalismsed during the planning process in a “top-down”



refinement of high level plans into lower level plans whicldewhen primitive plans are obtained. The definition
of this abstraction formalism directly has effects on reguients such as expressiveness, simplicity and autonomy.

An optimal abstraction formalism should allow for a real Wwhedge abstraction at different levels [5,15,21]
so that actions and literals are represented at differertudarity levels and the number of syntactical rules and
human decisions are reduced to the minimum in the stage o&ithoskescription.

Abstraction hierarchies based models use “literal-ogdhabstraction formalisms in which every literal from
leveli remains at level + 1. This is a very hard syntactic restriction since it limitg tbstraction of knowledge,
mainly actions, which maintain their semantics at everyrabton level, but described with a different number of
literals, so that this formalism is unable to represent conmgl actions. For this reason, it is very difficult to apply
in real-world problems [5,21].

On the other hand, decompositional models use an “actiemad” abstraction formalism, based either on
static decompositions (reduction schemes) [11,23] or rathic decompositions (decompositon schemes) [12,13,25]
which allow for a real abstraction of actions so that lowgelections are represented with a higher granularity that
higher level actions. This formalism provides a great esgik@ness power for complex problems [16]. However,
in these models, every precondition and effect of a compaumion must be somehow distributed amongst its
constituent subactions [23,25]. This restriction limfte teal abstraction of knowledge, since all of the abstacti
levels share the same set of literals, it decreases theisitpgf domain descriptions and needs a great effort of
human decisions.

2.2 Decomposition mechanism

This is a set of syntactic tools to decompose high level astinto lower level subactions and it influences expres-
siveness, simplicity, autonomy and completeness. Witha&do expressiveness and completeness, the decompo-
sition mechanism must allow for alternative decomposgtiand a true modularity of actions, that is, a different
granularity of knowledge between the compound action andubactions. With respect to simplicity and auton-
omy, action decomposition should provide the means to desdomains with the minimum amount of knowledge
supplied by humans.

Action decompositions are present in decompositional nsooiet do not appear in abstraction hierarchies.
Although there are some minor differences between themgih imodels the decomposition mechanism always
need extra knowledge which has to be coded by hand. It is basadset of static reduction rules which must be
supplied by hand during domain description: the anteceafahe rule is a compound action and its consequent is
the set of subactions, its relative ordering a set of cairged between them and even binding constraints. These
mechanisms are very expressive but also make the stage aifinldescription very difficult.

2.3 Semantic validity of decompositions

The decomposition mechanism establishes a modularitiioelhetween two plans® andSi+! at different ab-
straction levels so that every actiondi is mapped into a set of actions 8fT*. Not every syntactically valid
decomposition is also a semantically valid one, so a setit#riar which feature semantically valid decomposi-
tions, i.e. modularity relations, should be defined takimg account the following issues.

— Every action at level + 1 must be related to an action at level
— A decomposition of an action should not have any internablvadble flaw.

— Subactions should not interfere with the effects of higkeel of the action whose decomposition they belong
to.

In known decompositional models these issues are resplitysith the human who writes a domain descrip-
tion, decreasing the autonomy of the planner. This shifeegponsibility could be avoided by defining general
semantic properties which must be satisfied by any modulzrdposition, and giving more responsibility to the
planner to find a valid decomposition by means the syntagtitstof the mechanism and reducing the effort of
coding a domain.
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2.4 Backtracking between abstraction levels

A key issue in any hierarchical planning algorithm is thechekbacktracking between different abstraction levels
during the search process. This is particularly importanérvat some abstraction levieh solution cannot be
found and the algorithm needs to go back at level 1 to search for other refinements. This can be seen as a
knowledge-based pruning mechanism which is able to rejeatgtnd branches at high abstraction levels and
provide an improvement in efficiency. However, dependingt@nabstraction formalism and on the features of a
valid solution, there may be sondemainsin which a planner may lose its completeness due to this kaaiihg
mechanism [17,23].

The existence of these domains led to the definition ofUpegvard Solution Propertf{USP) [17,23]. This
property states that if a primitive solution exists in a hierarchical domain, then there is a sequence of refinesme
{&1,..8™} which starts at the highest abstraction level and ends dbwest level such that every*! is a valid
refinement ofS?. It may be seen that the contrapositve of this property alfav backtracking when a solution
does not exist at any abstraction level, i.e., there will basaiution at primitive level.

This property is always satisfied by abstraction hierash&sed models [3,17]. But in the caseHoiv based
models, it is shown [23] that this property does not usuadiidibut it can be satisfied by the addition of some
syntactic restrictions, mainly thénique Main SubactioiUMS). This restriction states that all of the precondison
and effects of a compound action must be reproduced in ordysabaction of its decomposition. This restriction
leads to use the same granularity of knowledge in compounmheaas well as in their subactions, thus completely
losing the modular relation of a real decomposition of awiorhis implies a lose in expressiveness in real-world
problems and, therefore, mostN based planners do not satisfy the USP. One might think thd&P is not
satisfied, then completeness of decompositional plannigpgrithms may be put in risk in those situations in
which the algorithm bactracks but, actually, it dependdmrépresentation of the final solution.

When the solution to a problem is seen as the lowest leve| pana primitive plan, then hierarchical planning
methods may be seen as another heuristic to improve thesefficiof planning, that is, a different way to arrive
at a one-level plan which solves a planning problem. In trees®s completeness may be lost since in some
domains, there can be a primitive solution but no abstrdatisas and thus a backtracking criterium based on
the nonexistence of abstract solutions would not be endDghhe opposite, when a solution to a problem needs
a complete hierarchy of valid plans where every abstracgt {gaompletely autonomous and operational, and it
is used as a modularization tool for lower level plans, thenrnonexistence of any abstract solution impedes the
existence of a complete hierarchy of valid plans and it candegl as a sound backtracking criterium.

Another property related toSPis theDownward Refinement PropertpRP) [2,3]. The DRP states that if a
non-abstract, concrete level solution to the planning l@rokexists, then any abstract solution can be refined to a
concrete solution without backtracking across abstradéeels. This property is also hard to satisfy in real-world
problems. Its fulfilment implies a drastic improvement ifi@éncy since a hierarchical planner does not need to
backtrack between abstraction levels, but in order to dip there cannot be more than one decomposition for every
compound action. This is also very restrictive for realddgroblems in which the need to represent alternative
decompositions has been widely recognized as a key reqgeiirgi6,20].

2.5 Consistency of causal structures through abstractiorelvels

This last issue consists of reusing the set of causal linlebkshed at some abstraction levels a guide to refine
a plan at level + 1. When every causal link established at levé& somehow “inherited” at level + 1 then a
hierarchical planner is said to satisfy th®notonic Propertyf2,17,23,24]. This property is very important with
respect to the attainment of efficiency and consistencyeptanning process:

— The efficiency may be improved since the reuse of causal lirfkish have been established at higher levels
avoids the redundancy of the planning process in the seat#dtvs previously solved at higher levels do not
need to be reconsidered again at every lower level. Furtbierunsolvable threats may be detected earlier to
prune dead-end branches.

— From the point of view of the consistency of the planning jess; it would not be easily understandable that
any action in a plan at some level could contradict any cawdalion previously established at any previous
level despite of the correctness of that plan in its own le¥elbstraction.

Therefore, a hierarchical planning model for real-worldigems should satisfy this semantic property. In the
case of abstraction hierarchies, this property directlg$ialue to the abstraction formalism and independently of
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the planning process followed, eithe8STRIPS[3,17] orABTWEAK [24]. HTN based models provide the means to
inherit causal links between abstraction levels, but ogeéra they must be hand-coded during domain descriptions
[23] decreasing the autonomy of the planner, whereas irr diieompositional models this issue is not addressed
[12,13,25].

Next section will show the main contribution of this papeddrow it provides helpful advances in every issue
discussed in this section with respect to both non decortippal and decompositional approaches to planning for
real-world problems.

3 A hybrid model for real-world problem solving

Compound Agent

Properties | Behavior

States
Name &
Variables | Compound
Actions

Interface
Is Part Of 1Is Part Of ‘

Primitive Agent Primitive Agent
Properties | Behavior Properties | Behavior
States States
Name & Name &
Variables Primitive Variables Primitive
Actions Actions

Figurel. Primitive and Compound agents.

In our model a domain is represented asompositional hierarchy of agen{see Figure 1), i.e., an agent
hierarchy with different levels of abstraction such thajthlevel agentsqompound agenfsare composed by
lower-level agents. Leaf nodes of the hierarchy@mimitive agentswhich represent real world entities able to act.
We can find many real applications which fit into these fea{28] (robot planning and control [1], manufacturing
systems [6,19] or aerospace applications [12]).

Every ageny of a compositional hierarchy is represented by means ofdggrties (name and variables) and
its behaviour. The behaviour is modeled as a finite automiatamich every actior of g is represented by a set
of requirementsReda), which must be satisfied in order to achieve a correct execwi the action, and a set of
effects,Efg(a), which include the change of state producedlmyer the ageng (we noteAg(a) the agent which an
actiona belongs to). In order to achieve an adequate expressivéoragzal-world planning, the model of actions
embodies two fundamental features:

— Actions are considered as intervals, that is, every actiohan ageny executes over an interva, End(a)],
defined fromu until the next change of state gf produced by another action of the same agemd(a).

— The set of requirements is divided into a set of conditiores/fo represent different ways for preconditioning
an action (see [7,8] for more details).

Actions in a compositional hierarchy may bemitive actions if they are executed by primitive agents, or
compound actiondf they are executed by compound agents. Both action typasesthe same structure, but
compound actions, which are represented at a higher lexadsifaction, additionally include a set@fpansion
methodswhich are used to decompose them into subactions. Debails ghis decomposition mechanism will be
described later in Section 3.2.

Remaining sections are devoted to explain in more detaihghrid model, and to show how the key issues of
known hierarchical models, shown in Section 2, may be imgddx order to solve real-world problems.

3.1 Abstraction formalism

As opposite to the formalisms described in Section 2.1, tstraction formalism of our hybrid approachhis-
haviour orientedthat is, the abstraction is centered on the behaviour ofpcamd agents in such a way that the
behaviour of high level agents is a more abstract represemtaf the behaviour of their components.
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Firstly, the knowledge of a compound agent and the knowleddts components are related by means of
the Interface of the compound agent [6] (noted &s,). This is a set of simple association rules used to map
literals, variables and states of an agent into literalsatiées and states of its components. This mechanism allows
an expert to easily describe and relate actions and litefadgients at different levels with a different semantic
granularity, such that sets of literals and actions at dbffieabstraction levels are also different.

Secondly, in order to articulate levels of abstraction dearuds, during the planning process, we have defined
anarticulation function[6,15]. This function (noted ag,;) is a domain independent mechanism defined for every
compound ageng which uses its interface to translate every literal into & fevel of abstraction. Hence, every
literal I=(N z, . ..x,,) at leveli, in the description of a compound actiah of a compound agent, is translated
into a set of literals of level + 1, whose arguments are consistent with the new level of atigira These literals
are built according to these rules:

— Ifthere is a rule innt, which specifically associatédo a set of literals, theff, ({) returns that set.
— Otherwise, the literal is translated component by compgnan, f,(I) returns the single sef (Int,(n)

Intg(z1)...Intg(2,))}
— Finally, if there is no semantic correspondence in the nlestraction level fol, f,() returns the empty set.

Both the articulation function and the interface of compdagents may be used to relate knowledge at dif-
ferent granularities. The knowledge of a compound agerth) wilower granularity, may be translated into the
knowledge of its constituent agents, with a greater graityla

Additionally, there is a sort of assisting tool for domairsdeptions: an expert may describe a domain as a
compositional hierarchy from an existimtpss libraryof predefined agents which also contains predefined agent
interfaces. Thatis, rules contained in interfaces may bgya@used, simplifying the process of domain encoding.

This abstraction mechanism provides a real abstractiomofvledge since actions and literals in the hierar-
chy are represented at different granularity levels, blatteel between them. As a result, the amount of syntactic
constraints which must be observed during the domain qesamistage is reduced. There is no need to distribute
preconditions and effects at lower abstraction levelsesihis knowledge will be translated by the articulation
function. Moreover, a human domain designer only has toigpetich are the components of a compound agent
and, if needed, to specialize some agents by introducingéospecific knowledge.

As will be seen later, this formalism is able to maintain-am-like expressiveness, but with a simpler domain
description process which reduces human decision makiegrt stages.

3.2 Decomposition Mechanism

Every compound action of every agent at levé| contains a set afxpansion methodsng, m1, . ..} where every
methodm; ;- is a set of literals at level+ 1 which represent subgoals to be achieved by actions of agetite
nextleveli + 1. This set of literals will be noted @a=comga) and they are a semantically equivalent representation
of the effects ot at leveli + 1.

From the point of view of a human at the domain descriptiogest& must be taken into account that every
compound actioix contains adefault expansion methpah,, whose literals are the result of applyifigto every
literal in the set of effects af. Moreover, in most cases this method has shown to be exypeessbugh to describe
how a compound action may be decomposed.

The decomposition mechanism is a dynamic process, pertbatnglanning time, which decomposes a com-
pound actior at leveli following these two steps:

1. Determine the set of literals at the next level 1 which have to be achieved by actions of agents at that level.
It may be obtained fronmq, without any additional knowledge, or by means of anothtrahtive method. .

2. Determine, by means ¢for-based techniques, the set of actions such that either Hiesfysthose literals
generated by or they contribute to their establishment. These actiotisweike up the real decomposition of
.

This decomposition process preserves the expressivehedgs@mposition rules of other models, that is, it
allows for alternative action decompositions, with diéfet grain size. Additionally, it improves decomposition
mechanisms discussed in Section 2.2 in the sense that itrdegquire to know the modular decomposition

! Greek letters represent higher level actions and latieretower level actions.



of every compound action, prior to the planning process,iarmdost cases the only required knowledge is the
interface of every compound agent, covering much betterirements of simplicity and autonomy.

Another feature of this mechanism is that the correctness @écomposition does not have to be checked
“a priori” by hand. Instead of this, this task is shifted inte planning process who becomes the responsible to
dynamically check the correctness of every decompositienery level of abstraction.

3.3 Semantic validity of decompositions

A key issue in the previously described decomposition ppetethat it allows to shift the task of determining the
set of subactions which corresponds to a compound actionhietplanner, while preserving semantic correctness.
This feature leads to definemaodularization relationshifppetween two plans at different levels of abstraction. In
the following we will introduce some fundamental conceptstfinally, will allow us to define what we consider
a valid decomposition as@rrect modularization relationship

Modularization relationships In our compositional hierarchy we use two functiossi{«) and Scopéa), to
represent hierarchical relationships “is composed by”‘@gdart of” respectively, so we say thate Suda) <

a = Scopéa). FunctionScopéa) (Figure 2) gathers the general criteria that a hierarchutzaler has to take into
account to dynamically find the set of subactidns, a-. . ..} of a compound action. It takes as input an action
a, from a planS? at leveli, which satisfies a literdl from the same level, and it decides which is so@peof a,
that is, the compound actianat the inmediately higher level which contains the action its decompaosition.

SCOpE€a)
IF3a/ aﬁtz,l € Decompa)
THEN Let{a1, ..., an } suchthat a%‘li, 1; € Decompa;)

Let o = Non Deterministically Choose One Gfrst{a1, ..., an}
ELselet{a1,...,an} suchthat aﬁtli ,l; € Reqa;)

Let a = Non Deterministically Choose One ®frst{SCOP&a1), . .., SCOP€a,)}
Returna

Figure2. FunctionScope

Summarizing, the scope of an actietis a higher level actior if one of the following conditions holds:

— a establishes several literals generated by different ilgvel actions{a;, ..., a,}, anda is one of the first
actions of this set (functioRirst returns a set of actions for which no other actions preceela h the set of
actions used as argument). It must be said that a same actipicontribute to different higher level actions
but it is assigned to only one of them.

— a establishes several requirements of a set of actions ante tevel{ay, ..., a,}, anda is one of the first
scope®f this set of actions.

This definition is based on literal satisfaction, so it is gibe to dynamically generate, at planning time by
means ofPorbased techniques, the set of subactions for a given contiaation at level. Moreover, functions
Scopéa) andSul{«) establish a modularization relationship between planeatconsecutive abstraction levels,
such that every action in a plan at levés mapped into a set of actions of a plan at the next Ievel.

Taking into account the terms of this definitiomprbased causal link management is the natural way to
dynamically guarantee a valid causality between the sidrecof a compound action.

Correct modularization relationships In order to guarantee a correct modularization relatignshigh-level
effects of a compound actiom at level: should not be deleted by any of its subactions at lévell. The set
of literals Decomda), generated at level + 1 by the above described decomposition mechanism,cdre a
semantically equivalent representation of the effecis af leveli, therefore these are actually the literals which
should be protected at levek- 1.
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The new concept ofiybrid causal linkis used to protect these literals. In order to understand dadwbrid
causal link is represented, and its semantic implicatiiiis,necessary to know the extended representation of a
causal link used in our model, which embodies the notion tibas interval, a more suitable representation for
real-world domains [7,8].

A causal Iink[a—l>b, c] is a structure used for representing that a requirerhehan actionb has been satisfied
by another actiom and this has to be protected during the action intdeval] andc is not necessarilgnd(a). So,

an actiona’ threatens a causal Iir[lsz—l>b, c], whena' deleted and the intervala, ] is unordered with respect to
the intervalla’, Enda’)]?

Definition 1 (Hybrid causal link.) A hybrid causal link at level is a structure represented @sa—lw, ~], where

— B and~ are two compound actions at levie-- 1 which belong to a causal linke= 3, ] at leveli — 1.
— lis aliteral at level; generated by, at leveli — 1, such that € fag . (7).
— aq is an action which satisfidsanda = Scopéa). O

A hybrid causal link describes that a literal generatedv®nd satisfied by some subactieg of o has to be
protected from any other threatening actidnat the same level tham,, which could delete that literal. Thus, a
hybrid causal link will be used to detect and solviydorid threat an analogous concept to that of classic threat
which takes into account the existence of causal links & it abstraction levels.

Definition 2 (Hybrid Threat.) An actiona’ produces a hybrid threat to a hybrid causal Ii{‘d/gl—lw, ~] when

., Del
i) a'—l
ii) [a',End(a’)] is unordered with respect fa, ] O

Finally, based on these concepts of hybrid causal link afwlitiyhreats we are able to establish what we con-
sider acorrect modularization relationshig\ correct modularization between two plans at consecuatgtraction
levels exists when there are no hybrid threats within th@sad any compound action, that is, when any effect of
a compound action is not deleted by any of its subactions.

Therefore, any modularization relationship must satist t

Aaq,al, € Su{a), such that!, produces a hybrid threat to a hybrid causal Iimg—lw, 7]

The definition of a correct modularization relationship ipaticular case of a hybrid threat in which the
threatening action and the causal link belong to the samgesttallows a planner to decide which decompositions
are correct and also to establish the order relations anshtéinks between its subactions, both dynamically.
Moreover, from the point of view of a human domain desigrtes,glanner will be able to modularize the actions
of one level with respect to the actions of a higher level, sk tahich is only carried out by humans in HTN
methods.

This procedure to dynamically identify valid decomposisoof actions allows for an increase of autonomy
of the planner and a greater simplicity of domains desansti since the knowledge which identifies these valid
decompositions does not have to be provided during domaiimgolnstead, this knowledge is “distilled” during
the planning process.

3.4 The planning process

The goal of the planning process is obtaining a hierarclpiead which correctly describes the behaviour of a com-
positional hierarchy of agents at different levels of adxtion. A solution to a problem is a hierarchical plan, that
is, a sequence of plaqsS! ... 8™} at different abstraction levels, where every pléinmust be a valid solution
at leveli, which will be called a level partial solucion, since it describes the behaviour of eganteveli. The
lowest level plan is completely made up of primitive actioasd every plan at levélhas a correct modulariza-
tion relationship with respect to the plan at the next akbtiva level: + 1. The algorithm which generates such
hierarchical and modular plans is shown in Figure 3.

2 Two intervals are unordered when their limits are unord¢séd



HYBIS (Domai n, Agenda, H Pl an)
IF Agenda is emptyanD IsPrimitivePlan(H- Pl an[ Current Level ])
THEN RETURNH- Pl an
ELSE LET FI aw= SelectFlaw(Agenda)
IF Fl awconsists on a hierarchical refinement
THEN RETURN REFINE (Domai n, Fl aw, Agenda, H Pl an)
ELSE RETURNGENERATE (Domai n, Fl aw, Agenda, H- Pl an)

REFINE (Domai n, a, Agenda, H Pl an) GENERATE (Domei n, Fl aw, Agenda, H PI an)
LET Met hods = HowToRefine3«, Donai n, H Pl an) LET Al ternati ves = HowToDolt?(Fl aw, Domai n, H- Pl an)
WHILE Met hods is not empty WHILE Al t er nat i ves is not empty
LET m= ExtractExpansionMethod(Met hods) LET How= Extract(Al t er nati ves)
Insert(m Pl an- H] ) Dolt(How, Donwi n, Agenda, H Pl an)
LET Resul t =HYBIS(Domai n, Agenda, H Pl an) LET Resul t = HYBIS(Domai n, Agenda, H Pl an)
IF Resul t # FAIL THEN RETURN Resul t IFResul t # FAIL THEN RETURN Resul t
RETURN FAIL RETURN FAIL

Figure3. A hierarchical hybrid algorithm based on hierarchisah-like refinement and generativorlike re-
finement.

This algorithm synthesizes a hierarchical plan by genegatind refining a set of plans at different levels of
abstraction. Every pla8? describes the behaviour of a set of agents at the same ledksl, may be considered a
complete solution to a levélproblem or a partial solution to the whole problem.

The highest level planS?, is obtained by generative techniques, and every Sfarfior i > 1, is obtained by
means of a hybrid process which interleaves hierarchioalcfonREFINE) and generative (functioBENER-
ATE) refinements. FunctioREFINE performs the step 1 described in Section 3.2, that is, it uposes every
compound actiom into a set of literals by any of its existing methods and thénserts these literals in the plan.
FunctionGENERATE performs the step 2 described in Section 3.2 taking intowatcihe validity of decompo-
sitions described in Section 3.3. That is, it satisfies elitasal by means of generative techniques and establishes
a correct modularization relationship between every camgaction and its subactions. FunctiGENERATE
is based on a non-hierarchical POCL planner described in [8]

The process ends when all of the actions in the current piapranitive actions and that plan has been correctly
modularized.

Next, we will discuss the key issues of backtracking betweesls of abstraction, and the consistency of causal
structure through levels of abstraction.

3.5 Backtracking between abstraction levels.

In the algorithm described in Figure 3, backtracking betwaestraction levels is done when there is no possibility
to generate a pla&® modular and causally correct with respectio’! as seen in Section 3.3. It must be said that,
taking into account the type of solutions obtained by ourrapph, backtracking between abstraction levels has no
negative effect over the completeness of the algorithmiszsigsed in Section 2.4.

A solution is not a primitive plan, as in mostrN approaches, but a complete hierarchical and modular plan,
that is a sequence of plags! ... S"}, where the lowest level plan is completely made up of priraitictions,
every planSt is a partial solution at leveéland it has a correct modularization relationship with respethe plan
at the next abstraction levék 1. Hence, if there is no partial solution at some abstractoell then there is no
possibility to obtain such a complete hierarchy of validnsladespite of the existence of any later primitive partial
solution. Therefore, in these situations, the need to ot@aomplete hierarchy of plans leads to backtrack to the
previous abstraction level to continue the search for rdtidre refinements. Given that a solution is a complete
hierarchy of plans, as opossite to most HTN approaches ichnisolution is a primitve plan, a backtracking
criterium based on the contrapositveusPdoes not put in risk the completeness of the algorithm.

As can be seen, the usefulness of &P to backtrack between abstraction levels in real-world pilag
depends on how a correct solution is defined. However, owréxqce in solving real-world planning cases points
to an interesting role of this property in domain validatiamich will be outlined in Section 4.

Finally, next section will be devoted to show the monotdsyiof the causal structure through different abstrac-
tion levels.
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3.6 Consistency of causal structures through abstractiorelvels.

In our hybrid model, a pla? inherits the causal link structure generated in the glart by means of a dynamic
process at planning time. This process is based on reusingigin level structure of causal links, taking into
account the inheritance rules shown in Figure 4.

RULE 1: RULE 2:
. r i—1 .
A causal linkloe—/3, 7] from S*~*, such tha’ngg(a)(r) # NIL, A hybrid causal Iink{aa$& +] from &°
has associated a hybrid causal Ifak, 48,4]in St if has associated a causal lftkb, ] in S* if
DL€ Fag) (™) i) b € Sul)
i) 0o 23 iy a53% | ¢ Reqp)

Figure4. Inheritance rules of causal links

This monotonic inheritance of higher-level causal streesus used to detect and solve hybrid threats. These
hybrid threats represent a violation of a causal link eghbt at levef by an action at level + 1 and they will
become a classic threat at level 1 when all of the actions at levélhad been decomposed. Hence, unsolvable
hybrid threats, which will later become unsolvable clagisieats, may be used for an early detection of dead-end
branches and backtracking before all of the decompositiaas been completed.

In summary, this inheritance of causal structures not ordyides a greater expressiveness, since it is the basis
of the dynamic decomposition mechanism, but it also pravaereater efficiency, since it allows for an early
detection of some unsolvable threats exploiting the kndgdesynthesized at previous levels.

4 Conclusions

In this work we have shown some advances in hierarchicahplgnwhich overwhelm a set of shortcomings on
known hierarchical models, and we have presented a disecussithe adequacy of hierarchical planning properties
for real-world planning, on the basis of a hybrid planning@ach developed to solve real-world problems.

Space precludes to justify our proposal with an appropgagerimentation. It must be said that our model
has been extensively used for the automatic synthesis @rbldcal control programs for manufacturing systems
in which simple domain descriptions and modularity relasiplay a very important role. This experimentation is
being carried out in close collaboration with experts orustdal domains within a research project, and it will
appear in other paper in preparation.

In any case, all of the improvements which have been proplasesia common basis: the abstraction formal-
ism based on tharticulation function This abstraction formalism allows for a high accomplishingf formerly
enumerated requirements (see Table 1 for more details):

— Simplicity: it reduces human effort on syntactic consttainbservance and decision making, at domain de-
scription stage.

— Autonomy and expressiveness: it provides the basis for amijmaction decomposition process performed at
planning time and it allows to obtain “ready-to-use” planisieth describe the behaviour of a compositional
hierarchy of agents.

— Soundness and completeness: it also provides the basigrdamically checking the semantic correctness
through plan levels with different semantic granularithile preserving completeness.

— Efficiency: the inheritance of causal structures providesrheans for an intensive reuse of the knowledge
embedded in higher levels. This reuse of higher level kndgdeproduces a great benefit on the efficiency
and, in addition, it allows for a more understandable plagmpirocess from the point of view of a human.

On the other hand, we have also discussed the adequacy ofikmievarchical planning properties for real-
world problem solving. In summary, thERPis too restrictive and it leads to reduce expressivenese&dworld
problems. However, we have shown that the Monotonic Prgpenery useful for real-world planning. In par-
ticular, we have introduced a new mechanism which mono#digiinherits causal structures between plans at
different abstraction levels, which are represented & miht semantic granularity by changing the represemtatio



language. Finally, we have shown thi@Pmay be used to bactrack between abstraction levels withgtihg in

risk the completeness of our hybrid algorithm. This is beeahe type of solution needed in our approach is not
a primitive plan, but a complete hierarchy of plans. Howetles accomplishment of this property is still useful
during domain description process, from a knowledge erging perspective.

Although the completeness of the planning algorithm coelébiomally proven, it is always possible to describe
a hierarchical domain with no partial solution at some awstievel, but with a partial solution at ground level.
This means that theSPis an inherent property to every hierarchical domain, whezsmmplishment is necessary
to prevent the description of bad domains. However, it cbeldrgued that there could be some feedback between
the planning process and the domain description proceds tkat the planner could be able to detect and suggest
some domain coding errors. This strategy could be impleettioy means of a mixed initiative planning process,
such that the planner would inform the expert about the oistances which invalidate the execution of actions at
a given level (for instance, a unsolvable threat could medeaallock between two agents). This situation would
interrupt the hierarchical refinement process until a red&fn of conditions at that abstraction level had been
done.

This mixed initiative process could provide the basis foyaaimic knowledge validation, at different levels of
abstraction, during the planning process. But it must be &t such as mixed initiative redefinition process, at
a single level of abstraction, is only operative with an edatton formalism like the one presented here, since it
needs a completely differentiated representation at eafesyraction level, otherwise this redefinition should also
be propagated into lower level representations.

At present we are developing an intelligent digital assistar the interactive development of industrial control
programs on the basis of this hybrid model.
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