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t. Many s
heduling systems assume a stati
 environment withinwhi
h a s
hedule will be exe
uted. The real world is not so stable: ma-
hines break down, operations take longer to exe
ute than expe
ted, andorders may be added or 
an
eled. One approa
h to dealing with su
hdisruptions is to generate robust s
hedules: s
hedules that are able toabsorb some level of unexpe
ted events without res
heduling. In this pa-per we investigate three te
hniques for generating robust s
hedules basedon the insertion of temporal sla
k. Simulation-based results indi
ate thatthe two novel te
hniques out-perform the existing temporal prote
tionte
hnique both in terms of produ
ing s
hedules with low simulated tardi-ness and in produ
ing s
hedules that better predi
t the level of simulatedtardiness.Keywords: Robustness, Un
ertainty, S
heduling, Heuristi
s1 Introdu
tionBased on a �eld study of a number of job shops, M
Kay et al. [MSB88℄ 
ommentthat \the [stati
 job shop℄ problem de�nition is so far removed from job-shopreality that perhaps a di�erent name for the resear
h should be 
onsidered". Inparti
ular, they found that modern s
heduling te
hnology failed to adequatelyaddress s
heduling in un
ertain, dynami
 environments.There are two general approa
hes to dealing with un
ertainty in s
hedul-ing. Whereas rea
tive te
hniques address the problem of how to re
over from adisruption on
e it has o

urred, pro-a
tive s
heduling 
onstru
ts s
hedules thata

ount for statisti
al knowledge of un
ertainty. One way of a
hieving this isby generating robust s
hedules, that is, a s
hedule with \the ability to satisfyperforman
e requirements predi
tably in an un
ertain environment" [LP91℄.In this paper, we explore sla
k-based te
hniques for robust s
heduling. The
entral idea behind sla
k-based te
hniques is to provide ea
h a
tivity with ex-tra time to exe
ute so that some level of un
ertainty 
an be absorbed withoutres
heduling. We de�ne the amount sla
k for an a
tivity, A, as follows:sla
kA = lftA � estA + durA (1)Where estA and lftA are respe
tively the earliest start time and latest �nishtime of a
tivity A and durA is the duration of a
tivity A.
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Three sla
k-based te
hniques are examined in this paper. The �rst, temporalprote
tion [Gao95℄, adds sla
k to an a
tivity before s
heduling. The originalduration of ea
h a
tivity is extended and then this prote
ted duration is usedduring s
heduling. Two novel te
hniques are introdu
ed here:{ Time window sla
k (TWS): Rather than extending the durations of a
tivi-ties, this te
hnique modi�es the problem de�nition to ensure that ea
h a
-tivity will have at least a spe
i�ed amount of sla
k. The advantage of thisapproa
h over temporal prote
tion is that the amount of sla
k for ea
h a
-tivity 
an be reasoned about during the problem solving rather than being\hidden" inside the prote
ted duration.{ Fo
used time window sla
k (FTWS): TWS and temporal prote
tion spe
ifythe amount of sla
k required for ea
h a
tivity before problem solving. InFTWS, the amount of sla
k for ea
h a
tivity depends on where along thetemporal horizon an a
tivity is s
heduled. The intuition is that the later inthe s
hedule an a
tivity is exe
uted, the more likely it is to have a disruptiveevent o

ur before its exe
ution and, therefore, the more sla
k is needed.2 Problem De�nitionThe problem addressed here is the job shop s
heduling problem with release anddue dates, ma
hine breakdowns, and the optimization 
riteria of minimizationof the sum of job tardiness.Ea
h job is 
omposed of a set of totally ordered a
tivities. Ea
h job, j, hasa release date, rd(j), and a due date, dd(j). The former is the earliest timean a
tivity in the job 
an exe
ute and the latter is the latest time that thelast a
tivity in the job should �nish exe
ution. Ea
h a
tivity requires a singleresour
e (also referred to as a ma
hine) and has a prede�ned duration duringwhi
h it must be the only a
tivity exe
uting on its required resour
e. On
e ana
tivity has begun exe
ution it 
annot be pre-empted by another a
tivity.The goal is to sequen
e the a
tivities on ea
h resour
e su
h that the orderwithin ea
h job is respe
ted and that the sum of the job tardiness is minimized.More formally, given C(j), the 
ompletion time for the last a
tivity in job j, weseek to minimize Pmax(0; C(j)� dd(j)) over all jobs in a problem.To represent un
ertainty, some ma
hines are subje
t to breakdowns. Duringa breakdown, a ma
hine 
annot pro
ess any a
tivities and any a
tivity whi
h wasexe
uting on the ma
hine at the time of breakdown is stopped and then resumedfrom the point where it was stopped after the ma
hine has been repaired. Sta-tisti
al 
hara
teristi
s of ma
hine breakdowns are known.1 We assume normaldistributions parameterized by:{ �tbf (R): the mean time between failure of resour
e R{ �tbf (R): the standard deviation in time between failure on R{ �dt(R): the mean down time (or duration of breakdown) on R{ �dt(R): the standard deviation in down time on R1 In a produ
tion s
heduling domain, su
h 
hara
teristi
s may be supplied by themanufa
turer and/or may be based on shop 
oor operational history.
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3 Temporal Prote
tionTemporal prote
tion [Gao95℄ is a prepro
essing te
hnique whi
h extends theduration of ea
h a
tivity based on the un
ertainty statisti
s of the resour
e onwhi
h it exe
utes.2Resour
es that have a non-zero probability of breakdown are designated asbreakable resour
es. The durations of a
tivities requiring breakable resour
esis extended to provide extra time with whi
h to 
ope with a breakdown. Thes
heduling problem with prote
ted durations is then solved with standard s
hedul-ing te
hniques.The intuition behind the extension of durations is that during s
hedule ex-e
ution, the prote
ted durations provide sla
k time whi
h 
an be used in theevent of ma
hine breakdown. For instan
e, in Figure 1, a
tivities A and B aresequen
ed to exe
ute 
onse
utively on a breakable resour
e. The length of thewhite box represents the original duration of the a
tivities while the shaded boxrepresents the extension due to temporal prote
tion. If the ma
hine breaks downwhile a
tivity A is exe
uting, the extra time within the prote
ted duration 
anbe used to absorb the breakdown. If the breakdown lasts no longer than theavailable prote
tion, its e�e
t will not be felt in the rest of the s
hedule. If thebreakdown lasts longer, some rea
tive approa
h must be taken to restore 
onsis-ten
y to the s
hedule. If no breakdown o

urs during the exe
ution of a
tivity A,then a
tivity B 
an start earlier: the sla
k provided by the temporal prote
tionfor A is available for use by a
tivity B.
Activity A Activity B

timeFig. 1. Example of a temporally prote
ted s
hedule, with white boxes representing theoriginal duration and grey boxes representing the extended durations.A key issue is the amount of temporal prote
tion added to ea
h a
tivity.Too mu
h prote
tion will result in a poor quality but highly robust s
hedule.Too little prote
tion will also result in a poor quality s
hedule exe
ution if abreakdown o

urs. The approa
h taken by Gao extends the duration so as toamortize the breakdown over a number of a
tivities.More formally, given an a
tivity, A, that requires a breakable resour
e, R,temporal prote
tion de�nes a prote
ted duration for A, durA;tp, where tp denotestemporal prote
tion, as follows:2 We present a simpli�ed des
ription of temporal prote
tion in the 
ase that ea
h a
tiv-ity requires only one resour
e. For a formulation for multiple resour
e requirementssee [Gao95℄.
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durA;tp = durA + durA�tbf (R) � �dt(R) (2)The equation spe
i�es that the prote
ted duration of an a
tivity A is itsoriginal duration plus the duration of breakdowns that are expe
ted to o

urduring the exe
ution of A.4 Time Window Sla
kBy extending a
tivity durations in a prepro
essing step, temporal prote
tiontransforms the original problem to a new problem that 
an be solved with anys
heduling te
hnique. We 
onje
ture, however, that the prepro
essing has a dis-advantage in that during s
heduling the amount of sla
k added to ea
h a
tivity
annot be dire
tly reasoned about. This 
an lead to situations where it is impos-sible to share sla
k between a
tivities even when no resour
e breakdowns haveo

urred. Indeed, the 
laim that a
tivity B in Figure 1 
an start exe
ution earlyif there is no breakdown during or before a
tivity A is an over-simpli�
ation.For example, in Figure 2 we introdu
e a third a
tivity, C, whi
h exe
utes on anon-breakable resour
e and so has no temporal prote
tion. A
tivity B must ex-e
ute after a
tivity C, and sin
e a
tivity C �nishes exe
ution later than a
tivityA, the earliest start time of B is the end time of C. The temporal prote
tionrepresented by the extension of the duration of a
tivity A is not available foruse by a
tivity B as B 
annot start earlier than the end time of C.
Activity A Activity B

Activity C

timeFig. 2. A situation where the temporal prote
tion 
annot be shared between a
tivitiesA and B.To avoid su
h situations, we propose the time window sla
k (TWS) approa
hwhi
h reasons dire
tly about the sla
k time available for an a
tivity during prob-lem solving. Rather than in
luding this sla
k as part of the a
tivity duration,we expli
itly reason about it by adding a relation to the problem de�nition thatspe
i�es that s
hedules must have suÆ
ient sla
k time for ea
h a
tivity.The advantage of this approa
h is that there is more information about a
tiv-ity sla
k during the problem solving. In a situation su
h as the one in Figure 2,
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we are able to dete
t that the sla
k of a
tivity A 
annot be shared with a
tivityB. If there is still suÆ
ient sla
k in the s
hedule after a
tivity B, we still may beable to generate a valid s
hedule. If not, we must ba
ktra
k and 
ontinue sear
h.The amount of sla
k for ea
h a
tivity is still 
riti
al for the generation ofa robust s
hedule. Using a
tsR to denote the set of all a
tivities exe
uting onresour
e R, the required sla
k for a
tivity A 2 a
tsR is:sla
kA � PB2a
tsR durB�tbf (R) � �dt(R) (3)The required sla
k for an a
tivity under TWS is 
onsiderably larger than theduration extension in temporal prote
tion. Indeed, the amount of sla
k on ea
ha
tivity is equal to the sum of the durations of all the expe
ted breakdowns onR. This di�eren
e is be
ause we expe
t the sla
k on all a
tivities on a resour
eto be shared. If the sla
k is 
ompletely shared then the total sla
k on a break-able resour
e is approximately equal (given integer rounding) to the sum of thedurations extensions in temporal prote
tion.The relation in inequality 3 is somewhat problemati
 for standard s
hedulingapproa
hes: no solution whi
h assigns start times to a
tivities 
an satisfy it unlessthe left-hand side evaluates to 0. The very a
t of assigning a start time for
esthe sla
k (as de�ned in equation 1) to be 0. Therefore, rather than being ableto use arbitrary s
heduling te
hniques, we must use s
heduling te
hniques thatreason about the order of a
tivities on resour
es. Fortunately, su
h te
hniquesare not un
ommon (e.g., [SC93,BF00℄).5 Fo
used Time Window Sla
kNeither temporal prote
tion nor TWS take into a

ount the pla
ement of a
tivi-ties on the s
heduling horizon. For example, 
onsider s
heduling a newly repairedma
hine whose �tbf (R) is 1000 days and whose �tbf (R) is 50 days. Given thenegligible probability of a breakdown before day 800, it does not seem worth-while to fo
us on making the s
hedule more robust before this time. Fo
usedtime window sla
k (FTWS) uses the un
ertainty statisti
s to fo
us the sla
k onareas of the horizon that are more likely to need it to deal with a breakdown.The probability distribution, P (N(�tbf (R); �tbf (R)) � t), allows us to 
om-pute the probability that a breakdown event will o

ur at or before time t. Anapproximation of this 
urve 
an be eÆ
iently 
omputed using standard statisti-
al te
hniques. This 
urve is used to determine the amount of sla
k an a
tivityshould have given the basi
 intuition that the higher the probability of a break-down o

urring before the exe
ution an a
tivity, the greater the amount of sla
k.The sla
k for an a
tivity is 
omputed as a fun
tion of the probability that abreakdown will o

ur before or during the exe
ution of the a
tivity and of theexpe
ted breakdown duration. If the �tbf (R) for a ma
hine is mu
h less than thes
heduling horizon, the possibility of multiple breakdowns must be 
onsidered.We do this by 
onsidering the 
ases for ea
h breakdown, nb, separately. First,we assume that at time 0 the ma
hine has just been maintained. For ea
h value
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of nb = 1::M , where M is a large number, we 
ompute the expe
ted time thatthe nb-th breakdown will o

ur as:�(nb) = (nb� �tbf (R)) + ((nb� 1)� �dt(R)) (4)We 
al
ulate the standard deviation of the time for nb breakdowns as:�(nb) = ((nb� �2tbf (R)) + ((nb� 1)� �2dt(R))) 12 (5)These 
al
ulations 
onstitute an abuse of the 
entral limit theorem: the ran-dom variables representing the breakdown events are not independent. This 
al-
ulation is an approximation and future work will examine a more sophisti
atedstatisti
al analysis.We use the statisti
s for nb breakdowns to 
al
ulate the P (N(�(nb); �(nb)) �t) 
urve estimating the probability that nb breakdowns will o

ur before a par-ti
ular time t. The amount of sla
k time required for an a
tivity exe
uting at aparti
ular time point t on resour
e R is:sla
kA(t; R) � MXnb=1P (N(�(nb); �(nb)) � t)� �dt(R) (6)As with TWS, we add relation 6 to the problem model as a pruning rule.6 Experimental EvaluationTo evaluate the three robustness te
hniques we run a simulation-based experi-ment. Ea
h problem is solved to optimality: an ordering of the a
tivities on ea
hresour
e is found that minimizes the sum of the tardiness of the jobs. A simula-tion of the \exe
ution" of ea
h s
hedule under un
ertainty is then performed.The problem sets used in our experiments were 
onstru
ted as follows. Ten6�6 job shop problems with un
orrelated durations were 
onstru
ted using a jobshop problem generator [WBHW99℄. For ea
h problem, TLB, the lower boundon the makespan due to Taillard [Tai93℄, was 
al
ulated. The release dates forea
h job were assigned by randomly 
hoosing a time (with uniform probability)from the interval [0; TLB8 ℄. Standard temporal propagation was then performedto provide a lower-bound, ddlb(j), on the due date of ea
h job. For ea
h originalproblem, six problems were then generated by setting the a
tual due date ofea
h job to dd(j) = ddlb(j) � L, where L represents the \looseness" of the duedates and ranges from 1.0 to 1.5 in steps of 0.1.For ea
h of these 60 problems, we then introdu
ed nine levels of un
ertaintybased on two un
ertainty fa
tors : Uma
hine, the number of ma
hines prone tofailure and Ustat, the magnitude of the un
ertainty statisti
s. Ea
h of the un
er-tainty fa
tors have three levels f1, 2, 3g and the overall level of un
ertainty is,U = 3�(Uma
hine�1)+Ustat. This en
oding produ
es nine levels of un
ertaintydivided into three groups. Levels 1-3 have one breakable ma
hine, levels 4-6 havetwo breakable ma
hines, and levels 7-9 have 3 breakable ma
hines. Within ea
h
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group the likelihood of breakdown on ea
h breakable ma
hine in
reases as thelevel in
reases.The statisti
al values for ea
h level of Ustat are derived as follows for a break-able resour
e, R. Given the set of a
tivities, a
tsR, requiring resour
e R, a lower-bound, lb(R) on the latest end time of the a
tivities is 
al
ulated:lb(R) = max( minA2a
tsR(estA) + XA2a
tsR durA; maxA2a
tsR(lftA)) (7)Using lb(R), we de�ne, �tbf (R;Ustat), the mean time between failure forresour
e R, and �tbf (R), the standard deviation time between failure, as follows:�tbf (R;Ustat) = lb(R)2Ustat�1 ; �tbf (R) = lb(R)8 (8)The standard deviation of the down time �dt(R) is simply the mean durationof the a
tivities in a
tsR while the mean down time, �dt(R) is twi
e that value.As we began with 10 problems, 6 values for L, the due date looseness fa
tor,and have a total of 9 
ombinations of the un
ertainty fa
tors, we have a total of540 test problems.6.1 Evaluation CriteriaThe evaluation of the s
hedules under un
ertainty is done using a simulator.Our optimization fun
tion, therefore, has two forms: simulated and predi
ted.Given problem instan
e, p, we use TARD(p; �) to denote the minimal sum ofthe tardiness over all jobs in a predi
tive s
hedule. Similarly, we use TARD(p; s)to denote the tardiness of problem instan
e p in simulation s.Given a set of simulations, S, and a set of problems, P , the primary basis of
omparison of our robustness te
hniques is the mean simulated tardiness:MST (P; S) = Ps2S;q2Q TARD(p; s)jSj � jQj (9)Our se
ondary evaluation 
riteria is the mean absolute di�eren
e betweenthe predi
ted tardiness and the simulated tardiness.MATD(P; S) = Ps2S;q2Q jTARD(p; s)� TARD(p; �)jjSj � jQj (10)6.2 ResultsFor ea
h test problem and for ea
h robustness te
hnique (in
luding the no pro-te
tion where the un
ertainty statisti
s were ignored), ea
h s
heduling problemwas solved to optimality using ILOG OPL Studio 3.1, ILOG S
heduler 4.4, andILOG Solver 4.4. Solving a single problem to optimality took approximately 10se
onds, regardless of robustness te
hnique, on a Pentium II, 300 MHz PC.
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A simulator, written in ILOG OPL Studio 3.1, simulated the exe
ution ofea
h s
hedule, introdu
ing breakdowns based on the spe
i�ed un
ertainty distri-butions. When a breakdown o

urred, the duration of the exe
uting a
tivity wasextended by the duration of the breakdown. In the temporal prote
tion 
ondi-tion, the prote
ted durations were repla
ed with the original durations and thea
tivities were left-shifted (subje
t to their release dates) before the simulation.Figure 3 presents the graph of, MST (P; S), the mean simulated tardinessfor 100 simulations of ea
h problem under ea
h robustness te
hnique and ea
h
ombination of un
ertainty fa
tors. Ex
ept for the highest level of un
ertainty,temporal prote
tion results in a higher mean tardiness than is observed even ifthe un
ertainty information is ignored. This is 
onsistent with previous exper-iments with temporal prote
tion [Gao95℄. In 
ontrast, both TWS and FTWSa
hieve a lower mean tardiness than no prote
tion a
ross all un
ertainty levelswith FTWS a
hieving slightly lower mean tardiness than TWS.
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Fig. 3. The mean simulated tardiness for ea
h un
ertainty levelFigure 4 presents, MATD(P; S) the mean di�eren
e in the absolute valuebetween the simulated tardiness and the predi
ted tardiness for ea
h robustnesste
hnique. Here we observe that for low levels of un
ertainty, the predi
tions ofthe TWS, FTWS, and no prote
tion te
hniques are quite similar. In 
ontrast,the temporal prote
tion results vary widely: the mean absolute di�eren
e is fourtimes greater than that of the other te
hniques at un
ertainty level 3. As thelevel of un
ertainty in
reases however, we see the mean absolute di�eren
e for noprote
tion in
reasing qui
kly while TWS and FTWS results in
rease more slowly.Interestingly, the relative results of temporal prote
tion improve signi�
antlywith in
reased un
ertainty, a
hieving the lowest mean absolute di�eren
e of allte
hniques at un
ertainty levels 7 through 9.
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Fig. 4. The mean absolute di�eren
e between simulated and predi
ted tardiness forea
h un
ertainty level7 Dis
ussionThere are two goals for robustness te
hniques in s
heduling. The �rst is thatthough in building robust s
hedules, the overall s
hedule quality may be di-minished, the a

ura
y of the predi
tive s
hedules is in
reased. The ability tobetter predi
t the a
tual 
ompletion time of a job, even if this 
ompletion timeis tardy is valuable in real world s
heduling. The se
ond goal is that by takingun
ertainty into a

ount, the predi
tive s
hedule will not only provide more a
-
urate performan
e information but will a
tually result in better overall s
heduleperforman
e. This better performan
e 
omes from the fa
t that the predi
tives
hedule 
an a
tually be 
onstru
ted using the un
ertainty information.In 
omparing the robustness te
hniques with ignoring un
ertainty informa-tion, we see that all te
hniques a
hieve the �rst goal with the ex
eption of tem-poral prote
tion at low levels of un
ertainty. At un
ertainly levels above level3, the absolute di�eren
e between the simulated and predi
ated tardiness (Fig-ure 4) is approximately two times smaller when the un
ertainty is taken intoa

ount. These di�eren
es are not apparent at lower levels of un
ertainty and,indeed, temporal prote
tion performs very badly at level 3.TWS and FTWS also a
hieve the se
ond goal: Figure 3 shows that the sim-ulated tardiness for the TWS and FTWS solutions is less than that for thesolutions with no prote
tion. Ex
ept for high level of un
ertainty, temporal pro-te
tion does not result in better overall s
hedules.Looking more deeply at the experimental results, we see two interesting phe-nomenon. First, when only one ma
hine is breakable (i.e., levels 1-3) the no pro-te
tion 
ondition performs almost as well (and in some 
ases better) than TWSand FTWS on both mean simulated tardiness and mean absolute di�eren
e mea-sures. This is not terribly surprising as, at low levels of tardiness, breakdowns
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are less disruptive: unless the breakdown o

urs during an a
tivity that is on a
riti
al path3 some of the breakdown will be absorbed by the naturally o

urringsla
k. Furthermore, with low levels of un
ertainty, the level of sla
k required inthe TWS and FTWS 
onditions is small. The a
tivity sequen
es in the optimalsolutions in the no prote
tion 
ondition will therefore be quite similar to thoseof TWS and FTWS. Similar sequen
es will lead to similar simulated tardinessresults.The se
ond phenomenon is that while temporal prote
tion performs verypoorly in terms of absolute di�eren
e with one breakable ma
hine, when threema
hines are breakable it has a lower mean absolute di�eren
e than TWS andFTWS. The poor behavior, espe
ially at level 3, arises from the fa
t that extend-ing the durations of the a
tivities on the breakable resour
e leads to a s
hedulingproblem where the breakable resour
e is essentially a bottlene
k. The optimal-ity of a solution depends almost wholly on the sequen
e of a
tivities on thatresour
e while the sequen
es on the rest of the resour
es are irrelevant. An op-timal solution, therefore, has an almost random sequen
ing of a
tivities on thenon-breakable resour
es. When the duration extensions are removed in the sim-ulation, the sub-optimal sequen
es on the non-breakable resour
es leads to hightardiness. In 
ontrast, with multiple breakable ma
hines, optimality depends onmore than one resour
e, leading to a better sequen
e of a
tivities over more ofthe resour
es. The TWS and FTWS methods do not lead to a single bottlene
kresour
e when there is only one breakable ma
hine. This is be
ause the sla
kthat is added to the a
tivities on the breakable resour
e a�e
ts upstream anddownstream a
tivities as well. Sin
e by 
onstru
tion all jobs have one a
tivityon the breakable resour
e, all a
tivities in the problem are 
onstrained to havesome level of sla
k. Even though there is only one breakable resour
e, all re-sour
es are required to have an equal amount of sla
k and therefore there is nobottlene
k resour
e that 
ompletely de�nes optimality. During problem solving,the a
tivity sequen
es on the non-breakable resour
es are just as important asthose on the breakable resour
e in terms of optimality. The fa
t that the sla
kis \propagated" to a
tivities that are not on a breakable resour
e is, in retro-spe
t, obvious. Based on our results, however, it may have a signi�
ant impa
ton the performan
e of robustness te
hniques. An interesting question arises asto the relative 
ontribution of reasoning about sla
k during problem solving andof \sla
k propagation" toward dealing with un
ertainty.We do not as yet have an explanation of the good performan
e of temporalprote
tion with high levels of un
ertainty.7.1 Relation to Previous WorkSla
k-based te
hniques involve the addition of extra time in order to re
over fromunexpe
ted events. Similar approa
hes, 
alled temporal redundan
y, are 
ommonin real-time fault tolerant s
heduling [GMM95℄. Su
h s
heduling problems di�erfrom those typi
ally investigated in the AI 
ommunity both in the s
ope (i.e.,3 See [Kre00℄ for a de�nition of 
riti
al path on tardiness minimization problems.
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often only one ma
hine) and in the de�nition of a solution (e.g., a guaranteethat the system is s
hedulable). Nonetheless, real-time fault tolerant s
hedulingresear
h represents an important sour
e of ideas for further investigations.Overall, there has been little work in the resear
h literature that spe
i�
allyaddresses un
ertainty in the 
ontext of the types of s
heduling problems thatare typi
ally of interest in AI (e.g., problems with multiple resour
es and a
tiv-ities). A variety of te
hniques, in
luding resour
e redundan
y [GMM95℄, proba-bilisti
 reasoning [BPLW97,DC97℄, and a variety of o�-line/on-line approa
hes[Ber93,GB97,Hil94,MHK+98℄ have been investigated, usually in the 
ontext ofsimpler s
heduling problems. There does not yet appear to be a broader under-standing of either the role that un
ertainty plays in real s
heduling problems ora 
omparison of di�erent approa
hes.8 Con
lusionIn this paper, we examined three te
hniques for taking into a

ount un
er-tainty in s
heduling by adding sla
k to the s
heduling problem. Our experi-ments demonstrate that an existing te
hnique, temporal prote
tion, results in aredu
ed overall s
hedule performan
e but more a

urate s
hedules than not tak-ing un
ertainty information into a

ount. The sole ex
eption is at low levels ofun
ertainty, when temporal prote
tion produ
es s
hedules that are signi�
antlyless a

urate than no prote
tion.Two novel te
hniques, time window sla
k and fo
used time window sla
k,were developed to a

ount for the fa
t that temporal prote
tion reasons aboutun
ertainty as a prepro
essing step, before a
tual s
heduling. Time window sla
kand fo
used time window sla
k both in
orporate reasoning about un
ertaintyinto the problem solving as well as resulting in a propagation of sla
k timefrom a
tivities on breakable resour
es to temporally 
onne
ted a
tivities. Ourexperiments indi
ate that both the novel te
hniques are able to produ
e better,more a

urate s
hedules than either temporal prote
tion or no prote
tion.We view the work reported in this paper as preliminary. As noted above, thereare a number of approa
hes to un
ertainty that have been tried in various typesof s
heduling problems, however there is not, as yet, any broader understandingof un
ertainty as it applies to s
heduling problems typi
ally investigated in theAI literature. This paper demonstrates that for a simple, but interesting, 
lassof s
heduling problems, sla
k-based te
hniques 
an provide higher quality, morea

urate s
hedules.9 A
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