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Several systems [11, 6, 10℄ have attempted to solve problems in domains inwhih there are de�ned time bounds on ativities or where an ativity's outomefollows some preditable distribution. For example, in semi-ondutor manufa-turing a mahine may have a failure rate of between 0.1% and 0.5% dependingon the hip being manufatured. It may also be the ase that some steps needto be re-exeuted to deal with failures and reworking, e.g. most of the failedhips an be �xed if they pass through steps 112 through 118 again. Systemssuh as asper [3℄ and pef [9℄ have also attempted to address the planningand exeution problem. However, neither system has taken a resoure enteredoptimization approah and neither has attempted to oordinate planning fun-tions aross distributed platforms. While these tehniques have been suessfulin domains with limited amounts of unertainty they are totally unsuitable fordealing with domains suh as ap that ontain large amounts of unertainty(e.g., partially order ativities, ativities with unknown durations, unexpetedoutomes, new requirements) and probabilities (e.g., expeted airraft attritionrates, target damage, loations of enemy fores). The problem is further om-pliated by the distributed nature of the planning proess in whih di�erentaspets of the plan are generated and maintained by separate planning ells(e.g. logistis, airborne tankers,, maintenane). The problem beomes one of op-timally putting together many di�erent sheduling piees and monitoring theirdependenies and requirements over time.One of the key aspets of the ap proess is the sheduling of airraftand weapons to targets (i.e., how many airraft, of what type, arrying whihweapons are assigned to the target). This is a very omplex problem as it ontainslarge numbers of di�erent types of onstraints (e.g., time, user priority, weight ofe�ort 1, phasing 2, resoures). The assignment problems needs to address threemajor onerns:1. Identifying trade-o�s between di�erent airraft assignments. For example,a mission's suess an be inreased if it has �ghter esort but these same�ghter airraft ould be employed on other bombing missions. If the opti-mization riteria is to minimize the shedule's makespan and to maximizemission suess then the hoie of whether or not �ghter airraft are assignedbeomes an important trade-o�.2. Identifying the optimal set of targets whih an be attaked with the re-soures available. This requires the sheduler to identify a subset of the tar-gets that an be suessfully assigned and to ensure the reasons why targetsthat are unassigned are fed bak to the human planners. This allows for thedevelopment of more robust shedules (i.e., ones with a higher probability ofsueeding) than previously available to usaf planners. In many ases thehuman planners would sooner have a shedule that has a high probability ofdestroying 90% of the targets than one than one whih has a low probability1 the weight of e�ort spei�es the perentage of airraft whih an be assigned to apartiular target type, e.g. 40% of F-15s to sam targets.2 phasing spei�es the relative order target types should be attaked, e.g. all samsbefore bridges
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of suess but attaks 100% of the targets. The problem is identifying whatperentage is possible and the targets in that sub-set. In addition, it is vi-tal to avoid situations where many missions must be aneled or replannedbeause of small anomalies, suh as a single target being missed.3. Identifying the optimal break point at whih the air ampaign should swithfrom one target type to another. By �nding the optimal break point it be-omes possible to assign resoures to attak high priority targets in tempo-rally later target sets rather than using limited resoures trying to destroyall the targets in an earlier target set the last few of whih have relativelylow value. Again this allows for more robust shedules whih have a higherprobability that they will ahieve their overall aims.The key to deoss ability to suessfully solve problems in this domain is thatit an generate shedules very quikly and be adaptable to hanges in the taskand the situation. There is no point in deos generating shedules for the next12 hours when the shedule needs to hange on a minute by minute basis. Theore algorithm of the deos system is the \Squeakywheel" optimization (swo)tehnique developed by Joslin and Clements [7℄. The basi swo algorithm hasbeen modi�ed to handle several new onstraint types and these inlude prob-ability distributions, probabilisti funtions, temporal windows, resoure limitsand a limited set of preedene onstraints. In addition a more expressive taskdesription language [2, 1℄ has been integrated to allow the sheduler to bettermodel the atual dynamis and ativities in the domain. The algorithm has alsobeen modi�ed to allow it to identify optimal sub-sets of tasks from the task listand this tehnique is referred to as Penalty Box sheduling. These modi�ationare generi and ould be easily applied to problems in manufaturing, assembly,integration and test. Details of the task model and algorithm modi�ations areprovided later in the paper.Previous work [8℄ has addressed aspets of this problem but this approahdi�ers in several important ways. The overall deos approah is to identify opti-mal resoure assignments and where insuÆient resoures are available the bestsub-set. The previous work [8℄ took an mdp approah to try and identify thebest poliy for a given target. This resulted in a solution in whih the targetmay need to be attaked for several days onseutively and disussions for usafpilots have shown that suh a mission plan is usually a suiide one.3 The deosapproah is able to handle problems far larger and generate solutions in a fewseonds as opposed to tens of minutes. In addition, the deos approah is able tohandle a riher set of onstraint types and optimization riteria (e.g., minimizemakespan, maximize probability of damage and minimize attrition). Finally, thedeos approah is able to handle the dynami aspets of the problem (e.g. missedtargets, pop-up targets) whih the previous work annot. This allows deos todevelop shedules whih are robust against ertain types of hange and minimizethe knok on e�ets of hanging missions on the y. Current usaf planning sys-tems use lp/ip solvers to generate mission shedules. The ore swo algorithm3 The enemy begin to expet the raids and hene the attrition rate beomes very high!!
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has been ompared with lp/ip solvers on several manufaturing problems andwas found to out perform them in terms of the speed of solution and the qualityof the solutions generated [4℄.The paper is strutured as follows, Firstly, it provides an overview of theap domain and the data used by the deos system. Seondly, it provides anoverview of the task model and thirdly, it desribes the basi sheduling algo-rithm and two extensions whih allow it to identify optimal sub-sets. Fourthly,it provides details of the shedules generated and their evaluation by membersof the usaf. Finally, it provides a summary of urrent progress and desribesseveral additional tehniques and ideas whih will be explored.1.1 Overview of the Target Sheduling ProessThe weapon/airraft pairing problem is a ompliated one due to the many di�er-ent trade-o�s whih are possible and the ability of the airraft to be on�gured tosuit di�erent missions and di�erent weapons loads. The atual weapon/airraftpairing is based on a set of probabilities whih take into aount, probability ofhitting the target, destroying the target4 and the expeted attrition rate of theairraft against the target type. In theory any weapon/airraft pairing ould besent against a target but it may have a very low hane of suess. As desribedearlier some airraft have a greater probability of suess if additional assets aresent with them. For example, the expeted airraft attrition rate an be reduedby sending sead airraft with the strike airraft. However, this would mean thatthe sead airraft ould not be used as strike airraft whih may result in theirbeing insuÆient resoures to attak a high value target later in the shedule. Inaddition to the onstraints on individual targets and airraft there are also fur-ther onstraints relating to time and resoure limits. The temporal onstraintsspeify a window during whih a target must be attaked, the window duringwhih targets of a partiular type an be attaked and the time delay betweentargets whih are \onneted" (e.g. the ooling towers of a power station mustbe attaked with 12 hours of the generator halls). The resoure onstraints spe-ify the available quantities of airraft and weapons (whih an vary over time)and perentages limits on the number of airraft whih an assigned to a giventarget type5 (e.g. 40% of missions against air defenses, 20% of missions againstommuniation sites). These onstraints are very problemati as the number ofmissions is not known in advane hene the sheduler needs to keep the perent-ages of di�erent mission types in balane. The targets themselves are groupedinto target sets (e.g. all bridges aross the Thames) and these are then groupedinto target systems (e.g. all railway enters in southern England). Unfortunately,the same target might be in two or more di�erent target sets and hene has ahigher \value" than the other targets in the same set. In addition, it may bethe ase that it is not neessary to attak all the targets in the set to ahieve4 some weapons may be able to hit a target but not destroy it, e.g. an anti-tank missilean hit a building but it very unlikely to destroy it5 This is referred to as the Weight of E�ort.
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the overall aim. For example, if the aim is to stop the enemy fores rossing theriver it may be possible to ahieve this by destroying only 80% of the bridges.This makes target seletion a very important aspet of the sheduling proess.The sheduling proess aims to �nd an optimal assignment of airraft to tar-gets whih minimizes the probability of needing to restrike the target or auseollateral damage while also minimizing the risk to the assigned airraft.The problem is further ompliated by the fat that airraft an be reassignedto a di�erent mission on the y. For example, airraft ould be diverted to attaka pop-up target for whih they are an optimal math. Alternatively, the airraftmay be a good math but the weapons they are arrying are not. This means theairraft ould be diverted to a base and reon�gured if time permits. Changingmissions on the y has potential knok on e�ets with later missions beingpostponed or reassigned due to longer than expeted mission durations.1.2 Mission Planning Data ModelsThe target mathing problem is driven by a set of tables whih provide detailsof the di�erent airraft, weapons, targets, support assets, et. The primary in-formation soure is the target table and a setion is provided in Table 1. Thistable show the type of mission, air superiority (as) the hardness of the targetand the risk assoiated with attaking the target 6. Assoiated with eah tar-get type is a reward whih de�nes the importane of the target to the humanplanners. Table 2 shows a setion of the rewards table (these values were alu-lated through disussions with human planners and through the analysis of theshedules generated by deos).Obj Task Lat Long Hardness Risk TargetAS 1 180804N 233902W Hard High air�eldAS 3 172708N 223930W Soft Medium radar-omms... Table 1. ACP Target TableThe mission type from Table 1 identi�es the lass of airraft whih ould besent against the target. Table 3 shows the mapping of airraft to mission typeand shows that the same airraft an be used in for many di�erent missions.One of the optimization riteria for this problem is minimize risk and deostries to identify airraft whih have a low risk against a seleted type of target.The expeted risk to an airraft is alulated by summing the total probabilitythat the airraft will be shot down either to or from the target7 One key deision6 Not shown is the time window during whih the target needs to be attaked, e.g.D+5, D+10, et7 sam batteries have a threat radius whih has a known probability of detetion basedon the distane the airraft is from the enter of the radius.
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Mission Rewardmil ativity 45SAM site 90SSM site 100C3 35ommand HQ 60...Table 2. Target Reward Tabledeos needs to make is to whether or not to use sead protetion to redue therisk to the attaking airraft. As pointed out earlier this may have the side e�etof making another strike mission late.One a potential airraft has been seleted it must be heked to ensure thatit an arry appropriate weapon load for the target. The probability of destru-tion is noted in terms of a single weapon and the urrent usaf dotrine is thatthe plane arries enough weapons to give a 90% or better hane of destroyingthe target. There is no guarantee that a spei�ed weapon load will destroy thetarget as they ould all miss. Additional tables provides details of the probabilityof weapon hitting the target, provide data on air to air refueling times, airraftspeed and range, turn round times, et. Full details of the airraft/weapon pair-ing algorithm are given later in the paper.Mission AirraftCounter Air F15E, F117, F16C, F16CLN, F14A, F14B, F14D, FA18A, FA18C,FA18D, AV8B, B52H, B1BSEAD F16CJ, EA6B, FA18CDef Counter Air F14A, F14B, F14D, F16CInterdition F15E, F117, F16C, F16CLN, B52H, B1B, F14A, F14B, F14D, FA18A,FA18C, FA18D, AV8BClose Air Support A10, AV8B, F16C, F15E, FA18A, FA18C, FA18DStrategi Attak F117, B52H, B1BTable 3. Airraft and Mission Mapping TableEah mission is modeled using the prfer mission task model [5℄ that de�nesa natural breakdown of a mission into its onstituent parts or sub-bloks.{ Plan: Time taken for the pilot to plan the mission. One a plan has beenidenti�ed it is inserted in the slot for other workow tasks to examine andhek.{ Ready: Time taken to prepare the plane for the mission
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{ Fly: Time taken to get to the mission objetive 8{ Exeute: Time taken to exeute the mission, e.g. drop weapons, unload foodpallets, et.{ Reonstitute: Time taken to turn the airraft round one it has returned tobase.The prfer model allows a tasking agent to reate a better model of theproessing the task needs and to better understand how to alloate resoures,identify tradeo�s, asses hanges and modify the assoiated task list. The sub-bloks are allowed to \breath" as hanges in the domain are reeted as hangesin one or more of the sub-bloks. For example, if the airraft hosen for themission develops a failure during its ready time then the \Ready" sub-task willexpand and aommodate the extra time. The prfer model allows deos toquikly identify the impat of hanges, propose potential hanges to the missiontasking and inform the planners of new deadlines and onstraints (e.g. the planesnow on hold need refueling in the next 30 minutes).2 Resoure Alloation AlgorithmThe basi onept behind deos is to generate shedules quikly and to updatethem on the y as new requirements and hanges our in the domain. Theore swo algorithm uses a priority queue to determine the order in whih tasksshould be released to a greedy sheduling algorithm. This identi�es the bestairraft/weapon for a given task from those available. Tasks later in the priorityqueue have a smaller hoie of resoures due to earlier ommitments. The orderof the priority queue is determined by how diÆult the task is to deal with thatis, the higher the task is in the queue the harder it is to handle it orretly. It doesnot require an external priority to be identi�ed by the user. One a shedule hasbeen generated it is analyzed to identify whih tasks were handled badly (e.g.,a task was ompleted after its deadline, or assigned to a high attrition airraft).Any task that \squeaks" (i.e., was handled badly) is given a \blame sore" andis promoted in the priority queue, with the distane it is promoted determinedby the extent of the problem. This new priority queue is then used to generateanother shedule that is analyzed for problems. This proess ontinues until nosigni�ant improvement in the shedule is noted over several iterations. swo isextremely fast with eah yle of generate, analyze, and re-prioritize taking onlya few seonds, even for large problems.One of the key issues in this domain was to generate shedules whih balaneda number of potentially oniting fators. For example, the planners wanted all2500 targets attaked in the shortest time, with minimum attrition and minimumrisk of ollateral damage. However, to guarantee that eah target was attakedwith minimum risk would require all missions to be own by F-117s and thatwould result in very long shedules. A sample shedule was generated whih used8 This an be replaed by a \drive" or \sail" blok for operations using land or seatransport
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only the best target/airraft pairing and it had a makespan in exess of six days.Using the deos approah the shedule was redued in length to just under twodays with a less than 1% redution in overall shedule quality.To address these potential onits a series of funtions were developed whihinvestigated the di�erent aspets of the problem, e.g. airraft attrition, probabil-ities of hitting and destroying the target, numbers of weapons needed, numberof airraft needed, support assets, number of sorties, et. It was identi�ed thatthe key elements of evaluation were the probability that the target would beattaked suessfully and that the attaking airraft would have a low attritionrate. This allowed two main funtions to be identi�ed 9. Funtion 1 desribes theprobability that a target will be destroyed given a spei�ed number of weaponsW and the probabilities of hit and kill (Ph Pk) respetively for a single weapon.Funtion 2 desribes the expeted attrition rate for n airraft when attakingwith N total airraft.Funtion 1: Pkill(W;Ph; Pk) =PWh wXn=1�wh��1� PhPh �w�n �1� (1� Pk)N�Funtion 2: Pattrition(N;n; Pa) = �Nn� (1� PA)N�n PnAThe deos uses these formulas to evaluate di�erent ombinations of weaponsand airraft for a given target type, trying to identify the best possible math.However, it may be the ase that the required airraft/weapon pairing may beunavailable in the desired time interval (e.g., between 0900 hrs and 1100 hrs all F-16s may be assigned to other missions). deos may deide to use a seond option(i.e., a di�erent airraft and/or weapon) and will yle through the di�erentoptions until an assignment of airraft/weapons to the target an be made 10.In addition, deos may add in a sead sortie to o� set a high expeted attritionrate. After an assignment has been made it may be the ase that it is a poorone (e.g., high attrition rate, low probability of suess) and this is dealt with inthe next yle of algorithm when the generated shedule is analyzed and poorassignments identi�ed.During the development of the algorithm it was identi�ed that in many asesthe number of targets greatly exeeded the available resoures. In addition, it wasalso identi�ed that some of the time onstraints provided by the human shed-ulers were leading to less than optimal shedules. Details of the modi�ations tothe basi algorithm are provided in the following setions.9 Other support funtions were developed but are not disussed in this paper10 By default the targeting database provided 5 options but the 4th and 5th usuallyhad a low probability of suess
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2.1 Penalty Box ShedulingThe aim of penalty box sheduling is to identify a sub-set of tasks whih an beresoured e�etively and avoid the problem of generating low quality sheduleswhih resoure all tasks. For example, human planners may be happier striking90% of the targets with high probability of suess rather than 100% of thetargets with a muh lower probability of suess (i.e., the planners wanted robustsolutions whih has a higher probability of suess). The problem is �nding whatperentage an be assigned and whih tasks to selet. Penalty box shedulingextends the swo algorithm by viewing the inability to assign a task within itsspei�ed time window as a high priority problem (i.e., a large squeak). Insteadof plaing the task at a point later in the shedule the task is put in the penaltybox11 for a single yle of the algorithm. The penalty tasks are assigned a highblame value and their position in the priority queue altered. The blame value alsotakes into aount the potential reward for striking the target and the externalpriority assigned by the user to the target set. At the end of the shedulingproess12 those tasks in the penalty box are left unassigned. This extensionproved highly eÆient (i.e., there was a negligible slow down in the speed ofsolution) at identifying sub-sets of tasks and provided the human shedulers withmore robust solutions to the targeting problem. After sheduling was ompletethe human planners were able to provide feedbak on whih tasks left in thepenalty box needed to be resoured. They ould then ompare the resultingshedule with the optimal one and measure (i.e., number of missions, sorties,expeted attrition rate, et) the drop in the overall shedule quality.2.2 Temporal Phase TransitionMissions are spei�ed with time windows during whih the mission must be a-omplished. However, these assoiated time windows tend to be arbitrary andestimates by the human planners. Rather than use the time onstraints as in-variable, deos was allowed to relax them and attempt to identify the point atwhih to swith from one mission type to another. For example, attaking samsites should be ompleted �rst (for the next 6 hours) and then attaks againstpower stations for the next 6 hours. Their division may mean that fairly lowpriority sam missions an be handled whereas only the highest priority powerstation missions an be assigned. A better shedule may be to stop sam missionsafter 4 hours and give the additional 2 hours to the power station missions. Theseletion of suitable subsets needs to be weighted against the exibility built intothe shedule by alloating maximal windows. For example, more tasks might beresoured within a window at the expense of making the shedule more brittle.The temporal phase transition problem was investigated through two di�er-ent methods. The �rst method involves a variation of the penalty box sheduling11 This is a term onneted with sports where a player ommitting an o�ense is plaedin the penalty box for a spei�ed period.12 Deos keeps trak of the best shedule found so far and its assoiated penalty boxentries.
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algorithm in whih pointers are maintained to the last task of the temporallyearlier set and to the earliest task of the later set respetively. It always thease that no sam an be plaed after any power mission. For example, if a sammission annot be sheduled before the earliest power mission then it is sent tothe penalty box for a yle. Alternatively, if a power mission an be sheduled af-ter all sam missions but before the urrent earliest power mission then it an beadded and the pointers updated. This relies on the ability of the ritiquing phaseof the swo algorithm to apportion blame appropriately to move the missions inthe penalty box the required distane in the priority queue. The seond methodinvolves rippling all the power missions to the right to �t in a new sam mission.Any power missions already in the shedule keeps their assignment (i.e. a F-16)but are moved later in time (i.e., they do not have to aept a lower qualityassignment). If the tasks annot be rippled right then the new task is assignedto the penalty box. This relies on the onstrution phase of swo algorithm be-ing able to reonstrut new partial assignments on the y. By having alreadyassigned power tasks keep their assignments (or be assigned one no worse (i.e.,swap the F-16 or a F-15) it keeps the problem tratable. The analysis of theshedule showed that on problem sizes up to 2000 tasks it was better to use theshu�e approah and for problems greater than 2000 the pointer approah wasmarginally better.3 ResultsFigure 1 shows the performane of deos on an example test set of 700 tar-gets and 150 airraft. The optimization riteria inluded low attrition rate, highprobability of suess and a minimal makespan. The best shedule identi�edompletes all 700 targets in 47 hours with an expeted loss rate of less than 1%.To date the deos results are the best for these problem and easily surpass thosedeveloped by urrent usaf mission planners. Figure 1 shows that the additionof penalty box sheduling and phase transition omponents does not e�et theoverall performane of the system. Deos very quikly settles in an appropri-ate region of the searh spae and spends many iterations trying to improve ona reasonably good shedule. deos is trying to identify trade-o�s between thedi�erent optimization riteria and Table 4 shows a typial example. Betweeniteration 2 and 3 the raw sore13 inreased by less than 1% but the analysissore14 inreased by nearly 25% due to the shedule being a lot shorter.The example above also shows that deos was able to �nd the best sub-setof targets from those spei�ed (e.g., 667 out of 700 were suessfully tasked).The deos shedules allow usaf planners to identify robust solutions and theinremental osts (e.g., additional planes, sorties, attrition) neessary to attakall targets. For eah target deos identi�es an appropriate number of airraft,weapon load and timing information. In some ases the assigned airraft/weapon13 This is the summation of the number of targets attaked, probability of suess,number of missions and sorties14 This is the raw sore divided by the makespan in minutes
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Iteration Targets Assigned Raw Sore Analysis2 667 667075 157443 667 669873 20219Table 4. Target set vs Makespan Trade-o�
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IterationFig. 1. Air Mission Planning Resultsis a less than optimal math. It is often the ase that to obtain a good overallshedule some tasks need to be handled badly (i.e., they need to be sari�ed). Itis possible to handle the sari�ed tasks better but only at the expense of makingthe overall shedule worse. The presene of \sari�e tasks" usually indiates thatadditional resoures of a partiular lass are needed. The system was evaluatedby subjet matter experts (sme) from the usaf. The aim was to show that thesme's view of shedule quality and that of deos were orrelated. The smes weregiven pairs of shedules whose di�erene in quality narrowed gradually and wereasked to hoose the better shedule. In all ases the view of the sme and deoswas orrelated. After six iterations the smes were unable to make an informeddeision over whih shedule was better.4 Summary and Further WorkThis paper has presented a desription of the deos sheduling system, its shedul-ing algorithm and its appliation to the mission sheduling problem. deos allowsfor the expliit analysis of trade-o�s in resoure alloation, dynami update ofon going shedules, on the y task addition and for foussed impat analysisand repair. To date the system has been applied to large sale ap problems(i.e. 2500 targets and 200 airraft over a 5 day period) and was suessfullydemonstrated as part of the usafs E�ets Based Operations projet at the endof 2000. The tehniques are generalizable to other domains in whih there are
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exible time onstraints and the \penalty box" tehniques are appliable toproblems where there is phasing between di�erent groups of tasks. For exam-ple, in manufaturing domains shedulers are often faed with the problem ofswithing prodution from one type to another to improve overall produtiv-ity. Several improvements will be made to deos and these inlude adversarialplanning in whih the shedule will propose robust solutions to potential enemyresponses. The interfae will be improved to allow easier interation and spei-�ation of poliies and preferenes. The results from the ap domain and othernon-probabilisti manufaturing domains show a distint grouping of shedulequality as shown in Figure 1. These groups represent lasses of solutions (ratherthan point solutions) that have partiular attributes and values. Deos will bemodi�ed to automatially identify these disontinuities in the solution spae andalert the planners.Referenes1. Berry, P.M. and Drabble, B: SWIM: An AI-based System for Workow EnabledReative Control, in the Proeedings of the Workshop on Workow and ProessManagement held as part of the International Joint Conferene on Arti�ial Intelli-gene (ijai-99), (eds, B, Drabble and M. Ibrahim), ijai In, August, 1999.2. Berry, P.M. and Drabble, B.,: The aim Proess Modeling Methodology, ai Center,sri International, Tehnial Report, 1789, Menlo Park, a, 1999.3. Chien, S., Knight, R., Stehert, A., Sherwood, R., and Rabideau, G.,: IntegratedPlanning and Exeution for Autonomous Spaeraft, in the proeedings of the ieeAerospae Conferene (ia), Aspen, o, Marh 1999.4. Clements, D., Crawford, L., Joslin, D., Nemhauser, G., Puttlitz M. and Savelsbergh,M.: Heuristi Optimization: A hybrid AI/OR approah, in the proeedings of theWorkshop on Industrial Constraint-Direted Sheduling, 1997. (Held in onjuntionwith CP'97, Shloss Hagenberg, Austria.).5. Drabble, B.: Task Deomposition Support to Reative Sheduling, in the proeed-ings of the 5th European Conferene on Planning (ep-99), Springer Verlag Press,New York, ny, usa, September, 1999.6. Fox, M.S.: ISIS: A Retrospetive, in Intelligent Sheduling, (Zweben. M. and Fox,M.S.), 1994. Publisher Morgan Kaufmann, Palo Alto, a, 94303, usa, pp3-28.7. Joslin, D.E. and Clements, D.P.: Squeakywheel Optimization, in the proeedings ofthe Fifteenth National Conferene on Arti�ial Intelligene, Madison, wi, aaai Press,Menlo Park, a, usa 1998.8. Meuleau, N., Hauskreht, M., Kim K., Peshkin. L., Pak Kaelbling. L., Dean. T.,and Boutilier., C.: Solving Very Large Weakly Coupled Markov Deision Proesses,in the Proeedings of the Fifteenth National Conferene on Arti�ial Intelligene,aaai Press/mit Press, MIT, Cambridge, ma 02142, usa, July, 1998, pp165-172.9. Myers, K.L..: A Continuous Planning and Exeution Framework, ai Magazine, Vol20(4), aaai Press, Menlo Park, a, 1999.10. Sadeh, N.: Miro-Opportunisti Sheduling: The Miro-Boss Fatory Sheduler, inIntelligent Sheduling, (Zweben. M. and Fox, M.S.), 1994. Publisher Morgan Kauf-mann, Palo Alto, California, 94303, usa, pp99-136.11. Smith, S.F.: OPIS: A Methodology and Arhiteture for Reative Sheduling, inIntelligent Sheduling, (Zweben. M. and Fox, M.S.), 1994. Publisher Morgan Kauf-mann, Palo Alto, a, 94303, usa, pp29-66.
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