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Several systems [11, 6, 10℄ have attempted to solve problems in domains inwhi
h there are de�ned time bounds on a
tivities or where an a
tivity's out
omefollows some predi
table distribution. For example, in semi-
ondu
tor manufa
-turing a ma
hine may have a failure rate of between 0.1% and 0.5% dependingon the 
hip being manufa
tured. It may also be the 
ase that some steps needto be re-exe
uted to deal with failures and reworking, e.g. most of the failed
hips 
an be �xed if they pass through steps 112 through 118 again. Systemssu
h as 
asper [3℄ and 
pef [9℄ have also attempted to address the planningand exe
ution problem. However, neither system has taken a resour
e 
enteredoptimization approa
h and neither has attempted to 
oordinate planning fun
-tions a
ross distributed platforms. While these te
hniques have been su

essfulin domains with limited amounts of un
ertainty they are totally unsuitable fordealing with domains su
h as a
p that 
ontain large amounts of un
ertainty(e.g., partially order a
tivities, a
tivities with unknown durations, unexpe
tedout
omes, new requirements) and probabilities (e.g., expe
ted air
raft attritionrates, target damage, lo
ations of enemy for
es). The problem is further 
om-pli
ated by the distributed nature of the planning pro
ess in whi
h di�erentaspe
ts of the plan are generated and maintained by separate planning 
ells(e.g. logisti
s, airborne tankers,, maintenan
e). The problem be
omes one of op-timally putting together many di�erent s
heduling pie
es and monitoring theirdependen
ies and requirements over time.One of the key aspe
ts of the a
p pro
ess is the s
heduling of air
raftand weapons to targets (i.e., how many air
raft, of what type, 
arrying whi
hweapons are assigned to the target). This is a very 
omplex problem as it 
ontainslarge numbers of di�erent types of 
onstraints (e.g., time, user priority, weight ofe�ort 1, phasing 2, resour
es). The assignment problems needs to address threemajor 
on
erns:1. Identifying trade-o�s between di�erent air
raft assignments. For example,a mission's su

ess 
an be in
reased if it has �ghter es
ort but these same�ghter air
raft 
ould be employed on other bombing missions. If the opti-mization 
riteria is to minimize the s
hedule's makespan and to maximizemission su

ess then the 
hoi
e of whether or not �ghter air
raft are assignedbe
omes an important trade-o�.2. Identifying the optimal set of targets whi
h 
an be atta
ked with the re-sour
es available. This requires the s
heduler to identify a subset of the tar-gets that 
an be su

essfully assigned and to ensure the reasons why targetsthat are unassigned are fed ba
k to the human planners. This allows for thedevelopment of more robust s
hedules (i.e., ones with a higher probability ofsu

eeding) than previously available to usaf planners. In many 
ases thehuman planners would sooner have a s
hedule that has a high probability ofdestroying 90% of the targets than one than one whi
h has a low probability1 the weight of e�ort spe
i�es the per
entage of air
raft whi
h 
an be assigned to aparti
ular target type, e.g. 40% of F-15s to sam targets.2 phasing spe
i�es the relative order target types should be atta
ked, e.g. all samsbefore bridges
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of su

ess but atta
ks 100% of the targets. The problem is identifying whatper
entage is possible and the targets in that sub-set. In addition, it is vi-tal to avoid situations where many missions must be 
an
eled or replannedbe
ause of small anomalies, su
h as a single target being missed.3. Identifying the optimal break point at whi
h the air 
ampaign should swit
hfrom one target type to another. By �nding the optimal break point it be-
omes possible to assign resour
es to atta
k high priority targets in tempo-rally later target sets rather than using limited resour
es trying to destroyall the targets in an earlier target set the last few of whi
h have relativelylow value. Again this allows for more robust s
hedules whi
h have a higherprobability that they will a
hieve their overall aims.The key to deoss ability to su

essfully solve problems in this domain is thatit 
an generate s
hedules very qui
kly and be adaptable to 
hanges in the taskand the situation. There is no point in deos generating s
hedules for the next12 hours when the s
hedule needs to 
hange on a minute by minute basis. The
ore algorithm of the deos system is the \Squeakywheel" optimization (swo)te
hnique developed by Joslin and Clements [7℄. The basi
 swo algorithm hasbeen modi�ed to handle several new 
onstraint types and these in
lude prob-ability distributions, probabilisti
 fun
tions, temporal windows, resour
e limitsand a limited set of pre
eden
e 
onstraints. In addition a more expressive taskdes
ription language [2, 1℄ has been integrated to allow the s
heduler to bettermodel the a
tual dynami
s and a
tivities in the domain. The algorithm has alsobeen modi�ed to allow it to identify optimal sub-sets of tasks from the task listand this te
hnique is referred to as Penalty Box s
heduling. These modi�
ationare generi
 and 
ould be easily applied to problems in manufa
turing, assembly,integration and test. Details of the task model and algorithm modi�
ations areprovided later in the paper.Previous work [8℄ has addressed aspe
ts of this problem but this approa
hdi�ers in several important ways. The overall deos approa
h is to identify opti-mal resour
e assignments and where insuÆ
ient resour
es are available the bestsub-set. The previous work [8℄ took an mdp approa
h to try and identify thebest poli
y for a given target. This resulted in a solution in whi
h the targetmay need to be atta
ked for several days 
onse
utively and dis
ussions for usafpilots have shown that su
h a mission plan is usually a sui
ide one.3 The deosapproa
h is able to handle problems far larger and generate solutions in a fewse
onds as opposed to tens of minutes. In addition, the deos approa
h is able tohandle a ri
her set of 
onstraint types and optimization 
riteria (e.g., minimizemakespan, maximize probability of damage and minimize attrition). Finally, thedeos approa
h is able to handle the dynami
 aspe
ts of the problem (e.g. missedtargets, pop-up targets) whi
h the previous work 
annot. This allows deos todevelop s
hedules whi
h are robust against 
ertain types of 
hange and minimizethe kno
k on e�e
ts of 
hanging missions on the 
y. Current usaf planning sys-tems use lp/ip solvers to generate mission s
hedules. The 
ore swo algorithm3 The enemy begin to expe
t the raids and hen
e the attrition rate be
omes very high!!
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has been 
ompared with lp/ip solvers on several manufa
turing problems andwas found to out perform them in terms of the speed of solution and the qualityof the solutions generated [4℄.The paper is stru
tured as follows, Firstly, it provides an overview of thea
p domain and the data used by the deos system. Se
ondly, it provides anoverview of the task model and thirdly, it des
ribes the basi
 s
heduling algo-rithm and two extensions whi
h allow it to identify optimal sub-sets. Fourthly,it provides details of the s
hedules generated and their evaluation by membersof the usaf. Finally, it provides a summary of 
urrent progress and des
ribesseveral additional te
hniques and ideas whi
h will be explored.1.1 Overview of the Target S
heduling Pro
essThe weapon/air
raft pairing problem is a 
ompli
ated one due to the many di�er-ent trade-o�s whi
h are possible and the ability of the air
raft to be 
on�gured tosuit di�erent missions and di�erent weapons loads. The a
tual weapon/air
raftpairing is based on a set of probabilities whi
h take into a

ount, probability ofhitting the target, destroying the target4 and the expe
ted attrition rate of theair
raft against the target type. In theory any weapon/air
raft pairing 
ould besent against a target but it may have a very low 
han
e of su

ess. As des
ribedearlier some air
raft have a greater probability of su

ess if additional assets aresent with them. For example, the expe
ted air
raft attrition rate 
an be redu
edby sending sead air
raft with the strike air
raft. However, this would mean thatthe sead air
raft 
ould not be used as strike air
raft whi
h may result in theirbeing insuÆ
ient resour
es to atta
k a high value target later in the s
hedule. Inaddition to the 
onstraints on individual targets and air
raft there are also fur-ther 
onstraints relating to time and resour
e limits. The temporal 
onstraintsspe
ify a window during whi
h a target must be atta
ked, the window duringwhi
h targets of a parti
ular type 
an be atta
ked and the time delay betweentargets whi
h are \
onne
ted" (e.g. the 
ooling towers of a power station mustbe atta
ked with 12 hours of the generator halls). The resour
e 
onstraints spe
-ify the available quantities of air
raft and weapons (whi
h 
an vary over time)and per
entages limits on the number of air
raft whi
h 
an assigned to a giventarget type5 (e.g. 40% of missions against air defenses, 20% of missions against
ommuni
ation sites). These 
onstraints are very problemati
 as the number ofmissions is not known in advan
e hen
e the s
heduler needs to keep the per
ent-ages of di�erent mission types in balan
e. The targets themselves are groupedinto target sets (e.g. all bridges a
ross the Thames) and these are then groupedinto target systems (e.g. all railway 
enters in southern England). Unfortunately,the same target might be in two or more di�erent target sets and hen
e has ahigher \value" than the other targets in the same set. In addition, it may bethe 
ase that it is not ne
essary to atta
k all the targets in the set to a
hieve4 some weapons may be able to hit a target but not destroy it, e.g. an anti-tank missile
an hit a building but it very unlikely to destroy it5 This is referred to as the Weight of E�ort.
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the overall aim. For example, if the aim is to stop the enemy for
es 
rossing theriver it may be possible to a
hieve this by destroying only 80% of the bridges.This makes target sele
tion a very important aspe
t of the s
heduling pro
ess.The s
heduling pro
ess aims to �nd an optimal assignment of air
raft to tar-gets whi
h minimizes the probability of needing to restrike the target or 
ause
ollateral damage while also minimizing the risk to the assigned air
raft.The problem is further 
ompli
ated by the fa
t that air
raft 
an be reassignedto a di�erent mission on the 
y. For example, air
raft 
ould be diverted to atta
ka pop-up target for whi
h they are an optimal mat
h. Alternatively, the air
raftmay be a good mat
h but the weapons they are 
arrying are not. This means theair
raft 
ould be diverted to a base and re
on�gured if time permits. Changingmissions on the 
y has potential kno
k on e�e
ts with later missions beingpostponed or reassigned due to longer than expe
ted mission durations.1.2 Mission Planning Data ModelsThe target mat
hing problem is driven by a set of tables whi
h provide detailsof the di�erent air
raft, weapons, targets, support assets, et
. The primary in-formation sour
e is the target table and a se
tion is provided in Table 1. Thistable show the type of mission, air superiority (as) the hardness of the targetand the risk asso
iated with atta
king the target 6. Asso
iated with ea
h tar-get type is a reward whi
h de�nes the importan
e of the target to the humanplanners. Table 2 shows a se
tion of the rewards table (these values were 
al
u-lated through dis
ussions with human planners and through the analysis of thes
hedules generated by deos).Obj Task Lat Long Hardness Risk TargetAS 1 180804N 233902W Hard High air�eldAS 3 172708N 223930W Soft Medium radar-
omms... Table 1. ACP Target TableThe mission type from Table 1 identi�es the 
lass of air
raft whi
h 
ould besent against the target. Table 3 shows the mapping of air
raft to mission typeand shows that the same air
raft 
an be used in for many di�erent missions.One of the optimization 
riteria for this problem is minimize risk and deostries to identify air
raft whi
h have a low risk against a sele
ted type of target.The expe
ted risk to an air
raft is 
al
ulated by summing the total probabilitythat the air
raft will be shot down either to or from the target7 One key de
ision6 Not shown is the time window during whi
h the target needs to be atta
ked, e.g.D+5, D+10, et
7 sam batteries have a threat radius whi
h has a known probability of dete
tion basedon the distan
e the air
raft is from the 
enter of the radius.
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Mission Rewardmil a
tivity 45SAM site 90SSM site 100C3 35
ommand HQ 60...Table 2. Target Reward Tabledeos needs to make is to whether or not to use sead prote
tion to redu
e therisk to the atta
king air
raft. As pointed out earlier this may have the side e�e
tof making another strike mission late.On
e a potential air
raft has been sele
ted it must be 
he
ked to ensure thatit 
an 
arry appropriate weapon load for the target. The probability of destru
-tion is noted in terms of a single weapon and the 
urrent usaf do
trine is thatthe plane 
arries enough weapons to give a 90% or better 
han
e of destroyingthe target. There is no guarantee that a spe
i�ed weapon load will destroy thetarget as they 
ould all miss. Additional tables provides details of the probabilityof weapon hitting the target, provide data on air to air refueling times, air
raftspeed and range, turn round times, et
. Full details of the air
raft/weapon pair-ing algorithm are given later in the paper.Mission Air
raftCounter Air F15E, F117, F16C, F16CLN, F14A, F14B, F14D, FA18A, FA18C,FA18D, AV8B, B52H, B1BSEAD F16CJ, EA6B, FA18CDef Counter Air F14A, F14B, F14D, F16CInterdi
tion F15E, F117, F16C, F16CLN, B52H, B1B, F14A, F14B, F14D, FA18A,FA18C, FA18D, AV8BClose Air Support A10, AV8B, F16C, F15E, FA18A, FA18C, FA18DStrategi
 Atta
k F117, B52H, B1BTable 3. Air
raft and Mission Mapping TableEa
h mission is modeled using the prfer mission task model [5℄ that de�nesa natural breakdown of a mission into its 
onstituent parts or sub-blo
ks.{ Plan: Time taken for the pilot to plan the mission. On
e a plan has beenidenti�ed it is inserted in the slot for other work
ow tasks to examine and
he
k.{ Ready: Time taken to prepare the plane for the mission
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{ Fly: Time taken to get to the mission obje
tive 8{ Exe
ute: Time taken to exe
ute the mission, e.g. drop weapons, unload foodpallets, et
.{ Re
onstitute: Time taken to turn the air
raft round on
e it has returned tobase.The prfer model allows a tasking agent to 
reate a better model of thepro
essing the task needs and to better understand how to allo
ate resour
es,identify tradeo�s, asses 
hanges and modify the asso
iated task list. The sub-blo
ks are allowed to \breath" as 
hanges in the domain are re
e
ted as 
hangesin one or more of the sub-blo
ks. For example, if the air
raft 
hosen for themission develops a failure during its ready time then the \Ready" sub-task willexpand and a

ommodate the extra time. The prfer model allows deos toqui
kly identify the impa
t of 
hanges, propose potential 
hanges to the missiontasking and inform the planners of new deadlines and 
onstraints (e.g. the planesnow on hold need refueling in the next 30 minutes).2 Resour
e Allo
ation AlgorithmThe basi
 
on
ept behind deos is to generate s
hedules qui
kly and to updatethem on the 
y as new requirements and 
hanges o

ur in the domain. The
ore swo algorithm uses a priority queue to determine the order in whi
h tasksshould be released to a greedy s
heduling algorithm. This identi�es the bestair
raft/weapon for a given task from those available. Tasks later in the priorityqueue have a smaller 
hoi
e of resour
es due to earlier 
ommitments. The orderof the priority queue is determined by how diÆ
ult the task is to deal with thatis, the higher the task is in the queue the harder it is to handle it 
orre
tly. It doesnot require an external priority to be identi�ed by the user. On
e a s
hedule hasbeen generated it is analyzed to identify whi
h tasks were handled badly (e.g.,a task was 
ompleted after its deadline, or assigned to a high attrition air
raft).Any task that \squeaks" (i.e., was handled badly) is given a \blame s
ore" andis promoted in the priority queue, with the distan
e it is promoted determinedby the extent of the problem. This new priority queue is then used to generateanother s
hedule that is analyzed for problems. This pro
ess 
ontinues until nosigni�
ant improvement in the s
hedule is noted over several iterations. swo isextremely fast with ea
h 
y
le of generate, analyze, and re-prioritize taking onlya few se
onds, even for large problems.One of the key issues in this domain was to generate s
hedules whi
h balan
eda number of potentially 
on
i
ting fa
tors. For example, the planners wanted all2500 targets atta
ked in the shortest time, with minimum attrition and minimumrisk of 
ollateral damage. However, to guarantee that ea
h target was atta
kedwith minimum risk would require all missions to be 
own by F-117s and thatwould result in very long s
hedules. A sample s
hedule was generated whi
h used8 This 
an be repla
ed by a \drive" or \sail" blo
k for operations using land or seatransport
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only the best target/air
raft pairing and it had a makespan in ex
ess of six days.Using the deos approa
h the s
hedule was redu
ed in length to just under twodays with a less than 1% redu
tion in overall s
hedule quality.To address these potential 
on
i
ts a series of fun
tions were developed whi
hinvestigated the di�erent aspe
ts of the problem, e.g. air
raft attrition, probabil-ities of hitting and destroying the target, numbers of weapons needed, numberof air
raft needed, support assets, number of sorties, et
. It was identi�ed thatthe key elements of evaluation were the probability that the target would beatta
ked su

essfully and that the atta
king air
raft would have a low attritionrate. This allowed two main fun
tions to be identi�ed 9. Fun
tion 1 des
ribes theprobability that a target will be destroyed given a spe
i�ed number of weaponsW and the probabilities of hit and kill (Ph Pk) respe
tively for a single weapon.Fun
tion 2 des
ribes the expe
ted attrition rate for n air
raft when atta
kingwith N total air
raft.Fun
tion 1: Pkill(W;Ph; Pk) =PWh wXn=1�wh��1� PhPh �w�n �1� (1� Pk)N�Fun
tion 2: Pattrition(N;n; Pa) = �Nn� (1� PA)N�n PnAThe deos uses these formulas to evaluate di�erent 
ombinations of weaponsand air
raft for a given target type, trying to identify the best possible mat
h.However, it may be the 
ase that the required air
raft/weapon pairing may beunavailable in the desired time interval (e.g., between 0900 hrs and 1100 hrs all F-16s may be assigned to other missions). deos may de
ide to use a se
ond option(i.e., a di�erent air
raft and/or weapon) and will 
y
le through the di�erentoptions until an assignment of air
raft/weapons to the target 
an be made 10.In addition, deos may add in a sead sortie to o� set a high expe
ted attritionrate. After an assignment has been made it may be the 
ase that it is a poorone (e.g., high attrition rate, low probability of su

ess) and this is dealt with inthe next 
y
le of algorithm when the generated s
hedule is analyzed and poorassignments identi�ed.During the development of the algorithm it was identi�ed that in many 
asesthe number of targets greatly ex
eeded the available resour
es. In addition, it wasalso identi�ed that some of the time 
onstraints provided by the human s
hed-ulers were leading to less than optimal s
hedules. Details of the modi�
ations tothe basi
 algorithm are provided in the following se
tions.9 Other support fun
tions were developed but are not dis
ussed in this paper10 By default the targeting database provided 5 options but the 4th and 5th usuallyhad a low probability of su

ess
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2.1 Penalty Box S
hedulingThe aim of penalty box s
heduling is to identify a sub-set of tasks whi
h 
an beresour
ed e�e
tively and avoid the problem of generating low quality s
heduleswhi
h resour
e all tasks. For example, human planners may be happier striking90% of the targets with high probability of su

ess rather than 100% of thetargets with a mu
h lower probability of su

ess (i.e., the planners wanted robustsolutions whi
h has a higher probability of su

ess). The problem is �nding whatper
entage 
an be assigned and whi
h tasks to sele
t. Penalty box s
hedulingextends the swo algorithm by viewing the inability to assign a task within itsspe
i�ed time window as a high priority problem (i.e., a large squeak). Insteadof pla
ing the task at a point later in the s
hedule the task is put in the penaltybox11 for a single 
y
le of the algorithm. The penalty tasks are assigned a highblame value and their position in the priority queue altered. The blame value alsotakes into a

ount the potential reward for striking the target and the externalpriority assigned by the user to the target set. At the end of the s
hedulingpro
ess12 those tasks in the penalty box are left unassigned. This extensionproved highly eÆ
ient (i.e., there was a negligible slow down in the speed ofsolution) at identifying sub-sets of tasks and provided the human s
hedulers withmore robust solutions to the targeting problem. After s
heduling was 
ompletethe human planners were able to provide feedba
k on whi
h tasks left in thepenalty box needed to be resour
ed. They 
ould then 
ompare the resultings
hedule with the optimal one and measure (i.e., number of missions, sorties,expe
ted attrition rate, et
) the drop in the overall s
hedule quality.2.2 Temporal Phase TransitionMissions are spe
i�ed with time windows during whi
h the mission must be a
-
omplished. However, these asso
iated time windows tend to be arbitrary andestimates by the human planners. Rather than use the time 
onstraints as in-variable, deos was allowed to relax them and attempt to identify the point atwhi
h to swit
h from one mission type to another. For example, atta
king samsites should be 
ompleted �rst (for the next 6 hours) and then atta
ks againstpower stations for the next 6 hours. Their division may mean that fairly lowpriority sam missions 
an be handled whereas only the highest priority powerstation missions 
an be assigned. A better s
hedule may be to stop sam missionsafter 4 hours and give the additional 2 hours to the power station missions. Thesele
tion of suitable subsets needs to be weighted against the 
exibility built intothe s
hedule by allo
ating maximal windows. For example, more tasks might beresour
ed within a window at the expense of making the s
hedule more brittle.The temporal phase transition problem was investigated through two di�er-ent methods. The �rst method involves a variation of the penalty box s
heduling11 This is a term 
onne
ted with sports where a player 
ommitting an o�ense is pla
edin the penalty box for a spe
i�ed period.12 Deos keeps tra
k of the best s
hedule found so far and its asso
iated penalty boxentries.
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algorithm in whi
h pointers are maintained to the last task of the temporallyearlier set and to the earliest task of the later set respe
tively. It always the
ase that no sam 
an be pla
ed after any power mission. For example, if a sammission 
annot be s
heduled before the earliest power mission then it is sent tothe penalty box for a 
y
le. Alternatively, if a power mission 
an be s
heduled af-ter all sam missions but before the 
urrent earliest power mission then it 
an beadded and the pointers updated. This relies on the ability of the 
ritiquing phaseof the swo algorithm to apportion blame appropriately to move the missions inthe penalty box the required distan
e in the priority queue. The se
ond methodinvolves rippling all the power missions to the right to �t in a new sam mission.Any power missions already in the s
hedule keeps their assignment (i.e. a F-16)but are moved later in time (i.e., they do not have to a

ept a lower qualityassignment). If the tasks 
annot be rippled right then the new task is assignedto the penalty box. This relies on the 
onstru
tion phase of swo algorithm be-ing able to re
onstru
t new partial assignments on the 
y. By having alreadyassigned power tasks keep their assignments (or be assigned one no worse (i.e.,swap the F-16 or a F-15) it keeps the problem tra
table. The analysis of thes
hedule showed that on problem sizes up to 2000 tasks it was better to use theshu�e approa
h and for problems greater than 2000 the pointer approa
h wasmarginally better.3 ResultsFigure 1 shows the performan
e of deos on an example test set of 700 tar-gets and 150 air
raft. The optimization 
riteria in
luded low attrition rate, highprobability of su

ess and a minimal makespan. The best s
hedule identi�ed
ompletes all 700 targets in 47 hours with an expe
ted loss rate of less than 1%.To date the deos results are the best for these problem and easily surpass thosedeveloped by 
urrent usaf mission planners. Figure 1 shows that the additionof penalty box s
heduling and phase transition 
omponents does not e�e
t theoverall performan
e of the system. Deos very qui
kly settles in an appropri-ate region of the sear
h spa
e and spends many iterations trying to improve ona reasonably good s
hedule. deos is trying to identify trade-o�s between thedi�erent optimization 
riteria and Table 4 shows a typi
al example. Betweeniteration 2 and 3 the raw s
ore13 in
reased by less than 1% but the analysiss
ore14 in
reased by nearly 25% due to the s
hedule being a lot shorter.The example above also shows that deos was able to �nd the best sub-setof targets from those spe
i�ed (e.g., 667 out of 700 were su

essfully tasked).The deos s
hedules allow usaf planners to identify robust solutions and thein
remental 
osts (e.g., additional planes, sorties, attrition) ne
essary to atta
kall targets. For ea
h target deos identi�es an appropriate number of air
raft,weapon load and timing information. In some 
ases the assigned air
raft/weapon13 This is the summation of the number of targets atta
ked, probability of su

ess,number of missions and sorties14 This is the raw s
ore divided by the makespan in minutes
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Iteration Targets Assigned Raw S
ore Analysis2 667 667075 157443 667 669873 20219Table 4. Target set vs Makespan Trade-o�
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IterationFig. 1. Air Mission Planning Resultsis a less than optimal mat
h. It is often the 
ase that to obtain a good overalls
hedule some tasks need to be handled badly (i.e., they need to be sa
ri�
ed). Itis possible to handle the sa
ri�
ed tasks better but only at the expense of makingthe overall s
hedule worse. The presen
e of \sa
ri�
e tasks" usually indi
ates thatadditional resour
es of a parti
ular 
lass are needed. The system was evaluatedby subje
t matter experts (sme) from the usaf. The aim was to show that thesme's view of s
hedule quality and that of deos were 
orrelated. The smes weregiven pairs of s
hedules whose di�eren
e in quality narrowed gradually and wereasked to 
hoose the better s
hedule. In all 
ases the view of the sme and deoswas 
orrelated. After six iterations the smes were unable to make an informedde
ision over whi
h s
hedule was better.4 Summary and Further WorkThis paper has presented a des
ription of the deos s
heduling system, its s
hedul-ing algorithm and its appli
ation to the mission s
heduling problem. deos allowsfor the expli
it analysis of trade-o�s in resour
e allo
ation, dynami
 update ofon going s
hedules, on the 
y task addition and for fo
ussed impa
t analysisand repair. To date the system has been applied to large s
ale a
p problems(i.e. 2500 targets and 200 air
raft over a 5 day period) and was su

essfullydemonstrated as part of the usafs E�e
ts Based Operations proje
t at the endof 2000. The te
hniques are generalizable to other domains in whi
h there are
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exible time 
onstraints and the \penalty box" te
hniques are appli
able toproblems where there is phasing between di�erent groups of tasks. For exam-ple, in manufa
turing domains s
hedulers are often fa
ed with the problem ofswit
hing produ
tion from one type to another to improve overall produ
tiv-ity. Several improvements will be made to deos and these in
lude adversarialplanning in whi
h the s
hedule will propose robust solutions to potential enemyresponses. The interfa
e will be improved to allow easier intera
tion and spe
i-�
ation of poli
ies and preferen
es. The results from the a
p domain and othernon-probabilisti
 manufa
turing domains show a distin
t grouping of s
hedulequality as shown in Figure 1. These groups represent 
lasses of solutions (ratherthan point solutions) that have parti
ular attributes and values. Deos will bemodi�ed to automati
ally identify these dis
ontinuities in the solution spa
e andalert the planners.Referen
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