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eplaborie�ilog.frAbstra
t. This paper summarizes the main existing approa
hes to the prop-agation of resour
e 
onstraints in Constraint-Based s
heduling and identi�essome of their limitations for using them in an integrated planning and s
hedul-ing framework. We then des
ribe two new algorithms to propagate resour
e
onstraints on dis
rete resour
es and reservoirs. Unlike most of the 
lassi
alwork in s
heduling, our algorithms fo
us on the pre
eden
e relations betweena
tivities rather than on their absolute position in time. They are eÆ
ient evenwhen the set of a
tivities is not 
ompletely de�ned and when the time windowof a
tivities is large. These features explain why they are parti
ularly suitedfor integrated planning and s
heduling approa
hes. All our algorithms are il-lustrated with examples. Some en
ouraging preliminary results are reported onpure s
heduling problems.1 Introdu
tionAs underlined in [18℄, some tools are still missing to solve problems that lie between pureAI planning and pure s
heduling. Until now, the s
heduling 
ommunity has fo
used onthe optimization of big s
heduling problems involving a well-de�ned set of a
tivities andresour
e 
onstraints. In 
ontrast, AI planning resear
h - due to the inherent 
omplexityof plan synthesis - has fo
used on the sele
tion of a
tivities leaving aside the issues ofoptimization and the handling of time and 
omplex resour
es. From the point of view ofs
heduling, mixed planning and s
heduling problems have two original 
hara
teristi
s.First, as the set of a
tivities is not 
ompletely known beforehand it's better to avoidtaking strong s
heduling 
ommitments during the sear
h (e.g. instantiating or stronglyredu
ing the time window of an a
tivity). Se
ondly, most of the partial plans handledby partial order planners (POP) or by hierar
hi
al task network planners (HTN) makean extensive usage of pre
eden
e 
onstraints between a
tivities. And, surprisingly, un-til now the 
onjun
tion of pre
eden
e and resour
e 
onstraints has not been deeplyinvestigated, even in the s
heduling �eld itself. Indeed, ex
ept for the spe
ial 
ase ofunary resour
es (for example in job-shop s
heduling), disjun
tive formulations of 
u-mulative resour
e 
onstraints are relatively new te
hniques and until now, they weremainly used for sear
h 
ontrol and heuristi
s [5, 14℄. This paper proposes some new
onstraint propagation algorithms that strongly exploit the 
onjun
tion of pre
eden
eand resour
e 
onstraints and allow a natural implementation of least-
ommitment plan-ning and s
heduling approa
hes. The �rst se
tion of the paper des
ribes our s
hedulingmodel. The se
ond one summarizes the state-of-the-art s
heduling propagation te
h-niques and explains why most of them are not satisfa
tory for dealing with integrated
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planning and s
heduling. In the next se
tion, we des
ribe the basi
 stru
ture whi
h thenew algorithms we propose rely on: pre
eden
e graphs. Then, we present two originalte
hniques for propagating resour
e 
onstraints: the energy pre
eden
e algorithm andthe balan
e algorithm. Finally, the last se
tion of the paper des
ribes how these propa-gation algorithms 
an be embedded in a least-
ommitment sear
h pro
edure and givessome preliminary results on pure s
heduling problems.2 Model and NotationsPartial s
hedule. A partial s
hedule 
orresponds to the 
urrent s
heduling infor-mation available at a given node in the sear
h tree. In a mixed planning and s
hedulingproblem, it represents all the temporal and resour
e information of a partial plan. Apartial s
hedule is 
omposed of a
tivities, and temporal 
onstraints and resour
e 
on-straints. These 
on
epts are detailed below.A
tivities. An a
tivity A 
orresponds to a time interval [start(A); end(A)) wherestart(A) and end(A) are de
ision variables denoting the start and end time of a
tivityA. startmin(A), startmax(A), endmin(A) and endmax(A) will respe
tively denote the
urrent earliest start time, latest start time, earliest end time and latest end timeof a
tivity A. The duration of a
tivity A is a variable dur(A) = end(A) � start(A).Depending on the problem, the duration may be known in advan
e or may be a de
isionvariable. In a mixed planning and s
heduling problem, a planning operator may be
omposed of one or several a
tivities.Temporal 
onstraints. A temporal 
onstraint is a 
onstraint of the form: min �ti � tj � max where ti and tj are either some variable representing the start or endtime of an a
tivity or a 
onstant and min and max are two integer 
onstants. Notethat simple pre
eden
e between a
tivities as well as release dates and due dates arespe
ial 
ases of temporal 
onstraints.Resour
es. The most general 
ase of resour
es we 
onsider in this paper is the reser-voir resour
e. A reservoir resour
e is a multi-
apa
ity resour
e that 
an be 
onsumed,produ
ed and/or just required over some time interval by the a
tivities in the s
hedule.A reservoir has an integer maximal 
apa
ity and may have an initial level. As an ex-ample of a reservoir, you 
an think of a fuel tank. A dis
rete resour
e is a reservoirresour
e that 
annot be produ
ed. Dis
rete resour
es are also often 
alled renewable orsharable resour
es in the s
heduling literature. A dis
rete resour
e has a known max-imal 
apa
ity that may 
hange over time. A dis
rete resour
e allows for example torepresent a pool of workers whose availability varies over time. A unary resour
e isa dis
rete resour
e with unit 
apa
ity. It imposes that all the a
tivities requiring thesame unary resour
e are totally ordered. This is typi
ally the 
ase of a ma
hine that
an only pro
ess one job at a time. Unary resour
es are the simplest and the moststudied resour
es in s
heduling as well as in AI planning.Resour
e 
onstraints. A resour
e 
onstraint de�nes how a given a
tivity Awill require and a�e
t the availability of a given resour
e R. It 
onsists of a tuple< A;R; q; TE > where q is an integer de
ision variable des
ribing the quantity of re-sour
e R 
onsumed (if q < 0) or produ
ed (if q > 0) by a
tivity A and TE is a timeextent that des
ribes the time interval where the availability of resour
e R is a�e
tedby the exe
ution of a
tivity A. For example:
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{ < A;R1;�1; F romStartToEnd > is a resour
e 
onstraint that states that a
tivityA will require 1 unit of resour
e R1 between its start time and its end time.{ < A;R2; q = [2; 3℄; AfterEnd > is a resour
e 
onstraint that states that a
tivityA will produ
e 2 or 3 units of reservoir R2 at its end time. This will in
rease theavailability of R2 after the end time of A.{ < A;R3;�4; AfterStart > is a resour
e 
onstraint that states that a
tivity A will
onsume 4 units of resour
e R3 at its start time. This will de
rease the availabilityof R3 after the start time of A.Of 
ourse, the same a
tivity A may parti
ipate into several resour
e 
onstraints. Notethat the 
hange of resour
e availability at the start or end time of an a
tivity is 
on-sidered to be instantaneous: we do not handle 
ontinuous 
hanges.Close Status of a Resour
e. At given node in the sear
h, we say that a resour
e is
losed if we know that no additional resour
e 
onstraint on that resour
e will be addedin the partial s
hedule when 
ontinuing in the sear
h tree. In strati�ed planning ands
heduling approa
hes where the planning phase is separated from the s
heduling one,all the resour
es 
an be 
onsidered 
losed during s
heduling as all the a
tivities andresour
e 
onstraints have been generated during the planning phase. Note also thatin approa
hes that interleave planning and s
heduling and implement a hierar
hi
alsear
h as in [11℄, it is also possible to identify as 
losed resour
es during the sear
h theones belonging to already pro
essed abstra
tion levels.3 Existing Approa
hesFrom the point of view of Constraint Programming, a partial s
hedule is a set ofde
ision variables (start, end, duration of a
tivities, required quantities of resour
e)and a set of 
onstraints between these variables (temporal and resour
e 
onstraints).A solution s
hedule is an instantiation of all the de
ision variables so that all the
onstraints are satis�ed. In Constraint Programming, the main te
hnique used to prunethe sear
h spa
e is 
onstraint propagation. It 
onsists in removing from the domainof possible values of a de
ision variable those values that we know for sure will violatesome 
onstraint. More generally, 
onstraint propagation allows �nding in the 
urrentproblem some features shared by all the solutions rea
hable from the 
urrent sear
hnode; these features may be some domain restri
tion or some additional 
onstraintsthat must be satis�ed. Currently, in 
onstraint-based s
heduling there are two familiesof algorithms to propagate resour
e 
onstraints: timetabling approa
hes and a
tivityintera
tion te
hniques.3.1 TimetablingThe �rst propagation te
hnique, known as timetabling, relies on the 
omputationfor every date t of the minimal resour
e usage at this date by the 
urrent a
tivitiesin the s
hedule [7℄. This aggregated demand pro�le is maintained during the sear
hand it allows restri
ting the domains of the start and end times of a
tivities by re-moving those dates that would ne
essarily lead to an over-
onsumption of the re-sour
e. For simpli
ity reason, we des
ribe this te
hnique only on dis
rete resour
esand assuming all the time extents are FromStartToEnd. Suppose that an a
tivityA requires q(A) 2 [qmin(A); qmax(A)℄ units of a given resour
e R and is su
h thatstartmax(A) < endmin(A), then we know for sure that A will at least exe
ute between
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startmax(A) and endmin(A) and thus, it will require for sure qmin(A) units of resour
eR on this time interval. For ea
h resour
e R, a 
urve is maintained that aggregates allthese demands that is:CR(t) = Xf<A;R;q;TE>=startmax(A)�t<endmin(A)gqmin(A)It's 
lear that if there exists a date t su
h that CR(t) is stri
tly greater than themaximal 
apa
ity of the resour
e Q, the 
urrent s
hedule 
annot lead to a solutionand the sear
h must ba
ktra
k. Furthermore, if there exists an a
tivity B requiringq(B) units of resour
e R and a date t0 su
h that: endmin(B) � t0 < endmax(B)and 8t 2 [t0; endmax(B)); CR(t) + qmin(B) > Q then, a
tivity B 
annot end afterdate t0 as it would over-
onsume the resour
e. Indeed, you must remember that, asendmin(B) � t0, B is never taken into a

ount in the aggregation on the time interval[t0; endmax(B)). Thus, t0 is a new valid upper bound for end(B). A similar reasoning
an be applied to �nd new lower bounds on the start time of a
tivities as well asnew upper bounds on the quantity of resour
e required by a
tivities. Moreover, thisapproa
h 
an easily be extended to all types of time extent and to reservoirs. The mainadvantage of this te
hnique is its relative simpli
ity and its low algorithmi
 
omplexity.It is the main te
hnique used so far for s
heduling dis
rete resour
es and reservoirs.Unfortunately, these algorithms propagate nothing until the time windows of a
tivitiesbe
ome so small that some dates t are ne
essarily 
overed by some a
tivity. It meansthat unless some strong 
ommitments are made early in the sear
h on the time windowsof a
tivities, these approa
hes are not able to eÆ
iently propagate. Furthermore, theseapproa
hes do not dire
tly exploit the existen
e of pre
eden
e 
onstraints betweena
tivities.3.2 A
tivity Intera
tionsThe se
ond family of algorithms is based on an analysis of a
tivity intera
tions.Instead of 
onsidering what happens at a date t, it 
onsiders some subsets
 of a
tivities
ompeting for the same resour
e and performs some propagation based on the positionof a
tivities in 
. Some 
lassi
al a
tivity intera
tion approa
hes are summarized below.Disjun
tive Constraint. The simplest example of su
h an algorithm is the disjun
-tive 
onstraint on unary resour
es [8℄. This algorithm analyzes ea
h pair of a
tivities(A;B) requiring the same unary resour
e and, whenever the 
urrent time bounds of a
-tivities are so that startmax(A) < endmin(B), it dedu
es that as a
tivity A ne
essarilystarts before the end of a
tivity B is must be 
ompletely exe
uted before B and thus,end(A) � startmax(B) and start(B) � endmin(A). A
tually, the 
lassi
al disjun
tive
onstraint 
an be generalized as follows: whenever the temporal 
onstraints are so thatthe 
onstraint start(A) < end(B) must hold, it adds the additional 
onstraint thatend(A) � start(B). Note that this algorithm is the exa
t 
ounterpart in s
heduling ofthe disjun
tive 
onstraint to handle unsafe 
ausal links in POCL planners proposed in[13℄. Unfortunately, su
h a simple 
onstraint only works in the restri
ted 
ase of unaryresour
es.Edge-Finding. Edge-�nding te
hniques [3, 16℄ are available for both unary and dis-
rete resour
es. On a unary resour
e, edge-�nding te
hniques dete
t situations where agiven a
tivity A 
annot be exe
uted after any a
tivity in a set 
 be
ause there wouldnot be enough time to exe
ute all the a
tivities in 
 [ A between the earliest start
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time of a
tivities in 
 [A and the latest end time of a
tivities in 
 [A. When su
h asituation is dete
ted, it means that A must be exe
uted before all the a
tivities in 
and it allows to 
ompute a new valid upper bound for the end time of A. More formally,let 
 be a subset of a
tivities on a unary resour
e, and A =2 
 another a
tivity on thesame unary resour
e. Most of the edge-�nding te
hnique 
an be 
aptured by the rule(1)) (2) where: (1) endmax(
 [ A)� startmin(
) < dur(
 [ A)(2) end(A) � min
0�
 (endmax(
0)� dur(
0))Similar rules allow to dete
t and propagate the fa
t that a given a
tivity must endafter all a
tivities in 
 (Last), 
annot start before all a
tivities in 
 (Not First) or
annot end after all a
tivities in 
 (Not Last). Furthermore, edge-�nding te
hniques
an be adapted to dis
rete resour
es by reasoning on the resour
e energy required bythe a
tivities that is, the produ
t duration � required quantity. Most of the edge-�nding algorithms 
an be implemented to propagate on all the a
tivities A and all thesubsets 
 with a total 
omplexity in O(n2).Energeti
 Reasoning. As for the edge-�nding te
hniques, energeti
 reasoning [9℄analyzes the 
urrent time-bounds of a
tivities in order to adjust them by removingsome invalid values. A typi
al example of energeti
 reasoning 
onsists in �nding pairsof a
tivities A;B on a unary resour
e su
h that ordering a
tivity A before B would leadto a dead-end be
ause the unary resour
e would not provide enough \energy" betweenthe earliest start time of A and the latest end time of B to exe
ute A, B and all theother a
tivities that ne
essarily needs to exe
ute on this time window. More formally,if C is an a
tivity and [t1; t2) a time window, the energy ne
essarily required by C onthe time window [t1; t2) is:W [t1;t2)C = min(endmin(C)� t1; t2 � startmax(C); dur(C); t2 � t1)Thus, as soon as the 
ondition below holds, it means that A 
annot be ordered beforeB and thus, must be ordered after. It allows to update the earliest start time of A andthe latest end time of B.endmax(B)� startmin(A) < dur(A) + dur(B) + XC=2fA;BgW [startmin(A);endmax(B))COther adjustments of time bounds using energeti
 reasoning exist that allow, for ex-ample to dedu
e that an a
tivity 
annot start at its earliest start time or 
annot end atits latest end time. Furthermore, energeti
 reasoning 
an easily be extended to dis
reteresour
es.A good starting point to learn more about edge-�nding and energeti
 reasoning onunary resour
es is [1℄ where the authors des
ribe and 
ompare several variants of thesete
hniques. Although these tools (edge-�nding, energeti
 reasoning) are very eÆ
ientin pure s
heduling problems, they su�er from the same limitations as timetabling te
h-niques. Be
ause they 
onsider the absolute position of a
tivities in time rather thantheir relative position, they will not propagate until the time windows of a
tivities havebe
ome small enough and the propagation may be very limited in 
ase the 
urrents
hedule 
ontains many pre
eden
e 
onstraints. Furthermore, these tools are availablefor unary and dis
rete resour
es only and are diÆ
ult to generalize to reservoirs.
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The following se
tions of this paper des
ribes two new te
hniques to propagate dis
reteand reservoir resour
es based on analyzing the relative position of a
tivities ratherthan their absolute position. These algorithms fully exploit the pre
eden
e 
onstraintsbetween a
tivities and propagate even when the time windows of a
tivities are stillvery large whi
h is typi
ally the 
ase in least-
ommitment planners and s
hedulers. Of
ourse these new propagation algorithms 
an be used in 
ooperation with the existingte
hniques we just des
ribed above. Both of our algorithms are based on the pre
eden
egraph stru
ture des
ribed in the se
tion below.4 Pre
eden
e Graph4.1 De�nitionsA resour
e event x on a given resour
e R is a time-point variable at whi
h theavailability of the resour
e 
hanges be
ause of an a
tivity. A resour
e event always
orresponds to the start or end point of an a
tivity. Let:{ t(x) denote the time-point variable of event x. tmin(x) and tmax(x) will respe
tivelydenote the 
urrent minimal and maximal value in the domain of t(x).{ q(x) denote the relative 
hange of resour
e availability due to event x with the
onvention that q > 0 denotes a resour
e produ
tion and q < 0 a resour
e 
on-sumption. qmin(x) and qmax(x) will respe
tively denote the 
urrent minimal andmaximal value in the domain of q(x).There is of 
ourse an evident mapping between the resour
e 
onstraints on a resour
eand the resour
e events. Note that all time extents are asso
iated a unique resour
eevent ex
ept for FromStartToEnd that is asso
iated two.A pre
eden
e graph on a resour
e R is a dire
ted graph GR = (V;E�; E<) whereE< � E� and:{ V is the set of resour
e events on R{ E� = (x; y) is the set of pre
eden
e relations between events of the form t(x) � t(y).{ E< = (x; y) is the set of pre
eden
e relations between events of the form t(x) < t(y).The pre
eden
e graph on a resour
e aims at 
olle
ting all the pre
eden
e informationbetween events on the resour
e. These pre
eden
e information may 
ome from: (1)temporal 
onstraints in the initial statement of the problem, (2) temporal 
onstraintsbetween a
tivities in the same planning operator, (3) sear
h de
isions (e.g. 
ausal link,promotion, demotion, ordering de
isions on resour
es) or (4) may have been dis
overedby propagation algorithms (e.g. unsafe 
ausal links handling, disjun
tive 
onstraint,edge-�nding, et
.) or simply be
ause tmax(x) � tmin(y). When new events or newpre
eden
e relations are inserted, the pre
eden
e graph in
rementally maintains itstransitive 
losure. This leads to a worst-
ase 
omplexity of O(n2) to maintain thepre
eden
e graph. The pre
eden
e relations in the pre
eden
e graph as well as theinitial temporal 
onstraints are propagated by an ar
-
onsisten
y algorithm. Given anevent x in a pre
eden
e graph and assuming the transitive 
losure has been 
omputed,we de�ne the following subsets of events:{ S(x) is the set of events simultaneous with x that is the events y su
h that (x; y) 2E� and (y; x) 2 E�{ B(x) is the set of events before x that is the events y su
h that (y; x) 2 E<
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{ BS(x) is the set of events before or simultaneous with x that is the events y su
hthat (y; x) 2 E� , (y; x) =2 E< and (x; y) =2 E�{ A(x) is the set of events after x that is the events y su
h that (x; y) 2 E<{ AS(x) is the set of events after or simultaneous with x that is the events y su
hthat that (x; y) 2 E� , (x; y) =2 E< and (y; x) =2 E�{ U(x) is the set of events unranked with respe
t to x that is the events y su
h that(y; x) =2 E� and (x; y) =2 E�Note that (S(x); B(x); BS(x); A(x); AS(x); U(x)) is a partition of V . An example ofpre
eden
e graph with an illustration of these subsets is given on Figure 1 and 
orre-sponds to a s
hedule with the 6 resour
e 
onstraints:< A1; R;�2; F romStartToEnd >,< A2; R; [�10;�5℄; AfterStart >,< A3; R;�1; AfterStart >,< A4; R; 2; AfterEnd >,< A5; R; 2; AfterEnd >, < A6; R; 2; AfterEnd > and some pre
eden
e relations. Thesubsets are relative to the event x 
orresponding to the start of a
tivity A1.
+2

[−10,−5]

−2

+2
S(x)

B(x)

x

+2 +2

A(x)

U(x)

−1AS(x)

A5�< A1A6A4
A3A2

Fig. 1. An Example of Pre
eden
e Graph4.2 Implementation and ComplexityAs we will see in next se
tion, our propagation algorithms often need to query thepre
eden
e graph about the relative position of two events on a resour
e so this infor-mation needs to be a

essible in O(1) on our stru
ture. It explains why we 
hose toimplement the pre
eden
e graph as a matrix that stores the relative position of everypair of events. Furthermore, on our stru
ture, the 
omplexity of traversing any subsetof events (e.g. B(x) or U(x)) is equal to the size of this subset. Note that the pre
eden
egraph stru
ture is extensively used in ILOG S
heduler and is not only useful for thealgorithms des
ribed in this paper. In parti
ular, the pre
eden
e graph implementationin ILOG S
heduler allows the user to write his own 
omplex 
onstraints that rely onthis graph as for example the one involving alternative resour
es and transition timesdes
ribed in [10℄.5 New Propagation Algorithms5.1 Energy Pre
eden
e ConstraintThe energy pre
eden
e 
onstraint is de�ned on dis
rete resour
es only. As it doesnot require that the resour
e be 
losed, it 
an be used at any time during the sear
h.The idea is as follows (for simpli
ity, we assume that all the resour
e 
onstraints have
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a time extent FromStartToEnd). Suppose that Q denotes the maximal 
apa
ity ofthe dis
rete resour
e over time. If x is a resour
e event and 
 is a subset of resour
e
onstraints that are 
onstrained to exe
ute before x, then the resour
e must provideenough energy to exe
ute all resour
e 
onstraints in 
 between the earliest start timesof a
tivities of 
 and t(x). More formally:tmin(x) � min<A;R;q;TE>2
(startmin(A)) + X<A;R;q;TE>2
(qmin(A) � durmin(A))=QA very simple example of the propagation performed by this 
onstraint is given inFigure 2. If we suppose that the maximal 
apa
ity of the dis
rete resour
e is 4 and alla
tivities must start after time 0, then by 
onsidering
 = fA1; A2; A3; A4g, we see thatevent x 
annot be exe
uted before time [0℄+[(2�10)+(2�8)+(2�8)+(2�2)℄=4 = 14. Of
ourse, a symmetri
al rule 
an be used to �nd an upper bound on t(x) by 
onsideringthe subsets 
 of resour
e 
onstraints that must exe
ute after x. The same idea as theenergy pre
eden
e 
onstraint is used in [19℄ to adjust the time-bounds of a
tivities ondi�erent unary resour
es.
dur=8

−2 +2

dur=2

−2

x

+2

dur=10

−2 +2

dur=8

−2 +2A4 A2A1A3
Fig. 2. Example of Energy Pre
eden
e PropagationIt's important to note that the energy pre
eden
e algorithm propagates even whenthe time window of a
tivities is very loose (in the example of Figure 2, the latest endtimes of a
tivities may be very large). This is an important di�eren
e with respe
t to
lassi
al energeti
 and edge-�nding te
hniques that would propagate nothing in this
ase. The propagation of the energy pre
eden
e 
onstraint 
an be performed for all theevents x on a resour
e and for all the subsets 
 with a total worst-
ase time 
omplexityof O(n � (p + log(n)) where n is the number of the events on the resour
e and p themaximal number of prede
essors of a given event in the graph (p � n). Note thatwhen the dis
rete resour
e has a maximal 
apa
ity pro�le that varies over time, thealgorithm 
an take into a

ount some fake resour
e 
onstraints with instantiated startand end times to a

ommodate the maximal 
apa
ity pro�le.5.2 Balan
e ConstraintThe balan
e 
onstraint is de�ned on a reservoir resour
e.When applied to a reservoir,the basi
 version of this algorithm requires the reservoir to be 
losed. When appliedto a dis
rete resour
e, the resour
e may still be open. The basi
 idea of the balan
e
onstraint is to 
ompute, for ea
h event x in the pre
eden
e graph, a lower and an upperbound on the reservoir level just before and just after x. The reader will 
ertainly �ndsome similarities between this 
onstraint and the Modal Truth Criterion on planningpredi
ates �rst introdu
ed in [6℄. A
tually this is not surprising as the balan
e 
onstraint
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an be 
onsidered as a kind of MTC on reservoirs that only dete
ts some ne
essary
onditions1. Given an event x, using the graph we 
an 
ompute an upper bound on thereservoir level at date t(x) � � just before x assuming (1) All the produ
tion events ythat may be exe
uted stri
tly before x are exe
uted stri
tly before x and produ
e asmu
h as possible that is qmax(y); (2) All the 
onsumption events y that need to beexe
uted stri
tly before x are exe
uted stri
tly before x and 
onsume as little as possiblethat is qmax(y); and (3) All the 
onsumption events that may exe
ute simultaneouslyor after x are exe
uted simultaneously or after x. More formally, if Linit is the initiallevel of the reservoir, P the set of produ
tion events and C the set of 
onsumptionevents, this upper bound 
an be 
omputed as follows:L<max(x) = Linit + Xy2P\(B(x)[BS(x)[U(x))qmax(y) + Xy2C\B(x)qmax(y) (1)Applying this formula to event x on Figure 1 if with suppose Linit = 2 leads toL<max(x) = 2 + [2 + 2 + 2℄ + [�5℄ = 3. In a very similar way, it is possible to 
omputeL<min(x), a lower bound of the level just before x; L>max(x), an upper bound of thelevel just after x and L>min(x), a lower bound of the level just after x. For ea
h of thesebounds, the balan
e 
onstraint is able to dis
over four types of information: dead ends,new bounds for resour
e usage variables and time variables and new pre
eden
erelations. For symmetry reasons we only des
ribe the propagation based on L<max(x).Dis
overing dead ends. Whenever L<max(x) < 0, we know for sure that the level ofthe reservoir will be negative just before event x so the sear
h has rea
hed a dead end.Dis
overing new bounds on resour
e usage variables. Suppose there exists a
onsumption event y 2 B(x) su
h that qmax(y) � qmin(y) > L<max(x). If y would
onsume a quantity q su
h that qmax(y) � q > L<max(x) then, simply by repla
ingqmax(y) by q(y) in formula (1), we see that the level of the reservoir would be negativejust before x. Thus, we 
an �nd a better lower bound on q(y) equal to qmax(y) �L<max(x). On the example of Figure 1, this propagation would restri
t the 
onsumedquantity at the beginning of a
tivity A2 to [�8;�5℄ as any value lower than �8 wouldlead to a dead end.Dis
overing new bounds on time variables. Formula (1) 
an be rewritten asfollows: L<max(x) = (Linit +Xy2B(x)qmax(y)) + ( Xy2P\(BS(x)[U(x))qmax(y))If the �rst term of this equation is negative, it means that some produ
tion events inBS(x) [ U(x) will have to be exe
uted stri
tly before x in order to produ
e at least:�<min(x) = �Linit � Xy2B(x)qmax(y)1 When the reservoir is not 
losed, one 
an imagine extending our propagation algorithm intoa real truth 
riterion on reservoirs that would allow justifying the insertion of new reservoirprodu
ers or 
onsumers into the 
urrent s
hedule. This interesting extension 
learly worthto study but is out of the s
ope of this paper.
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Let P (x) denote the set produ
tion events in BS(x) [ U(x). We suppose the events(y1; � � � ; yi; � � � ; yp) in P (x) are ordered by in
reasing minimal time tmin(y). Let k bethe index in [1; p℄ su
h that:k�1Xi=1 qmax(yi) < �<min(x) � kXi=1 qmax(yi)If event x is exe
uted at a date t(x) � tmin(yk), not enough produ
ers will be ableto exe
ute stri
tly before x in order to ensure a positive level just before x. Thus,tmin(yk) + 1 is a valid lower bound of t(x). On Figure 1 if Linit = 2, �<min(x) = 3,and this propagation will dedu
e that t(x) must be stri
tly greater than the minimalbetween the earliest end time of A5 and the earliest end time of A6.Dis
overing new pre
eden
e relations. There are 
ases where we 
an perform aneven stronger propagation. Suppose there exists a produ
tion event y in P (x) su
hthat: Xz2P (x)\(B(y)[BS(y)[U(y))qmax(z) < �<min(x)Then, if we had t(x) � t(y), we would see that again there is no way to produ
e�<min(x)before event x as the only events that 
ould eventually produ
e stri
tly before eventx are the ones in P (x) \ (B(y) [ BS(y) [ U(y)). Thus, we 
an dedu
e the ne
essarypre
eden
e relation: t(y) < t(x). For example on Figure 1, the balan
e algorithm woulddis
over that x needs to be exe
uted stri
tly after the end of A4. Note that a weakerversion of this propagation has been proposed in [4℄ that runs in O(n2) and does notanalyze the pre
eden
e relations between the events of P (x).Like for timetabling approa
hes, one 
an show that the balan
e algorithm is sound,that is, it will dete
t a dead end on any fully instantiated s
hedule that violates thereservoir resour
e 
onstraint. In fa
t, the balan
e algorithm does not even need thes
hedule to be fully instantiated: for example, it will dete
t a dead end on any non-solution s
hedule as soon as all the produ
tion events are ordered relatively to all the
onsumption events on a resour
e. Furthermore, when all events x on a reservoir of
apa
ity Q are so that L<max(x) � Q, L>max(x) � Q, L<min(x) � 0, and L>min(x) � 0 -in that 
ase, we say that event x is safe - then, any order 
onsistent with the 
urrentpre
eden
e graph satis�es the reservoir 
onstraint. In other words, the reservoir issolved. This very important property allows stopping the sear
h on a reservoir whenall the events are safe and even if they are not 
ompletely ordered. Note also that,a

ording to the 
on
epts introdu
ed in [14℄, the balan
e 
onstraint 
an be seen as analgorithm that impli
itly dete
ts and solves some deterministi
 MCSs on the reservoirwhile avoiding the 
ombinatorial explosion of enumerating these MCSs. The balan
ealgorithm 
an be exe
uted for all the events x with a worst-
ase 
omplexity in O(n2) ifthe propagation that dis
overs new pre
eden
e relations is not turned on, in O(n3) fora full propagation. In pra
ti
e, there are many ways to short
ut this worst 
ase and inparti
ular, we noti
ed that the algorithmi
 
ost of the extra-propagation that dis
oversnew pre
eden
e relations was negligible. In our implementation, at ea
h node of thesear
h, the full balan
e 
onstraint is exe
uted until a �x point is rea
hed.
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6 First ResultsWe implemented a 
omplete and relatively simple sear
h pro
edure on reservoirs thatsele
ts pairs of unsafe events (x; y) and 
reates a 
hoi
e point by adding either therelation t(x) < t(y) or t(y) � t(x). The heuristi
s for sele
ting whi
h pair of events toorder relies on the bounds on reservoir levels L<max(x), L>max(x), L<min(x), and L>min(x)
omputed by the balan
e 
onstraint. These levels 
an indeed be 
onsidered as sometexture measurements [2℄ proje
ted on the s
hedule events. Until now, few ben
hmarksare available on problems involving temporal 
onstraints and reservoirs. The only onewe are aware of is [15℄ where the authors generate 300 proje
t s
heduling problems in-volving 5 reservoirs, min/max delays between a
tivities and minimization of makespan.From these 300 problems, 12 hard instan
es 
ould not be solved to optimality by theirapproa
h. We tested our algorithms on these 12 open problems2. The results are sum-marized on the table below. The size of the problem is the number of a
tivities. Thebounds are the best lower and upper bounds of [15℄. The times in the table were mea-sured on a HP-UX 9000/785 workstation. We 
an see that all of the 12 open problemshave been 
losed in less than 1 minute CPU time. Furthermore, our approa
h produ
eshighly parallel s
hedules as the balan
e 
onstraint implements some suÆ
ient 
ondi-tions for a partial order between events to be a solution. In the optimal solutions theremay be up to 10 a
tivities possibly exe
uting in parallel in the partial order.Problem Size Lower bound U pper bound Optimal CPU Time (s)#10 50 92 93 92 0.21#27 50 85 +1 96 22.18#82 50 148 +1 no solution 0.15#6 100 203 223 211 1.81#12 100 192 197 197 1.61#20 100 199 217 199 1.54#30 100 196 218 204 56.64#41 100 330 364 337 1.70#43 100 283 +1 no solution 53.90#54 100 344 360 344 1.26#58 100 317 326 317 1.13#69 100 335 +1 no solution 7.36We also tested the energy pre
eden
e 
onstraint on unary resour
es. For this purpose,we wrote a very simple least-
ommitment sear
h pro
edure3 based on the pre
eden
egraph that orders pairs of a
tivities on a unary resour
e and aims at �nding very good�rst solutions. We ben
hed this sear
h pro
edure on 44 famous job-shop problems(namely: abz5-9, ft6, ft10, orb1-10, la1-30) with the energy pre
eden
e 
onstraint aswell as the disjun
tive and the edge-�nder 
onstraint. In average, the makespan of the�rst solution (without using any restart or randomization) produ
ed by our approa
h isonly 7.35% greater than the optimal makespan whereas the average distan
e to optimalof the best greedy algorithms so far [17℄ is 9.33% on the same problems.7 Con
lusion and Future WorkThis paper des
ribes two new algorithms for propagating resour
e 
onstraints on dis-
rete resour
es and reservoirs. These algorithms strongly exploit the temporal relationsin the partial s
hedule and are able to propagate even if the time windows of a
tivities2 All the other problems were easily solved using our approa
h.3 The C++ 
ode of this sear
h pro
edure is available in the distribution of ILOG S
heduler.
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are still very large. Furthermore, on dis
rete resour
e, they do not require the resour
eto be 
losed. These features explain why they parti
ularly suit integrated approa
hes toplanning and s
heduling. From the standpoint of pure s
heduling, these algorithms arepowerful tools to implement 
omplete and eÆ
ient sear
h pro
edures based on therelative position of a
tivities. An additional advantage of this approa
h is that it pro-du
es partially ordered solutions instead of fully instantiated ones. These solutionsare more robust. All the algorithms des
ribed in this paper have been implemented andare available in the 
urrent version of ILOG S
heduler [12℄. As far as AI Planning is
on
erned, future work will mainly 
onsist in studying the integration of our s
hedulingframework into a HTN or a POP Planner as well as improving our sear
h pro
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