
Algorithms for Propagating Resoure Constraints inAI Planning and Sheduling: Existing Approahesand New ResultsPhilippe LaborieILOG S.A., 9, rue de Verdun, BP 85F-94253 Gentilly Cedex, Franeplaborie�ilog.frAbstrat. This paper summarizes the main existing approahes to the prop-agation of resoure onstraints in Constraint-Based sheduling and identi�essome of their limitations for using them in an integrated planning and shedul-ing framework. We then desribe two new algorithms to propagate resoureonstraints on disrete resoures and reservoirs. Unlike most of the lassialwork in sheduling, our algorithms fous on the preedene relations betweenativities rather than on their absolute position in time. They are eÆient evenwhen the set of ativities is not ompletely de�ned and when the time windowof ativities is large. These features explain why they are partiularly suitedfor integrated planning and sheduling approahes. All our algorithms are il-lustrated with examples. Some enouraging preliminary results are reported onpure sheduling problems.1 IntrodutionAs underlined in [18℄, some tools are still missing to solve problems that lie between pureAI planning and pure sheduling. Until now, the sheduling ommunity has foused onthe optimization of big sheduling problems involving a well-de�ned set of ativities andresoure onstraints. In ontrast, AI planning researh - due to the inherent omplexityof plan synthesis - has foused on the seletion of ativities leaving aside the issues ofoptimization and the handling of time and omplex resoures. From the point of view ofsheduling, mixed planning and sheduling problems have two original harateristis.First, as the set of ativities is not ompletely known beforehand it's better to avoidtaking strong sheduling ommitments during the searh (e.g. instantiating or stronglyreduing the time window of an ativity). Seondly, most of the partial plans handledby partial order planners (POP) or by hierarhial task network planners (HTN) makean extensive usage of preedene onstraints between ativities. And, surprisingly, un-til now the onjuntion of preedene and resoure onstraints has not been deeplyinvestigated, even in the sheduling �eld itself. Indeed, exept for the speial ase ofunary resoures (for example in job-shop sheduling), disjuntive formulations of u-mulative resoure onstraints are relatively new tehniques and until now, they weremainly used for searh ontrol and heuristis [5, 14℄. This paper proposes some newonstraint propagation algorithms that strongly exploit the onjuntion of preedeneand resoure onstraints and allow a natural implementation of least-ommitment plan-ning and sheduling approahes. The �rst setion of the paper desribes our shedulingmodel. The seond one summarizes the state-of-the-art sheduling propagation teh-niques and explains why most of them are not satisfatory for dealing with integrated
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planning and sheduling. In the next setion, we desribe the basi struture whih thenew algorithms we propose rely on: preedene graphs. Then, we present two originaltehniques for propagating resoure onstraints: the energy preedene algorithm andthe balane algorithm. Finally, the last setion of the paper desribes how these propa-gation algorithms an be embedded in a least-ommitment searh proedure and givessome preliminary results on pure sheduling problems.2 Model and NotationsPartial shedule. A partial shedule orresponds to the urrent sheduling infor-mation available at a given node in the searh tree. In a mixed planning and shedulingproblem, it represents all the temporal and resoure information of a partial plan. Apartial shedule is omposed of ativities, and temporal onstraints and resoure on-straints. These onepts are detailed below.Ativities. An ativity A orresponds to a time interval [start(A); end(A)) wherestart(A) and end(A) are deision variables denoting the start and end time of ativityA. startmin(A), startmax(A), endmin(A) and endmax(A) will respetively denote theurrent earliest start time, latest start time, earliest end time and latest end timeof ativity A. The duration of ativity A is a variable dur(A) = end(A) � start(A).Depending on the problem, the duration may be known in advane or may be a deisionvariable. In a mixed planning and sheduling problem, a planning operator may beomposed of one or several ativities.Temporal onstraints. A temporal onstraint is a onstraint of the form: min �ti � tj � max where ti and tj are either some variable representing the start or endtime of an ativity or a onstant and min and max are two integer onstants. Notethat simple preedene between ativities as well as release dates and due dates arespeial ases of temporal onstraints.Resoures. The most general ase of resoures we onsider in this paper is the reser-voir resoure. A reservoir resoure is a multi-apaity resoure that an be onsumed,produed and/or just required over some time interval by the ativities in the shedule.A reservoir has an integer maximal apaity and may have an initial level. As an ex-ample of a reservoir, you an think of a fuel tank. A disrete resoure is a reservoirresoure that annot be produed. Disrete resoures are also often alled renewable orsharable resoures in the sheduling literature. A disrete resoure has a known max-imal apaity that may hange over time. A disrete resoure allows for example torepresent a pool of workers whose availability varies over time. A unary resoure isa disrete resoure with unit apaity. It imposes that all the ativities requiring thesame unary resoure are totally ordered. This is typially the ase of a mahine thatan only proess one job at a time. Unary resoures are the simplest and the moststudied resoures in sheduling as well as in AI planning.Resoure onstraints. A resoure onstraint de�nes how a given ativity Awill require and a�et the availability of a given resoure R. It onsists of a tuple< A;R; q; TE > where q is an integer deision variable desribing the quantity of re-soure R onsumed (if q < 0) or produed (if q > 0) by ativity A and TE is a timeextent that desribes the time interval where the availability of resoure R is a�etedby the exeution of ativity A. For example:
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{ < A;R1;�1; F romStartToEnd > is a resoure onstraint that states that ativityA will require 1 unit of resoure R1 between its start time and its end time.{ < A;R2; q = [2; 3℄; AfterEnd > is a resoure onstraint that states that ativityA will produe 2 or 3 units of reservoir R2 at its end time. This will inrease theavailability of R2 after the end time of A.{ < A;R3;�4; AfterStart > is a resoure onstraint that states that ativity A willonsume 4 units of resoure R3 at its start time. This will derease the availabilityof R3 after the start time of A.Of ourse, the same ativity A may partiipate into several resoure onstraints. Notethat the hange of resoure availability at the start or end time of an ativity is on-sidered to be instantaneous: we do not handle ontinuous hanges.Close Status of a Resoure. At given node in the searh, we say that a resoure islosed if we know that no additional resoure onstraint on that resoure will be addedin the partial shedule when ontinuing in the searh tree. In strati�ed planning andsheduling approahes where the planning phase is separated from the sheduling one,all the resoures an be onsidered losed during sheduling as all the ativities andresoure onstraints have been generated during the planning phase. Note also thatin approahes that interleave planning and sheduling and implement a hierarhialsearh as in [11℄, it is also possible to identify as losed resoures during the searh theones belonging to already proessed abstration levels.3 Existing ApproahesFrom the point of view of Constraint Programming, a partial shedule is a set ofdeision variables (start, end, duration of ativities, required quantities of resoure)and a set of onstraints between these variables (temporal and resoure onstraints).A solution shedule is an instantiation of all the deision variables so that all theonstraints are satis�ed. In Constraint Programming, the main tehnique used to prunethe searh spae is onstraint propagation. It onsists in removing from the domainof possible values of a deision variable those values that we know for sure will violatesome onstraint. More generally, onstraint propagation allows �nding in the urrentproblem some features shared by all the solutions reahable from the urrent searhnode; these features may be some domain restrition or some additional onstraintsthat must be satis�ed. Currently, in onstraint-based sheduling there are two familiesof algorithms to propagate resoure onstraints: timetabling approahes and ativityinteration tehniques.3.1 TimetablingThe �rst propagation tehnique, known as timetabling, relies on the omputationfor every date t of the minimal resoure usage at this date by the urrent ativitiesin the shedule [7℄. This aggregated demand pro�le is maintained during the searhand it allows restriting the domains of the start and end times of ativities by re-moving those dates that would neessarily lead to an over-onsumption of the re-soure. For simpliity reason, we desribe this tehnique only on disrete resouresand assuming all the time extents are FromStartToEnd. Suppose that an ativityA requires q(A) 2 [qmin(A); qmax(A)℄ units of a given resoure R and is suh thatstartmax(A) < endmin(A), then we know for sure that A will at least exeute between
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startmax(A) and endmin(A) and thus, it will require for sure qmin(A) units of resoureR on this time interval. For eah resoure R, a urve is maintained that aggregates allthese demands that is:CR(t) = Xf<A;R;q;TE>=startmax(A)�t<endmin(A)gqmin(A)It's lear that if there exists a date t suh that CR(t) is stritly greater than themaximal apaity of the resoure Q, the urrent shedule annot lead to a solutionand the searh must baktrak. Furthermore, if there exists an ativity B requiringq(B) units of resoure R and a date t0 suh that: endmin(B) � t0 < endmax(B)and 8t 2 [t0; endmax(B)); CR(t) + qmin(B) > Q then, ativity B annot end afterdate t0 as it would over-onsume the resoure. Indeed, you must remember that, asendmin(B) � t0, B is never taken into aount in the aggregation on the time interval[t0; endmax(B)). Thus, t0 is a new valid upper bound for end(B). A similar reasoningan be applied to �nd new lower bounds on the start time of ativities as well asnew upper bounds on the quantity of resoure required by ativities. Moreover, thisapproah an easily be extended to all types of time extent and to reservoirs. The mainadvantage of this tehnique is its relative simpliity and its low algorithmi omplexity.It is the main tehnique used so far for sheduling disrete resoures and reservoirs.Unfortunately, these algorithms propagate nothing until the time windows of ativitiesbeome so small that some dates t are neessarily overed by some ativity. It meansthat unless some strong ommitments are made early in the searh on the time windowsof ativities, these approahes are not able to eÆiently propagate. Furthermore, theseapproahes do not diretly exploit the existene of preedene onstraints betweenativities.3.2 Ativity InterationsThe seond family of algorithms is based on an analysis of ativity interations.Instead of onsidering what happens at a date t, it onsiders some subsets
 of ativitiesompeting for the same resoure and performs some propagation based on the positionof ativities in 
. Some lassial ativity interation approahes are summarized below.Disjuntive Constraint. The simplest example of suh an algorithm is the disjun-tive onstraint on unary resoures [8℄. This algorithm analyzes eah pair of ativities(A;B) requiring the same unary resoure and, whenever the urrent time bounds of a-tivities are so that startmax(A) < endmin(B), it dedues that as ativity A neessarilystarts before the end of ativity B is must be ompletely exeuted before B and thus,end(A) � startmax(B) and start(B) � endmin(A). Atually, the lassial disjuntiveonstraint an be generalized as follows: whenever the temporal onstraints are so thatthe onstraint start(A) < end(B) must hold, it adds the additional onstraint thatend(A) � start(B). Note that this algorithm is the exat ounterpart in sheduling ofthe disjuntive onstraint to handle unsafe ausal links in POCL planners proposed in[13℄. Unfortunately, suh a simple onstraint only works in the restrited ase of unaryresoures.Edge-Finding. Edge-�nding tehniques [3, 16℄ are available for both unary and dis-rete resoures. On a unary resoure, edge-�nding tehniques detet situations where agiven ativity A annot be exeuted after any ativity in a set 
 beause there wouldnot be enough time to exeute all the ativities in 
 [ A between the earliest start
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time of ativities in 
 [A and the latest end time of ativities in 
 [A. When suh asituation is deteted, it means that A must be exeuted before all the ativities in 
and it allows to ompute a new valid upper bound for the end time of A. More formally,let 
 be a subset of ativities on a unary resoure, and A =2 
 another ativity on thesame unary resoure. Most of the edge-�nding tehnique an be aptured by the rule(1)) (2) where: (1) endmax(
 [ A)� startmin(
) < dur(
 [ A)(2) end(A) � min
0�
 (endmax(
0)� dur(
0))Similar rules allow to detet and propagate the fat that a given ativity must endafter all ativities in 
 (Last), annot start before all ativities in 
 (Not First) orannot end after all ativities in 
 (Not Last). Furthermore, edge-�nding tehniquesan be adapted to disrete resoures by reasoning on the resoure energy required bythe ativities that is, the produt duration � required quantity. Most of the edge-�nding algorithms an be implemented to propagate on all the ativities A and all thesubsets 
 with a total omplexity in O(n2).Energeti Reasoning. As for the edge-�nding tehniques, energeti reasoning [9℄analyzes the urrent time-bounds of ativities in order to adjust them by removingsome invalid values. A typial example of energeti reasoning onsists in �nding pairsof ativities A;B on a unary resoure suh that ordering ativity A before B would leadto a dead-end beause the unary resoure would not provide enough \energy" betweenthe earliest start time of A and the latest end time of B to exeute A, B and all theother ativities that neessarily needs to exeute on this time window. More formally,if C is an ativity and [t1; t2) a time window, the energy neessarily required by C onthe time window [t1; t2) is:W [t1;t2)C = min(endmin(C)� t1; t2 � startmax(C); dur(C); t2 � t1)Thus, as soon as the ondition below holds, it means that A annot be ordered beforeB and thus, must be ordered after. It allows to update the earliest start time of A andthe latest end time of B.endmax(B)� startmin(A) < dur(A) + dur(B) + XC=2fA;BgW [startmin(A);endmax(B))COther adjustments of time bounds using energeti reasoning exist that allow, for ex-ample to dedue that an ativity annot start at its earliest start time or annot end atits latest end time. Furthermore, energeti reasoning an easily be extended to disreteresoures.A good starting point to learn more about edge-�nding and energeti reasoning onunary resoures is [1℄ where the authors desribe and ompare several variants of thesetehniques. Although these tools (edge-�nding, energeti reasoning) are very eÆientin pure sheduling problems, they su�er from the same limitations as timetabling teh-niques. Beause they onsider the absolute position of ativities in time rather thantheir relative position, they will not propagate until the time windows of ativities havebeome small enough and the propagation may be very limited in ase the urrentshedule ontains many preedene onstraints. Furthermore, these tools are availablefor unary and disrete resoures only and are diÆult to generalize to reservoirs.
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The following setions of this paper desribes two new tehniques to propagate disreteand reservoir resoures based on analyzing the relative position of ativities ratherthan their absolute position. These algorithms fully exploit the preedene onstraintsbetween ativities and propagate even when the time windows of ativities are stillvery large whih is typially the ase in least-ommitment planners and shedulers. Ofourse these new propagation algorithms an be used in ooperation with the existingtehniques we just desribed above. Both of our algorithms are based on the preedenegraph struture desribed in the setion below.4 Preedene Graph4.1 De�nitionsA resoure event x on a given resoure R is a time-point variable at whih theavailability of the resoure hanges beause of an ativity. A resoure event alwaysorresponds to the start or end point of an ativity. Let:{ t(x) denote the time-point variable of event x. tmin(x) and tmax(x) will respetivelydenote the urrent minimal and maximal value in the domain of t(x).{ q(x) denote the relative hange of resoure availability due to event x with theonvention that q > 0 denotes a resoure prodution and q < 0 a resoure on-sumption. qmin(x) and qmax(x) will respetively denote the urrent minimal andmaximal value in the domain of q(x).There is of ourse an evident mapping between the resoure onstraints on a resoureand the resoure events. Note that all time extents are assoiated a unique resoureevent exept for FromStartToEnd that is assoiated two.A preedene graph on a resoure R is a direted graph GR = (V;E�; E<) whereE< � E� and:{ V is the set of resoure events on R{ E� = (x; y) is the set of preedene relations between events of the form t(x) � t(y).{ E< = (x; y) is the set of preedene relations between events of the form t(x) < t(y).The preedene graph on a resoure aims at olleting all the preedene informationbetween events on the resoure. These preedene information may ome from: (1)temporal onstraints in the initial statement of the problem, (2) temporal onstraintsbetween ativities in the same planning operator, (3) searh deisions (e.g. ausal link,promotion, demotion, ordering deisions on resoures) or (4) may have been disoveredby propagation algorithms (e.g. unsafe ausal links handling, disjuntive onstraint,edge-�nding, et.) or simply beause tmax(x) � tmin(y). When new events or newpreedene relations are inserted, the preedene graph inrementally maintains itstransitive losure. This leads to a worst-ase omplexity of O(n2) to maintain thepreedene graph. The preedene relations in the preedene graph as well as theinitial temporal onstraints are propagated by an ar-onsisteny algorithm. Given anevent x in a preedene graph and assuming the transitive losure has been omputed,we de�ne the following subsets of events:{ S(x) is the set of events simultaneous with x that is the events y suh that (x; y) 2E� and (y; x) 2 E�{ B(x) is the set of events before x that is the events y suh that (y; x) 2 E<
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{ BS(x) is the set of events before or simultaneous with x that is the events y suhthat (y; x) 2 E� , (y; x) =2 E< and (x; y) =2 E�{ A(x) is the set of events after x that is the events y suh that (x; y) 2 E<{ AS(x) is the set of events after or simultaneous with x that is the events y suhthat that (x; y) 2 E� , (x; y) =2 E< and (y; x) =2 E�{ U(x) is the set of events unranked with respet to x that is the events y suh that(y; x) =2 E� and (x; y) =2 E�Note that (S(x); B(x); BS(x); A(x); AS(x); U(x)) is a partition of V . An example ofpreedene graph with an illustration of these subsets is given on Figure 1 and orre-sponds to a shedule with the 6 resoure onstraints:< A1; R;�2; F romStartToEnd >,< A2; R; [�10;�5℄; AfterStart >,< A3; R;�1; AfterStart >,< A4; R; 2; AfterEnd >,< A5; R; 2; AfterEnd >, < A6; R; 2; AfterEnd > and some preedene relations. Thesubsets are relative to the event x orresponding to the start of ativity A1.
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Fig. 1. An Example of Preedene Graph4.2 Implementation and ComplexityAs we will see in next setion, our propagation algorithms often need to query thepreedene graph about the relative position of two events on a resoure so this infor-mation needs to be aessible in O(1) on our struture. It explains why we hose toimplement the preedene graph as a matrix that stores the relative position of everypair of events. Furthermore, on our struture, the omplexity of traversing any subsetof events (e.g. B(x) or U(x)) is equal to the size of this subset. Note that the preedenegraph struture is extensively used in ILOG Sheduler and is not only useful for thealgorithms desribed in this paper. In partiular, the preedene graph implementationin ILOG Sheduler allows the user to write his own omplex onstraints that rely onthis graph as for example the one involving alternative resoures and transition timesdesribed in [10℄.5 New Propagation Algorithms5.1 Energy Preedene ConstraintThe energy preedene onstraint is de�ned on disrete resoures only. As it doesnot require that the resoure be losed, it an be used at any time during the searh.The idea is as follows (for simpliity, we assume that all the resoure onstraints have
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a time extent FromStartToEnd). Suppose that Q denotes the maximal apaity ofthe disrete resoure over time. If x is a resoure event and 
 is a subset of resoureonstraints that are onstrained to exeute before x, then the resoure must provideenough energy to exeute all resoure onstraints in 
 between the earliest start timesof ativities of 
 and t(x). More formally:tmin(x) � min<A;R;q;TE>2
(startmin(A)) + X<A;R;q;TE>2
(qmin(A) � durmin(A))=QA very simple example of the propagation performed by this onstraint is given inFigure 2. If we suppose that the maximal apaity of the disrete resoure is 4 and allativities must start after time 0, then by onsidering
 = fA1; A2; A3; A4g, we see thatevent x annot be exeuted before time [0℄+[(2�10)+(2�8)+(2�8)+(2�2)℄=4 = 14. Ofourse, a symmetrial rule an be used to �nd an upper bound on t(x) by onsideringthe subsets 
 of resoure onstraints that must exeute after x. The same idea as theenergy preedene onstraint is used in [19℄ to adjust the time-bounds of ativities ondi�erent unary resoures.
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Fig. 2. Example of Energy Preedene PropagationIt's important to note that the energy preedene algorithm propagates even whenthe time window of ativities is very loose (in the example of Figure 2, the latest endtimes of ativities may be very large). This is an important di�erene with respet tolassial energeti and edge-�nding tehniques that would propagate nothing in thisase. The propagation of the energy preedene onstraint an be performed for all theevents x on a resoure and for all the subsets 
 with a total worst-ase time omplexityof O(n � (p + log(n)) where n is the number of the events on the resoure and p themaximal number of predeessors of a given event in the graph (p � n). Note thatwhen the disrete resoure has a maximal apaity pro�le that varies over time, thealgorithm an take into aount some fake resoure onstraints with instantiated startand end times to aommodate the maximal apaity pro�le.5.2 Balane ConstraintThe balane onstraint is de�ned on a reservoir resoure.When applied to a reservoir,the basi version of this algorithm requires the reservoir to be losed. When appliedto a disrete resoure, the resoure may still be open. The basi idea of the balaneonstraint is to ompute, for eah event x in the preedene graph, a lower and an upperbound on the reservoir level just before and just after x. The reader will ertainly �ndsome similarities between this onstraint and the Modal Truth Criterion on planningprediates �rst introdued in [6℄. Atually this is not surprising as the balane onstraint

212



an be onsidered as a kind of MTC on reservoirs that only detets some neessaryonditions1. Given an event x, using the graph we an ompute an upper bound on thereservoir level at date t(x) � � just before x assuming (1) All the prodution events ythat may be exeuted stritly before x are exeuted stritly before x and produe asmuh as possible that is qmax(y); (2) All the onsumption events y that need to beexeuted stritly before x are exeuted stritly before x and onsume as little as possiblethat is qmax(y); and (3) All the onsumption events that may exeute simultaneouslyor after x are exeuted simultaneously or after x. More formally, if Linit is the initiallevel of the reservoir, P the set of prodution events and C the set of onsumptionevents, this upper bound an be omputed as follows:L<max(x) = Linit + Xy2P\(B(x)[BS(x)[U(x))qmax(y) + Xy2C\B(x)qmax(y) (1)Applying this formula to event x on Figure 1 if with suppose Linit = 2 leads toL<max(x) = 2 + [2 + 2 + 2℄ + [�5℄ = 3. In a very similar way, it is possible to omputeL<min(x), a lower bound of the level just before x; L>max(x), an upper bound of thelevel just after x and L>min(x), a lower bound of the level just after x. For eah of thesebounds, the balane onstraint is able to disover four types of information: dead ends,new bounds for resoure usage variables and time variables and new preedenerelations. For symmetry reasons we only desribe the propagation based on L<max(x).Disovering dead ends. Whenever L<max(x) < 0, we know for sure that the level ofthe reservoir will be negative just before event x so the searh has reahed a dead end.Disovering new bounds on resoure usage variables. Suppose there exists aonsumption event y 2 B(x) suh that qmax(y) � qmin(y) > L<max(x). If y wouldonsume a quantity q suh that qmax(y) � q > L<max(x) then, simply by replaingqmax(y) by q(y) in formula (1), we see that the level of the reservoir would be negativejust before x. Thus, we an �nd a better lower bound on q(y) equal to qmax(y) �L<max(x). On the example of Figure 1, this propagation would restrit the onsumedquantity at the beginning of ativity A2 to [�8;�5℄ as any value lower than �8 wouldlead to a dead end.Disovering new bounds on time variables. Formula (1) an be rewritten asfollows: L<max(x) = (Linit +Xy2B(x)qmax(y)) + ( Xy2P\(BS(x)[U(x))qmax(y))If the �rst term of this equation is negative, it means that some prodution events inBS(x) [ U(x) will have to be exeuted stritly before x in order to produe at least:�<min(x) = �Linit � Xy2B(x)qmax(y)1 When the reservoir is not losed, one an imagine extending our propagation algorithm intoa real truth riterion on reservoirs that would allow justifying the insertion of new reservoirproduers or onsumers into the urrent shedule. This interesting extension learly worthto study but is out of the sope of this paper.
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Let P (x) denote the set prodution events in BS(x) [ U(x). We suppose the events(y1; � � � ; yi; � � � ; yp) in P (x) are ordered by inreasing minimal time tmin(y). Let k bethe index in [1; p℄ suh that:k�1Xi=1 qmax(yi) < �<min(x) � kXi=1 qmax(yi)If event x is exeuted at a date t(x) � tmin(yk), not enough produers will be ableto exeute stritly before x in order to ensure a positive level just before x. Thus,tmin(yk) + 1 is a valid lower bound of t(x). On Figure 1 if Linit = 2, �<min(x) = 3,and this propagation will dedue that t(x) must be stritly greater than the minimalbetween the earliest end time of A5 and the earliest end time of A6.Disovering new preedene relations. There are ases where we an perform aneven stronger propagation. Suppose there exists a prodution event y in P (x) suhthat: Xz2P (x)\(B(y)[BS(y)[U(y))qmax(z) < �<min(x)Then, if we had t(x) � t(y), we would see that again there is no way to produe�<min(x)before event x as the only events that ould eventually produe stritly before eventx are the ones in P (x) \ (B(y) [ BS(y) [ U(y)). Thus, we an dedue the neessarypreedene relation: t(y) < t(x). For example on Figure 1, the balane algorithm woulddisover that x needs to be exeuted stritly after the end of A4. Note that a weakerversion of this propagation has been proposed in [4℄ that runs in O(n2) and does notanalyze the preedene relations between the events of P (x).Like for timetabling approahes, one an show that the balane algorithm is sound,that is, it will detet a dead end on any fully instantiated shedule that violates thereservoir resoure onstraint. In fat, the balane algorithm does not even need theshedule to be fully instantiated: for example, it will detet a dead end on any non-solution shedule as soon as all the prodution events are ordered relatively to all theonsumption events on a resoure. Furthermore, when all events x on a reservoir ofapaity Q are so that L<max(x) � Q, L>max(x) � Q, L<min(x) � 0, and L>min(x) � 0 -in that ase, we say that event x is safe - then, any order onsistent with the urrentpreedene graph satis�es the reservoir onstraint. In other words, the reservoir issolved. This very important property allows stopping the searh on a reservoir whenall the events are safe and even if they are not ompletely ordered. Note also that,aording to the onepts introdued in [14℄, the balane onstraint an be seen as analgorithm that impliitly detets and solves some deterministi MCSs on the reservoirwhile avoiding the ombinatorial explosion of enumerating these MCSs. The balanealgorithm an be exeuted for all the events x with a worst-ase omplexity in O(n2) ifthe propagation that disovers new preedene relations is not turned on, in O(n3) fora full propagation. In pratie, there are many ways to shortut this worst ase and inpartiular, we notied that the algorithmi ost of the extra-propagation that disoversnew preedene relations was negligible. In our implementation, at eah node of thesearh, the full balane onstraint is exeuted until a �x point is reahed.
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6 First ResultsWe implemented a omplete and relatively simple searh proedure on reservoirs thatselets pairs of unsafe events (x; y) and reates a hoie point by adding either therelation t(x) < t(y) or t(y) � t(x). The heuristis for seleting whih pair of events toorder relies on the bounds on reservoir levels L<max(x), L>max(x), L<min(x), and L>min(x)omputed by the balane onstraint. These levels an indeed be onsidered as sometexture measurements [2℄ projeted on the shedule events. Until now, few benhmarksare available on problems involving temporal onstraints and reservoirs. The only onewe are aware of is [15℄ where the authors generate 300 projet sheduling problems in-volving 5 reservoirs, min/max delays between ativities and minimization of makespan.From these 300 problems, 12 hard instanes ould not be solved to optimality by theirapproah. We tested our algorithms on these 12 open problems2. The results are sum-marized on the table below. The size of the problem is the number of ativities. Thebounds are the best lower and upper bounds of [15℄. The times in the table were mea-sured on a HP-UX 9000/785 workstation. We an see that all of the 12 open problemshave been losed in less than 1 minute CPU time. Furthermore, our approah produeshighly parallel shedules as the balane onstraint implements some suÆient ondi-tions for a partial order between events to be a solution. In the optimal solutions theremay be up to 10 ativities possibly exeuting in parallel in the partial order.Problem Size Lower bound U pper bound Optimal CPU Time (s)#10 50 92 93 92 0.21#27 50 85 +1 96 22.18#82 50 148 +1 no solution 0.15#6 100 203 223 211 1.81#12 100 192 197 197 1.61#20 100 199 217 199 1.54#30 100 196 218 204 56.64#41 100 330 364 337 1.70#43 100 283 +1 no solution 53.90#54 100 344 360 344 1.26#58 100 317 326 317 1.13#69 100 335 +1 no solution 7.36We also tested the energy preedene onstraint on unary resoures. For this purpose,we wrote a very simple least-ommitment searh proedure3 based on the preedenegraph that orders pairs of ativities on a unary resoure and aims at �nding very good�rst solutions. We benhed this searh proedure on 44 famous job-shop problems(namely: abz5-9, ft6, ft10, orb1-10, la1-30) with the energy preedene onstraint aswell as the disjuntive and the edge-�nder onstraint. In average, the makespan of the�rst solution (without using any restart or randomization) produed by our approah isonly 7.35% greater than the optimal makespan whereas the average distane to optimalof the best greedy algorithms so far [17℄ is 9.33% on the same problems.7 Conlusion and Future WorkThis paper desribes two new algorithms for propagating resoure onstraints on dis-rete resoures and reservoirs. These algorithms strongly exploit the temporal relationsin the partial shedule and are able to propagate even if the time windows of ativities2 All the other problems were easily solved using our approah.3 The C++ ode of this searh proedure is available in the distribution of ILOG Sheduler.
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are still very large. Furthermore, on disrete resoure, they do not require the resoureto be losed. These features explain why they partiularly suit integrated approahes toplanning and sheduling. From the standpoint of pure sheduling, these algorithms arepowerful tools to implement omplete and eÆient searh proedures based on therelative position of ativities. An additional advantage of this approah is that it pro-dues partially ordered solutions instead of fully instantiated ones. These solutionsare more robust. All the algorithms desribed in this paper have been implemented andare available in the urrent version of ILOG Sheduler [12℄. As far as AI Planning isonerned, future work will mainly onsist in studying the integration of our shedulingframework into a HTN or a POP Planner as well as improving our searh proedures.Referenes[1℄ P. Baptiste and C. Lepape. A theoretial and experimental omparison of onstraintpropagation tehniques for disjuntive sheduling. In Proeedings IJCAI-95, 1995.[2℄ C. Bek, A. Davenport, E. Sitarski, and M. Fox. Texture-based heuristis for shedulingrevisited. In Proeedings AAAI-97, 1997.[3℄ J. Carlier and E. Pinson. A pratial use of Jakson's preemptive shedule for solvingthe job-shop problem. Annal of Operation Researh, 26:269{287, 1990.[4℄ A. Cesta and C. Stella. A time and resoure problem for planning arhitetures. InProeedings ECP-97, 1997.[5℄ A. Cesta, A. Oddi, and S. Smith. A onstraint-based method for projet sheduling withtime windows. Tehnial Report, CMU RI Tehnial Report, 2000.[6℄ D. Chapman. Planning for onjuntive goals. Arti�ial Intelligene, 32:333{377, 1987.[7℄ B. Drabble and A. Tate. The use of optimisti and pessimisti resoure pro�les to informsearh in an ativity based planner. In Proeedings AIPS-94, pages 243{248, 1994.[8℄ J. Ershler. Analyse sous ontraintes et aide �a la d�eision pour ertains probl�emesd'ordonnanement. PhD thesis, Universit�e Paul Sabatier, 1976.[9℄ J. Ershler, P. Lopez, and C. Thuriot. Raisonnement temporel sous ontraintes deressoures et probl�emes d'ordonnanement. Revue d'IA, 5(3):7{32, 1991.[10℄ F. Foai, P. Laborie, and W. Nuijten. Solving sheduling problems with setup timesand alternative resoures. In Proeedings AIPS-00, pages 92{101, 2000.[11℄ F. Garia and P. Laborie. New Diretions in AI Planning, hapter Hierarhisation ofthe Searh Spae in Temporal Planning, pages 217{232. IOS Press, Amsterdam, 1996.[12℄ ILOG. ILOG Sheduler 5.1 Referene Manual, 2001. http://www.ilog.om/.[13℄ S. Khambhampati and X. Yang. On the role of disjuntive representations and onstraintpropagation in re�nement planning. In Proeedings KR-96, 1996.[14℄ P. Laborie and M. Ghallab. Planning with sharable resoure onstraints. In ProeedingsIJCAI-95, pages 1643{1649, 1995.[15℄ K. Neumann and C. Shwindt. Projet sheduling with inventory onstraints. TehnialReport WIOR-572, Universit�at Karlsruhe, 1999.[16℄ W. Nuijten. Time and resoure onstrained sheduling: A onstraint satisfation ap-proah. PhD thesis, Eindhoven University of Tehnology, 1994.[17℄ D. Paiarelli and A. Masis. Job-shop sheduling of perishable items. In ProeedingsINFORMS-99, 1999.[18℄ D.E. Smith, J. Frank, and A.K. Jonsson. Bridging the gap between planning and shedul-ing. Knowledge Engineering Review, 15(1), 2000.[19℄ F. Sourd and W. Nuijten. Multiple-mahine lower bounds for shop sheduling problems.INFORMS Journal of Computing, 4(12):341{352, 2000.
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