
Planning with Pattern DatabasesStefan EdelkampInstitut f�ur InformatikAlbert-Ludwigs-Universit�atGeorges-K�ohler-Allee, Geb�aude 51D-79110 FreiburgeMail: edelkamp@informatik.uni-freiburg.deAbstract. Heuristic search planning e�ectively �nds solutions for var-ious benchmark planning problems, but since the estimates are eithernot admissible or too weak, optimal solutions are found in rare casesonly. In contrast, heuristic pattern databases are known to signi�cantlyimprove lower-bound estimates for optimally solving challenging single-agent problems like the 24-Puzzle and Rubik's Cube.This paper studies the e�ect of pattern databases in the context of deter-ministic planning. Given a �xed state description based on instantiatedpredicates, we provide a general abstraction scheme to automaticallycreate admissible domain-independent memory-based heuristics for plan-ning problems, where abstractions are found in factorizing the planningspace. We evaluate the impact of pattern database heuristics in A* andhill climbing algorithms for a collection of benchmark domains.1 IntroductionGeneral propositional planning is PSPACE complete [3], but when tackling spe-ci�c benchmark planning instances, improving the solution quality usually re-veals the intrinsic hardness of the problems. For example, plan existence of Lo-gistic and Blocks World problem instances is polynomial, but minimizing thesolution lengths for these planning problems is NP-hard [11]. On the other handfor some benchmark domains like Sokoban and Mystery even plan existence isNP-hard. Therefore, we propose a planner that is able to �nd optimal plansand, if challenging planning problems call for exponential resources, the plannerapproximates the optimal solution.1.1 Optimal Planning ApproachesGraphplan [1] constructs a layered planning graph containing two types of nodes,action nodes and proposition nodes. In each layer the preconditions of all opera-tors are matched, such that Graphplan considers instantiated actions at speci�cpoints in time. Graphplan generates partially ordered plans to exhibit concur-rent actions and alternates between two phases: graph extension to increase the
13

search depth and solution extraction to terminate the planning process. Graph-plan �nds optimal parallel plans, but does not approximate solution lengths; itsimply exhausts the given resources.Another optimal planning approach is symbolic exploration simulating abreadth-�rst search according to the binary encoding of planning states. Theoperators unfold the initial state over time and an e�cient theorem prover thensearches for a satisfying truth assignment. A Boolean formula ft describes the setof states reachable in t steps. If ft contains a goal state, the problem is solvablewith the minimal t as the optimal solution length.Two approaches have been proposed. Satplan [17] encodes the planning prob-lem with a standard representation of Boolean formulae as a conjunct of clauses.The alternative in the planner Mips [8] is to apply binary decision diagrams(BDDs); a data structure providing a unique representation for Boolean func-tions [2]. The BDD planning approach is in fact reachability analysis in modelchecking [4]. It applies to both deterministic and non-deterministic planning andthe generated plans are optimal in the number of sequential execution steps.Usually, symbolic approaches cannot approximate except for recent preliminaryresults with domain abstractions [15] and with symbolic best-�rst search [6].Though promising, the solution quality is not as good as in explicit search.1.2 Heuristic Search PlanningDirected search is currently the most e�ective approach in classical AI-planning:four of �ve honored planning systems in the general planning track of the AIPS-2000 competition at least partially incorporate heuristic search. However, intraversing the huge state spaces of all combinations of grounded predicates,all planners rely on inadmissible estimates. The currently fastest deterministicplanner, FF [13], solves a relaxed planning problem for each state to computean inadmissible estimate. Furthermore, non-general pruning rules in FF such ashelpful action cuts and goal ordering cuts help to avoid plateaus and local optimain the underlying hill-climbing algorithm. Completeness in undirected problemgraphs is achieved by breadth-�rst searching improvements for the estimate andby omitting pruning in case of backtracks. Nevertheless, the daunting problem forFF are directed problem graphs with dead-ends from which its move committinghill-climbing algorithm cannot recover.The best admissible estimate that has been applied to planning is the max-pair heuristic [10] implemented in the HSP planner. However, even by sacri�cingoptimality due to scaling, in AIPS-2000 this estimate was too weak to com-pete with the FF-heuristic. Moreover, own experiments with an improvement tomax-pair according to a minimum matching on a graph weighted with fact-pairsolution lengths were discouraging.This paper proposes a pre-computed admissible heuristic that easily outper-forms max-pair and by scaling the in
uence of the heuristic even the state-of-the-art FF-heuristic is beaten. To build the database we exhaustively searchall state-to-goal distances in tractable abstractions of the planning state-spacethat serve as lower bound estimates for the overall problem. After studying the
14

pattern database framework, we present experiments with a sizable number ofbenchmark planning problems of AIPS-1998 and AIPS-2000 and draw conclud-ing remarks.2 Planning Space RepresentationFor the sake of simplicity we concentrate on the STRIPS formalism [9], in whicheach operator is de�ned by a precondition list P , an add list A, and a delete listD, but the presented approach can be extended to various problem descriptionlanguages which can be parsed into a �xed state encoding. We refer to statedescriptions and lists as sets/conjuncts of grounded predicates also called factsor atoms. This is not a limitation since all state-of-the-art planners performgrounding; either prior to the search or on the
y.De�nition 1. Let F be the set of grounded predicates and O be a set of groundedSTRIPS operators. The result S0 of an operator o = (P;A;D) 2 O applied toa state S � F is de�ned as S0 = (S nD) [A in case P � S. Inverse STRIPSoperators o�1 are given by o�1 = ((P nD) [A;D;A).We exemplify our considerations in the Blocks World domain of AIPS-2000,speci�ed with the four operators pick-up, put-down, stack, and unstack. Forexample, the grounded operator (pick-up a) is de�ned asP = f(clear a); (ontable a); (handempty)g,A = f(holding a)g, andD = f(ontable a), (clear a); (handempty)gThe goal of the instance 4-1 is de�ned by f(on d c),(on c a),(on a b)gand the initial state is given by f(clear b) (ontable d), (on b c), (on c a),(on a d)g. The �rst step to construct a pattern database is a domain analysisprior to the search. The output are mutex groups of mutually exclusive facts.In every state (reachable from the initial state), exactly one of the atoms ineach group will be true. In general this construction is not unique such that weminimize the state description length over all possible partitionings as proposedfor the MIPS planning system [7]. In the example problem we �nd the followingnine mutex-groups.{ G1 = f(on c a); (on d a); (on b a); (clear a); (holding a)g,{ G2 = f(on a c); (on d c); (on b c); (clear c); (holding c)g,{ G3 = f(on a d); (on c d); (on b d); (clear d); (holding d)g,{ G4 = f(on a b); (on c b); (on d b); (clear b); (holding b)g,{ G5 = f(ontable a); trueg,{ G6 = f(ontable c); trueg,{ G7 = f(ontable d); trueg,{ G8 = f(ontable b); trueg, and{ G9 = f(handempty); trueg,
15

where true refers to the situation, when none of the other atoms is presentin a given state description.De�nition 2. Let G = fG1; : : : ; Gkg with Gi � F [ftrueg for i 2 f1; : : : ; kgbe the set of mutex groups, i.e. fi 6= fj for fi 2 Ginftrueg and fj 2 Gjnftrueg.A state is a conjunct f1^ : : :^fk of facts fi 2 Gi, i 2 f1; : : : ; kg. All representedstates span the planning space1 P.3 Pattern DatabasesA recent trend in single-agent search is to calculate the estimate with heuristicpattern databases (PDBs) [5]. The idea is to generate heuristics that are de�nedby distances in space abstractions. PDB heuristics are consistent2 and havebeen e�ectively applied to solve challenging (n2 � 1)-Puzzles [19] and Rubik'sCube [18]. In the (n2� 1)-Puzzle a pattern is a collection of tiles and in Rubik'sCube either a set of edge-cubies or a set of corner-cubies is selected.For all of these problems the construction of the PDB has been implementedproblem-dependently, i.e. by manual input of the abstraction for the puzzles andits storage by suitable perfect hash functions. In contrast, we apply the concept ofPDBs to general problem-independent planning and construct pattern databasesfully automatically.3.1 State AbstractionsState space abstractions in the context of PDBs are concisely introduced in [12]:A state is a vector of �xed length and operators are conveniently expressedby label sets, e.g. an operator mapping hA;B; i to hB;A; i corresponds to atransposition of the �rst two elements for any state vector of length three. Thestate space is the transitive closure of the seed state S0 and the operators O. Adomain abstraction is de�ned as a mapping � from one label set L to anotherlabel set K with jKj < jLj such that states and operators can be simpli�ed byreducing the underlying label set. A state space abstraction of the search problemhS0; O; Li is denoted as h�(S0); �(O);Ki. In particular, the abstraction mappingis non-injective such that the abstract space (which is the image of the originalstate space) is therefore much smaller than the original space.The framework in [12] only applies to certain kinds of permutation groups,where in our case the abstract space is obtained in a more general way, sinceabstraction is achieved by projecting the state representation.1 The planning space P is in fact smaller than the set of subsets of grounded predicates,but includes the set of states reachable from the initial state.2 Consistent heuristic estimates ful�ll h(v) � h(u) + w(u; v) � 0 for each edge (u; v)in the underlying, possibly weighted, problem graph. They yield monotone meritsf(u) = g(u) + h(u) on generating paths with weight g(u). Admissible heuristicsare lower bound estimates which underestimate the goal distance for each state.Consistent estimates are indeed admissible.
16

De�nition 3. Let F be the set of grounded predicates. A planning space ab-straction � is a mapping from F to F [ftrueg such that for each group Geither for all f 2 G : �(f) = f or for all f 2 G : �(f) = true:Since planning states are interpreted as conjuncts of facts, � can be extendedto map each planning state of the original space P to one in the abstract spaceA. In the example problem instance we apply two planning space abstractions�odd and �even. The mapping �odd assigns all atoms in groups of odd index tothe trivial value true and, analogously, �even maps all
uents in groups witheven index value to true. All groups not containing a atoms in the goal state arealso mapped to true3. In the example, the goal is partitioned into �even(G) =f(on c a)g and �odd(G) = f(on a b); (on d c)g, since the groups G4 to G9are not present in the goal description.Abstract operators are de�ned by intersecting their precondition, add anddelete lists with the set of non-reduced facts in the abstraction. This acceleratesthe construction of the pattern table, since several operators simplify.De�nition 4. Let � be a planning space abstraction and ��(S1; S2) be the graph-theoretical shortest path between to two states S1 and S2 in A. Furthermore, letS0 be the start and St be the set of goal states in P. A planning pattern database(PDB) according to � is a set of pairs, with the �rst component being an abstractplanning state S and the second component being the minimal solution length inthe abstract problem space, i.e.,PDB(�) = f(S; ��(S; �(St))) j S 2 Ag:PDB(�) is calculated in a breadth-�rst traversal starting from the set of goalsin applying the inverse of the operators. Two facts about PDBs are important.When reducing the state description length n to �n with 0 < � < 1 the statespace and the search tree shrinks exponentially; e.g. 2n bit vectors correspondto an abstract space of 2�n elements.The second observation is that once the pattern database is calculated, ac-cessing the heuristic estimate is fast by a simple table lookup (cf. Section 3.3).Moreover, PDBs can be re-used for the case of di�erent initial states. PDB(�even)and PDB(�odd) according to the abstractions �even and �odd of our exampleproblem are depicted in Table 1. Note that there are only three atoms presentin the goal state such that one of the pattern databases only contains patternsof length one. Abstraction �even corresponds to G1 and �odd corresponds to theunion of G2 and G4.3.2 Disjoint Pattern DatabasesDisjoint pattern databases add estimates according to di�erent abstractions suchthat the accumulated estimates still provide a lower bound heuristic.3 To include mutex-groups into PDB calculations which are not present in the goalstate, we may generate all possible instances for the fact set. In fact, this is theapproach that is applied in our implementation.
17

((clear a),1)((holding a),2)((on b a),2)((on d a),2)
((on d c)(clear b),1) ((on a b)(clear c),1)((on d c)(holding b),2) ((clear c)(clear b),2)((on d c)(on d b),2) ((on a b)(holding c),2)((on a c)(on a b) ,2) ((clear c)(holding b),3)((clear b)(holding c),3) ((on a c)(clear b),3)((on d b)(clear c),3) ((holding c)(holding b),4)((on b c)(clear b),4) ((on a c)(holding b),4)((on c b)(clear c),4) ((on d b)(holding c),4)((on a c)(on d b),4) ((on b c)(holding b),5)((on a b)(on b c),5) ((on d b)(on b c),5)((on c b)(holding c),5) ((on a c)(on c b),5)((on c b)(on d c),5)Table 1. Pattern databases PDB(�even) and PDB(�odd) for the example problem.De�nition 5. Two pattern databases PDB(�1) and PDB(�2) are disjoint, if thesum of respective heuristic estimates always underestimates the overall solutionlength, i.e., ��1(�1(S); �1(St)) + ��2(�2(S); �2(St)) � �(S; St);8S 2 P :PDBs are not always disjoint. Suppose that a goal contains two atoms p1and p2, which are in groups 1 and 2, respectively, and that an operator o makesboth p1 and p2 true. Then, the distance under abstraction �1 is 1 (because theabstraction of o will make p2 in group 2 true in one step) and the distance under�2 is also 1 (for the same reason). But the distance in the original search spaceis also 1.De�nition 6. An independent abstraction set I is a set of group indices suchthat no operator a�ects both atoms in groups in I and atoms in groups that arenot in I. The according abstraction �I that maps all atom groups not in I totrue is called an independent abstraction.Theorem 1. A partition of the groups into independent abstractions sets yieldsdisjoint pattern databases.Proof. Each operator changes information only within groups of a given partitionand an operator of the abstract planning space contributes one to the overallestimate only if it changes facts in available fact groups. Therefore, by addingthe solution lengths of di�erent abstract spaces each operator on each path iscounted at most once.For some domains like Logistics operators act locally according to any par-tition into groups so that the precondition of Theorem 1 is trivially ful�lled.3.3 Perfect HashingPDBs are implemented as a (perfect) hash table with a table lookup in timelinear to the abstract state description length.

18

According to the partition into groups a perfect hashing function is de�nedas follows. Let Gi1 ; Gi2 ; : : : ; Gik be the selected groups in the current abstractionand o�set(k) be de�ned as o�set(k) =Qkl=1 jGil�1 j with jGi0 j = 1. Furthermore,let group(f) and position(f) be the group index and the position in the group offact f , respectively. Then the perfect hash value hash(S) of state S ishash(S) =Xf2S position(f) � o�set(group(f)):Since perfect hashing uniquely determines an address for the state S, S can bereconstructed given hash(S) by extracting all corresponding group and positioninformation that de�ne the facts in S. Therefore, we establish a good compres-sion ratio, since each state in the queue for the breadth-�rst search traversalonly consumes one integer. The breadth-�rst-search queue is only needed forconstruction and the resulting PDB is a plain integer array of size o�set(k + 1)encoding the distance values for the corresponding states, initialized with 1 forpatterns that are not encountered. Some states are not generated, since they arenot reachable, but the above scheme is more time and space e�cient than ordi-nary hashing storing the uncompressed state representation. Since small integerelements consume only a few bytes, on current machines we may generate PDBsof a hundred million entries and more.3.4 ClusteringIn the simple example planning problem the combined sizes of groups and thetotal size of the generated pattern databases PDB(�even) and PDB(�odd) di�erconsiderably. Since we perform a complete exploration in the generation process,in larger examples the requirements in time and space resources for computingPDBs might be exhausted. Therefore, an automatic way to �nd a suitable bal-anced partition according to given memory limitations is required. Instead of abound on the total size of all PDBs together, we globally limit the size of eachpattern database, which is in fact the number of expected states. The restrictionis not crucial, since the number of di�erent pattern databases is small in practice.The threshold is the parameter to tune the quality of the estimate. Obviously,large threshold values yield optimal estimates in small problem spaces.We are confronted with a Bin-Packing variant: Given the sizes of groups, thetask is to �nd the minimal number of pattern databases such that the sizes donot exceed a certain threshold value. Notice that the group sizes are multipliedin order to estimate the search space size. However, the corresponding encodinglengths add up. Bin-Packing is NP-hard in general, but good approximationalgorithms exist. In our experiments we applied the best-�t strategy.4 ResultsAll experimental results were produced on a Linux PC, Pentium III CPU with800 MHz and 512 MByte. We chose the most e�cient domain-independent plan-ners as competitors. In Logistics, the program FF is chosen for comparison and
19

0.01

0.1

1

10

100

1000

0 10 20 30 40 50

Se
ar

ch
 T

im
e

[s
ec

]

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

PDB construction

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45

E
xp

an
si

on
s

[n
od

es
]

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

Fig. 1. Time performances and numbers of expansions of A* and hill climbing in theLogistics domain with respect to the PDB and FF heuristic on a logarithmic scale.PDB construction time is included in the overall search time.in Blocks World, the pattern database approach is compared to the optimalplanner Mips.4.1 LogisticsWe applied PDBs to Logistics and solved the entire problem set of AIPS-2000.The largest problem instance includes 14 trucks located in one of three locationsof the 14 cities. Together with four airplanes the resulting state space has asize of about 314 � 144 � 6042 � 8:84223 � 1085 states. All competing plannersthat have solved the entire benchmark problem suite are (enforced) hill-climberswith a variant of the FF heuristic and the achieved results have about the samecharacteristics [14]. Therefore, in Table 1 we compare the PDB approach withthe FF-heuristic. In the enforced hill climbing algorithm we allow both plannersto apply branching cuts, while in A* we scale the in
uence of the heuristic with afactor of two. The e�ects of scaling are well-known [22]: weightening A* possiblyresults in non-optimal solution, but the search tends to succeed much faster. Inthe AIPS-2000 competition, the scaling factor 2 has enhanced the in
uence ofthe max-pair heuristic in the planner HSP. However, even with this improvementit solves only a few problems of this benchmark suite.The characteristics of the PDB and FF heuristics in Figure 1 are quite dif-ferent. The number of expanded nodes is usually larger for the former one butthe run time is much shorter. A* search with PDBs outperforms FF with hillclimbing and branching cuts. The savings are about two orders of magnitudewith respect to FF and A* and one order of magnitude with respect to FF andhill climbing, while the e�ect for the number of expansions is the exact opposite.In the example set the average time for a node expansion in PDB-based planningis smaller by about two orders of magnitude compared to FF.On the other hand, in larger problem instances enforced hill climbing ac-cording to the PDB heuristic generates too many nodes to be kept in mainmemory. In a few seconds the entire memory resources were exhausted. This
20

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

So
lu

tio
n

L
en

gt
h

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

180

190

200

210

220

230

240

250

260

270

280

30 32 34 36 38 40 42 44

So
lu

tio
n

L
en

gt
h

Problem Number

PDB (A*)
PDB (HC)

FF (A*)
FF (HC)

Fig. 2. Overall and magni�ed solution quality of A* and enforced hill climbing in theLogistics domain with respect to to the PDB and FF heuristic.suggests applying memory limited search algorithm like thresholding in IDA*and alternative hashing strategies to detect move transpositions in high searchdepths.We summarize that hill climbing is better suited to the FF heuristic whileweighted A* seems to perform better with PDBs. The solution qualities are aboutthe same as Figure 2 deptics. Even magni�cation to larger problem instances failsto establish a clear-cut winner.4.2 Blocks WorldAchieving approximate solutions in Blocks World is easy; 2-approximations runin linear time [24]. Moreover, di�erent domain-dependent cuts drastically reducethe search space. Hence, TALPlanner [20] with hand-coded cuts and FF with hillclimbing, helpful action and goal ordering cuts �nd good approximate solutionsto problems with �fty Blocks and more. FF using enforced hill climbing withoutcuts is misguided by its heuristic, backtracks and tends to get lost in local optimafar away from the goal. We concentrate on optimal solutions for this domain.Since any n-Tower con�guration is reachable from the initial state state, thestate space grows exponentially in n, and indeed, optimizing Blocks World isNP-hard. Graphplan is bounded to about 9 blocks and no optimal heuristicsearch engine achieves a better performance, e.g. HSP with max-pair is boundedto about 6-7 blocks. Model checking engines like BDD exploration in Mips anditerative Boolean satis�ability checks in Satplan are best in this domain andoptimally solve problems with up to 12-13 blocks. Table 3 depicts that PDBsare competitive and that the solution lengths match.Moreover, better scaling in time seems to favor PDB exploration. However,in both approaches space consumption is more crucial than time. In the bidi-rectional symbolic breadth-�rst search engine of Mips the BDD sizes grow veryrapidly and large pattern databases with millions of entries still lead to millionsof node expansions. When searching for optimal solutions to 13-block benchmark
21

0.01

0.1

1

10

100

1000

2 4 6 8 10 12 14

T
im

e
[s

ec
]

Problem Number

PDB construction
PDB (A*)

MIPS (BDD)

5

10

15

20

25

30

35

2 4 6 8 10 12 14

L
en

gt
h

Problem Number

PDB (A*)
MIPS (BDD)

Fig. 3. Time performance and solution quality of BDD expoloration and optimal PDBplanning in Blocks World. PDB construction time is included in the overall search time.problems this thrashes the memory resources in both planning approaches. Insummary, optimal solving Blocks World is still hard for general planning engines.4.3 Other DomainsGripper (AIPS-1998) spans an exponentially large but well-structured searchspace such that greedy search engines �nds optimal solutions. On the otherhand, Gripper is known to be hard for Graphplan. Both FF with hill-climbingand cuts and PDB with weighted A* �nd optimal solutions in less than a second.Like Logistics, the NP-hard [11] Mystery domain (AIPS-1998) is a trans-portation domain on a road map. Trucks are moving around this map and pack-ages are being carried by the mobiles. Additionally, various capacity and fuelconstraints have to be satis�ed. Mystery is particularly di�cult for heuristicsearch planning, since some of the instances contain a very high portion of unde-tected dead-ends [14]. In contrast to the most e�ective heuristic search plannerGRT [23], the PDB planning algorithm does not yet incorporate manual refor-mulation based on explicit representation of resources. However, experimentsshow that PDB search is competitive: problems 1-3, 9, 11, 17, 19, 25-30 were op-timally solved in less then 10 seconds, while problem 15 and 20 required about 5and 2 minutes, respectively. At least problem 4,7, and 12 are not solvable. Timeperformance and the solution qualities are better than in [23] Scaling reduces thenumber of node expansion in some cases but has not solved any new problem.The start position of Sokoban consists of a selection of balls within a maze anda designated goal area into which the balls have to be moved. A man, controlledby the puzzle solver, can traverse the board and push balls onto adjacent emptysquares. Sokoban has been proven to be PSPACE complete and spans a directedsearch space with exponentially many dead-ends, in which some balls cannot beplaced onto any goal �eld [16]. Therefore, hill climbing will eventually encounter adead-end and fail. Only overall search schemes like A*, IDA* or best-�rst preventthe algorithm from getting trapped. In our experiments we optimally solved all52 automatically generated problems [21] in less than �ve seconds each. The
22

screens were compiled to PDDL with a one-to-one ball-to-goal mapping so thatsome problems become unsolvable. Since A* is complete we correctly establishunsolvability of 15 problems in the test set. Note that the instances span statespaces much smaller than the 90 problem suite considered in [16] with problemscurrently too di�cult to be solved with domain independent planning.As expected, additional results in Sokoban highlight that in contrast to thePDB-heuristic, the FF-heuristic, once embedded in A*, yields good but notoptimal solutions. BDD exploration in Mips does �nd optimal solutions, but forsome instances it requires over a hundred seconds for completion.5 ConclusionHeuristic search is currently the most promising approach to tackle huge problemspaces but usually does not yield optimal solutions. The aim of this paper is toapply recent progress of heuristic search in �nding optimal solutions to planningproblems by devising an automatic abstraction scheme to construct pre-compiledpattern databases.Our experiments show that pattern database heuristics are very good admis-sible estimators. Once calculated our new estimate will be available in constanttime since the estimate of a state is simply retrieved in a perfect hash table byprojecting the state encoding. We will investigate di�erent pruning techniquesto reduce the large branching factors in planning. There are some known gen-eral pruning techniques such as FSM pruning [25], Relevance Cuts and PatternSearches [16] that should be addressed in the near future.Although PDB heuristics are admissible and calculated beforehand, theirquality can compete with the inadmissible FF-heuristic that solves a relaxedplanning problem for every expanded state. The estimates are available in asimple table lookup, and, in contrast to the FF-heuristic, A* �nds optimal solu-tions. Weighting the estimate helps to cope with di�cult instances for approx-imate solutions. Moreover, PDB heuristics in A* can handle directed problemspaces and prove unsolvability results.One further important advantage of PDB heuristics is the possibility of asymbolic implementation. Due to the representational expressiveness of BDDs,a breadth-�rst search (BFS) construction can be completed with respect to largerparts of the planning space for a better quality of the estimate. The explorationyields a relation H(estimate; state) represented with a set of Boolean variablesencoding the BFS-level and a set of variables encoding the state. AlgorithmBDDA*, a symbolic version of A*, integrates the symbolic representation ofthe estimate [6]. Since PDBs lead to consistent heuristics the number of itera-tions in the BDDA* algorithms is bounded by the square of the solution length.Moreover, symbolic PDBs can also be applied to explicit search. The heuristicestimate for a state can be determined in time linear to the encoding length.Acknowledgments We thank J. Ho�mann for the Sokoban problem generator,M. Helmert for eliminating typos, the anonymous referees for helpful comments,and P. Haslum for fruitful discussions on this research topic.
23

References1. A. Blum and M. L. Furst. Fast planning through planning graph analysis. InIJCAI, pages 1636{1642, 1995.2. R. E. Bryant. Symbolic manipulation of boolean functions using a graphical rep-resentation. In DAC, pages 688{694, 1985.3. T. Bylander. The computational complexity of propositional STRIPS planning.Arti�cial Intelligence, pages 165{204, 1994.4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.5. J. C. Culberson and J. Schae�er. Pattern databases. Computational Intelligence,14(4):318{334, 1998.6. S. Edelkamp. Directed symbolic exploration and its application to AI-planning. InAAAI Symposium (Model-based Validation of Intelligence), pages 84{92, 2001.7. S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems tominimize state encoding length. In ECP, LNCS, pages 135{147. Springer, 1999.8. S. Edelkamp and M. Helmert. The model checking integrated planning systemMIPS. AI-Magazine, 2001. To Appear.9. R. Fikes and N. Nilsson. Strips: A new approach to the application of theoremproving to problem solving. Arti�cial Intelligence, (2):189{208, 1971.10. P. Haslum and H. Ge�ner. Admissible heuristics for optimal planning. In Arti�cialIntelligence Planning and Scheduling (AIPS), pages 140{149, 2000.11. M. Helmert. On the complexity of planning in transportation and manipulationdomains. Master's thesis, Computer Science Department Freiburg, 2001. Availablefrom http://www.informatik.uni-freiburg.de/~ki/theses.html.12. I. T. Hern�adv�ogyi and R. C. Holte. Experiments with automatic created memory-based heuristics. In SARA, 2000.13. J. Ho�mann. A heuristic for domain independent planning and its use in anenforced hill climbing algorithm. In ISMIS, LNCS, pages 216{227. Springer, 2000.14. J. Ho�mann. Local search topology in planning benchmarks: An empirical analysis.In IJCAI, 2001. To appear.15. R. Jensen and M. M. Veloso. OBDD-based universal planning for synchronizedagents in non-deterministic domains. JAIR, 13, 2000.16. A. Junghanns. Pushing the Limits: New Developments in Single-Agent Search.PhD thesis, University of Alberta, 1999.17. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, andstochastic search. In AAAI, pages 1194{1201, 1996.18. R. E. Korf. Finding optimal solutions to Rubik's Cube using pattern databases.In AAAI, pages 700{705, 1997.19. R. E. Korf and A. Felner. Disjoint pattern database heuristics. Arti�cial Intelli-gence, 2001. To appear (http://www.elsevier.nl/locate/artint).20. J. Kvarnstr�om, P. Doherty, and P. Haslum. Extending TALplanner with concur-rency and resources. In ECAI, pages 501{505, 2000.21. Y. Murase, H. Matsubara, and Y. Hiraga. Automatic making of Sokoban problems.In Paci�c Rim Conference on AI, 1996.22. J. Pearl. Heuristics. Addison-Wesley, 1985.23. I. Refanidis and I. Vlahavas. Heuristic planning with resources. In ECAI, pages521{525, 2000.24. J. Slaney and S. Thi�ebaux. Blocks world revisited. Arti�cial Intelligence, pages119{153, 2001.25. L. A. Taylor and R. E. Korf. Pruning duplicate nodes in depth-�rst search. InAAAI, pages 756{761, 1993.
24

