
Constraint-based Strategies for the Disjun
tiveTemporal Problem: Some New ResultsAngelo OddiIP-CNR, Italian National Resear
h Coun
ilViale Marx 15, I-00137 Rome, Italyoddi�ip.rm.
nr.itAbstra
t. The Disjun
tive Temporal Problem (DTP) involves the sat-isfa
tion of a set of 
onstraints represented by disjun
tive formulas of theform x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk. DTP is a quitegeneral temporal reasoning problem whi
h in
ludes the well-known Tem-poral Constraint Satisfa
tion Problem (TCSP) introdu
ed by De
hter,Meiri and Pearl. This paper des
ribes a basi
 
onstraint satisfa
tion al-gorithm where several aspe
ts of the 
urrent literature are integrated,in parti
ular the so-
alled in
remental forward 
he
king. Hen
e, two newextended solving strategies are proposed and experimentally evaluated.The new results are both very 
ompetitive with respe
t to the 
urrentbest results and open further resear
h dire
tions that 
on
erns, in par-ti
ular, the use of ar
-
onsisten
y �ltering strategies.Keywords: 
onstraint reasoning for planning and s
heduling, temporalreasoning, 
onstraint algorithms.1 Introdu
tionIn many re
ent Arti�
ial Intelligen
e appli
ations the need of a more expressivetemporal reasoning frame is in
reasing more and more. For example, in 
ontinualplanning appli
ations [1℄ a relevant 
apability is the 
ontinuous management oftemporal plans [2, 3℄. To this purpose, the representation of temporal disjun
-tion allows a leverage of systems' 
apability, for example, it avoids a too early
ommitment on a
tion orderings. Other interesting appli
ations of the temporalmodel proposed in this paper are dis
ussed in the work [4℄, these appli
ationsrange from s
heduling and planning to temporal database with inde�nite infor-mation.The Temporal Constraint Satisfa
tion Problem (TCSP) [5℄ is a way to repre-sent temporal disju
tions, it allows 
onstraints of the form x�y � r1_x�y � r2_: : :_x�y � rk. A further generalization of the TCSP is proposed in [6, 4℄ where aproblem has 
onstraints of the form x1�y1 � r1_x2�y2 � r2_: : :_xk�yk � rk.In [7℄ this last problem is referred to as Disjun
tive Temporal Problem (DTP)and we use this name in the paper. DTPs have been studied in several previ-ous works: (a) in [6, 4℄ several 
onstraint-based (CSP) algorithms (in the lineof [8℄) are de�ned and experimentally 
ompared. One of them, based on for-ward 
he
king [9℄, is shown to be the best; (b) in [7℄ DTP is modeled as apropositional satisfability (SAT [10℄) problem and solved with a state-of-the-art
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SAT-solver plus some additional pro
essing. Experiments show an improvementof up to two orders of magnitude with respe
t to the results in [6℄. (
) �nallyin [11℄ the 
onstraint-based algorithm proposed in [6, 4℄ is improved exploitingthe quantitative temporal information in the solution \distan
e graph". Usingthis knowledge an in
remental version of the forward 
he
king is obtained andshown to be 
ompetitive with the results proposed in [7℄.Our starting point in the work [11℄ was the observation of the sharp di�eren
ebetween the results shown in [6℄ and [7℄ and the idea of using the \quantitativereasoning" that 
an 
ome out from a temporal 
onstraint network representation.We basi
ally observe that the e�e
ts of quantitative temporal information toimprove global performan
e of DTPs has not been explored enough in previousworks. Using su
h knowledge we were able to de�ne an in
remental forward
he
king algorithm whi
h has 
omparable performan
e (measured as number offorward 
he
ks) with the best SAT-based version proposed in [7℄.This paper follows the same CSP-based approa
h and again fo
us on using\quantitative reasoning" that 
an 
ome out from a temporal 
onstraint networkrepresentation. In parti
ular we propose a new heuristi
 strategy for variableordering used in our CSP framework and an ar
-
onsisten
y �ltering algorithm.The rationale behind the new results is quite general and 
an be exploited inother solvers that rely on \quantitative temporal reasoning".The paper is stru
tured as follows. Se
tion 2 introdu
es the basi
 
on
eptsused in the paper. Se
tion 3 gives a basi
 CSP algorithm whi
h integrates resultsfrom both previous works, in
luded the in
remental forward 
he
king. Se
tion 4introdu
es two additional solving algorithms for solving DTP instan
es, andan experimental evaluation of the di�erent approa
hes is given in Se
tion 5.Se
tion 6 ends the paper with some 
on
lusions.2 PreliminariesThe Disjun
tive Temporal Problem (DTP) involves a �nite set of temporal vari-ables x1; y1; x2; y2 : : : xn; yn ranging over the reals and a �nite set of 
onstraintsC = f
1; 
2; : : : 
mg of the form x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk,where ri are real numbers. A DTP is 
onsistent if an assignment to the variablesexists su
h that in ea
h 
onstraints 
i 2 C at least one disjun
t xij � yij � rijis satis�ed. One way to 
he
k for 
onsisten
y of a DTP 
onsists of 
hoosing onedisjun
t for ea
h 
onstraint 
i and see if the 
onjun
tion of the 
hosen disjun
tsis 
onsistent. It is worth observing that this is equivalent to extra
ting a \par-ti
ular" STP (the Simple Temporal Problem de�ned in [5℄) from the DTP and
he
king 
onsisten
y of su
h a STP. If the STP is not 
onsistent another one issele
ted, and so on. Both previous approa
hes to DTP [6, 4, 7, 11℄ do this basi
sear
h step.Previous Work. All [6, 4, 7, 11℄ share a \two layered" algorithmi
 stru
ture.An upper layer of reasoning is responsible for guiding the sear
h that extra
ts theset of disjun
ts, a lower layer represents the quantitative information of the tem-poral reasoning problem. In [6℄ a general CSP formulation is used at the upperlevel while the quantitative information is managed by using the in
remental di-
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re
tional path 
onsisten
y (IDPC) algorithm of [12℄. In [7℄ at the upper level theDTP is en
oded as a SAT problem, a SAT-solver extra
ts an STP to be 
he
ked,a simpli�ed version of the Simplex algorithm is used at the lower level to 
he
kfor its 
onsisten
y. Stergiou and Kubarakis de�ne di�erent ba
ktra
king algo-rithms for managing the upper-level and experimentally verify that the versionusing forward 
he
king is the best. Forward 
he
king is used after ea
h 
hoi
e totest whi
h of the possible next 
hoi
es are 
ompatible with 
urrent partial STP.In the rest of the paper their best algorithm is 
alled SK. Armando, Castelliniand Giun
higlia fo
us their attention on the SAT en
oding, ea
h disjun
t is apropositional formula, and they use a state of the art SAT-solver enri
hed with aform of forward 
he
king biased by the temporal information. Their basi
 versionis 
alled TSAT and is shown to improve up to one order of magnitude with re-gard to SK. Then they add a further prepro
essing step 
alled IS that basi
allyprodu
es a more a

urate SAT en
oding be
ause it 
odi�es mutual ex
lusion
onditions among propositions that exists in the temporal information, but werelost by the �rst standard en
oding.DTP Consisten
y Che
king as a Meta-CSP. Before introdu
ing our al-gorithm we unders
ore the possibility of representing the 
onsisten
y 
he
kingproblem as a meta-CSP problem, where ea
h DTP 
onstraint 
 2 C representsa (meta) variable and the set of disjun
ts represents variable's domain valuesD
 = fÆ1; Æ2; : : : Ækg. A meta-CSP problem is 
onsistent if exists at least an el-ement S (solution) of the set D1 �D2 � : : : �Dm su
h that the 
orrespondingset of disjun
ts S = fÆ1; Æ2; : : : Æmg Æi 2 Di is temporally 
onsistent.Ea
h value Æi 2 Di represents an inequality of the form xi � yi � ri anda solution S 
an be represented as a labeled graph Gd(VS ; ES) 
alled \dis-tan
e graph" [5℄. The set of nodes VS 
oin
ides with the set of DTP variablesx1; y1; x2; y2 : : : xn; yn and ea
h disjun
t xi � yi � ri is represented by a dire
tedge (yi; xi) from yi to xi labeled with ri. A path from a node xi to yj on thegraph is a set of 
ontiguous edges (xi; yi); (yi; yi1); (yi1; yi2); : : : ; (xil; yj) and thelength of the path is the sum of the edges' labels. The set of disjun
ts S 
or-responds to an STP. S is a solution to the meta-CSP problem if Gd does not
ontain 
losed path with negative length (negative 
y
les) [5℄. From the graphGda numeri
al solution of the problem 
an be extra
ted as follows. Let dxiyi be theshortest path distan
e on Gd from the node xi to yi, without loss of generalitywe 
an assume a variable xi as referen
e point, for example x1, in this way thetuple (dx1x1 ; dx1x2 ; : : : dx1xn) is a solution of the original DTP problem. In fa
t,the previous values represent the shortest distan
e from the referen
e node x1 toall the other ones (in parti
ular dx1x1 = 0). For ea
h edge xi � yi � ri in Gd asit is well known values (dx1x1 ; dx1x2 ; : : : dx1xn) must hold the Bellman's inequal-ities: dx1xi � dx1yi + ri, that is dx1xi � dx1yi � ri. Hen
e (dx1x1 ; dx1x2 ; : : : dx1xn)is a solution for the DTP.This view of the 
onsisten
y 
he
king problem is used to de�ne our CSP ap-proa
h and in parti
ular is useful to understand our in
remental forward 
he
kingmethod.
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CSP-DTP-SOLVER(dtp, S)1. if Che
kConsisten
y(dtp)2. then if IsaSolution(dtp)3. then return(S)4. else begin5. 
 Sele
tVariable(dtp)6. Æ  ChooseValue(dtp, 
)7. CSP-DTP-SOLVER(dtp, S [ fÆg)8. end9. else return(Fail)10. end Fig. 1. A CSP solver for the DTP.3 A CSP Algorithm for DTPIn this work we mainly follow the 
onstraint-based approa
h of Stergiu andKubarakis [6, 4℄ for solving DTP instan
es. Figure 1 shows a CSP pro
edurewhi
h starts from an empty solution S and basi
ally exe
utes three steps: (a) the
urrent partial solution is 
he
ked for 
onsisten
y (Step 1) by the fun
tion Che
k-Consisten
y. This fun
tion �lters also the sear
h spa
e from in
onsistent states.If the partial solution is a 
omplete solution (Step 2) the algorithm exits. If thesolution is still in
omplete the following two steps are exe
uted; (b) a (meta)variable (a 
onstraint 
i) is sele
ted at Step 5 by a variable ordering heuristi
;(
) a disjun
t xi � yi � ri is 
hosen (Step 6) from the domain variable Di andadded to S (represented at the lower level as a Gd graph). Hen
e the solver isre
ursively 
alled on the partial updated solution S [ fÆg.The Che
kConsisten
y fun
tion is the 
ore of the CSP algorithm, it both up-dates the set of distan
es dxiyj and the domain variablesDi by forward 
he
king.In parti
ular it exe
utes two main steps:Temporal propagation. every time a new inequality xi � yi � ri is addedto the Gd graph, the set of distan
es dxixj is updated by a simple O(n2)algorithm.Forward 
he
king. After the previous step, for ea
h not assigned meta-variablethe domain Di is 
he
ked for 
onsisten
y (forward 
he
king). Given the 
ur-rent solution represented by Gd, ea
h value xi � yi � ri belonging to a notassigned variable and whi
h indu
es a negative 
y
les on Gd is removed. Inother words, ea
h time a value Æi � xi�yi � ri satis�es the test ri+dxiyi < 0,then Æi is removed from the 
orresponding domain Di. In the 
ase that onedomain Di be
omes empty, the fun
tion Che
kConsisten
y returns false.The Che
kConsisten
y step 
ontributes to avoid investigation of sear
h statesproved in
onsistent and the other two steps (Steps 5 and 6 of Figure 1) are usedto guide the sear
h a

ording to heuristi
 estimators.Sele
tVariable. It applies the simple and e�e
tive Minimum Remaining Values(MRV) heuristi
: variables with the minimum number of values are sele
ted�rst. It is worth noting that the heuristi
 just ranks the possible 
hoi
es
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de
iding whi
h one to do �rst but all the 
hoi
es should be done (it is not anon deterministi
 sear
h step).ChooseValue. This represents a non deterministi
 operator whi
h starts a dif-ferent 
omputation for ea
h domain values. Obviously in our implementationwe use a depth-�rst sear
h strategy, where there is no parti
ular values order-ing heuristi
. However, in the 
ase a 
onstraint (variable) is always satis�edby the 
urrent partial solution Sp, that is, a 
onstraint disjun
t xi � yi � riexists su
h that holds the 
ondition dyixi < ri, no bran
hing is 
reated. Infa
t, the 
urrent 
onstraint is impli
itly \
ontained" in the partial solutionand it will be satis�ed in all the solution 
reated from Sp.3.1 Integrating SAT FeaturesThe 
urrent version of our CSP solver integrates also the so-
alled semanti
bran
hing [7℄. This is a feature that in the SAT approa
h 
omes for free andthat in the CSP temporal representation is to be expli
itly inserted. It avoidsto test again 
ertain 
onditions previously proved in
onsistent. The idea behindsemanti
 bran
hing is the following, let us suppose that the algorithm builds apartial solution Sp = fÆ1; Æ2; : : : Æpg and a not assigned meta-variable is sele
tedwhi
h has a disjun
t set of two elements fÆ0 ; Æ00g. Let us suppose that the disjun
tÆ0 is sele
ted �rst and no feasible solution exists from the partial solution Sp [fÆ0g. In other words, ea
h sear
h path from the node Sp [ fÆ0g arrives to aninfeasible state. In this 
ase the depth-�rst sear
h pro
ess removes the de
isionÆ0 from the 
urrent solution and tries the other one (Æ00). However, even if theprevious 
omputation is not able to �nd a solution, it demonstrates that withregard to the partial solution Sp no solution 
an 
ontain the disjun
t Æ0 . If wesimply try Æ00 we lose the previous information, hen
e, before trying Æ00 , we addthe 
ondition :Æ0 (that is x0�y0 > ri) to the partial solution. It is worth nothingthat in this 
ase it is important to make expli
it the semanti
 bran
hing byadding the negation be
ause the values in the domains Di are not self-ex
lusive.In other 
ases, for example a s
heduling problem, where bran
hing is done withregard to the temporal ordering of pairs of a
tivitiesA and B, semanti
 bran
hingis not useful. In fa
t when A before B is 
hosen the 
ase B before A is impli
itlyex
luded.In this se
tion we have des
ribed our basi
 algorithm that integrates some ofthe previous analysis in a meta-CSP sear
h framework. From now on we 
all thisalgorithm CSP and it is the base for the des
ription of the in
remental forward
he
king of the next se
tion.3.2 In
remental Forward Che
kingThe algorithms for solving DTP introdu
ed at the beginning of this se
tion isbased on the meta-CSP s
hema with some additional features. In parti
ular,it uses the enri
hed ba
ktra
king s
hema 
alled semanti
 bran
hing. To furtherimprove the performan
e of the CSP approa
h we have investigated aspe
ts 
on-ne
ted to the quantitative temporal information. This aspe
t has re
eived lessattention in [6, 7, 4℄. In parti
ular in this se
tion we introdu
e a method to
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signi�
antly de
rease the number of forward 
he
ks by using the temporal infor-mation. Its general idea is relatively simple.Rationale. When a new disjun
t Æ is added to a partial solution, the temporalpropagation algorithm inside Che
kConsisten
y updates only a subset of the dis-tan
es dxixj (usually a \small" subset). The forward 
he
king test on disjun
tsis performed w.r.t. the distan
es in the graph Gd. It is of no use to performa forward 
he
king test of the form dxiyi + ri < 0 on a disjun
t Æi when thedistan
e dxiyi has not been 
hanged w.r.t. the previous state.This basi
 observation 
an be ni
ely integrated in CSP with the additional 
ostof a stati
 prepro
essing needed to 
reate for ea
h pair of nodes hxi; yji the setof a�e
ted meta values AMV (xi; yj).A�e
ted meta-values w.r.t. a pair hxi; yji. Given a distan
e dxiyj on Gdthe set of a�e
ted meta values dis
riminates whi
h subset of disjun
ts are af-fe
ted by an update of dxiyj . The set AMV (xi; yj) asso
iated to the distan
edxiyj (or the pair hxi; yji) is de�ned as the set of disjun
ts x � y � r whosetemporal variables x and y respe
tively 
oin
ide with the variables yj and xi(AMV (xi; yj) := fx� y � r : x = yj ; y = xig).Given a DTP, the set of its AMV s is 
omputed on
e for all with a prepro
essingstep with a spa
e 
omplexity O(m + n2) and a time 
omplexity O(n3 lnn) (asexplained below ea
h set AMV is represented as a sorted list a

ording to thevalues r). The information stored in the AMV s 
an be used in a new versionof CSP we 
all \in
remental forward 
he
king"(CSPi). It requires a modi�-
ation of the Che
kConsisten
y fun
tion. The new in
remental version of theChe
kConsisten
y works in two main steps:1. The distan
es dxiyj are updated and the set of distan
es that have been
hanged is 
olle
ted.2. given su
h set, for ea
h dxiyj the 
orresponding AMV (xi; yj) is taken, andits values are forward 
he
ked. In parti
ular, all the set AMV (xi; yj) arerepresented as a list of disjun
ts sorted a

ording to the value of r and theforward 
he
king test dxiyj + r < 0 is performed from the disjun
t with thesmallest value of r. In this way, when a test fails on the list element Æ, it willfail also on the rest of the list and the forward 
he
king pro
edure 
an stopon AMV (xi; yj).In the experimental se
tion we show that the algorithm CSPi (
onstraint-basedsolver with in
remental forward 
he
king) strongly improves with respe
t tothe basi
 CSP and be
omes 
ompetitive with the best results available in theliterature.4 New Constraint-based Solving Strategies for DTPIn this se
tion we propose two additional solving strategies for DTP based onthe work [11℄. In parti
ular we propose: (1) a new variable ordering heuristi
;(2) an ar
-
onsisten
y �ltering strategy.
234



The rational behind the �rst method is based on the observation that given aDTP problem, and 
onsiderd a value Æi � xi�yi � ri, during the solving pro
essÆi is removed by forward 
he
king from its domain Di when indu
es negative
y
les in the 
urrent solution represented by the Gd graph. On the basis of theprevious observation we propose the following variable ordering strategy: sele
tthe subset of variables with minimum number of remaining values xi�yi � ri andwithin this subset, the variable with maximal number of negative 
oeÆ
ients ri.The values Æi with negative 
oeÆ
ients ri are 
ru
ial to the existen
e of a solutionto a DTP. In fa
t, it is simple to see that a DTP instan
e without negative rivalues has always a solution. On the other hand, the presen
e of negative rivalues generate negative 
y
les on the graph Gd and indu
es in
onsistent partialsolutions. This strategy has the main purpose of pruning the sear
h tree in itsearly stages, trying to 
reate as many as possible negative 
y
les, in this waythe strategy maximizes the probability of �nding negative 
y
les at the earlysteps of the sear
h tree. As we will see in the experimental se
tion this strategyis e�e
tive in the transistion phase of a DTP problem where the probability of�nd a solution is very low.The se
ond solving method 
an be explained by giving a new version of theChe
kConsisten
y algorithm used in the general algorithmi
 template des
ribedin Figure 1. The aim of this solving method is redu
ing the dimension of thesear
h tree by the appli
ation of a more e�e
tive �ltering strategy and to ex-plore the possibility of �nding tradeo�s among number of 
onsisten
y 
he
ks,number of visited sear
h nodes, and CPU time. In parti
ular, we propose anar
-
onsisten
y �ltering algorithm su
h that, among the set of �ltering methodsanalyzed during our experimentation, is the one whi
h gave the better per-forman
e both in CPU time and number of 
onsisten
y 
he
ks. The proposed�ltering algorithm works in two main steps.1. It applies the in
remental forward 
he
king method des
ribed in Se
tion 3.2.When at least one variable domain be
ames empty, Che
kConsisten
y re-turns false, otherwise the following se
ond step is exe
uted.2. The set of not assigned variables whi
h are modi�ed by the appli
ation ofthe �rst step is 
onsidered, and used to inizialize the propapagation queueQ of an ar
-
onsisten
y �ltering method. The �ltering method is exe
utedto remove further values, in the 
ase at least one variable domain be
amesempty, Che
kConsisten
y returns false, otherwise returns true.Figure 2 shows the ar
-
onsisten
y �ltering algorithm. It takes as an input theset Qinit of modi�ed variables and applies the 2-
onsisten
y �ltering startegy bythe Revise operator whi
h is the 
ore of the method. In this 
ase the operator hasthe following de�nition: Revise(
i, 
j) removes from the domains D
i and D
jea
h value xi�yi � ri whi
h does not have support. That is, a value xi�yi � riis removed from the domain D
i when there is no value xj � yj � rj in the setD
j su
h that ri + dxiyj + rj + dxjyi � 0 holds. When the pro
edure stops, itreturns the set of variables with redu
ed domain of values.In the experimental se
tion we 
ompare this strategy with the other ones,trying to �nd some 
on
lusions about the relations among the number of 
on-sisten
y 
he
ks (we 
onsider the test ri+ dxiyj + rj + dxjyi � 0 performed inside
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Ar
-
onsisten
y(Qinit)1. Q Qinit2. while (Q 6= ; and 6 9D
i = ;) do begin3. 
i  Pop(Q)4. forea
h not assigned variable 
j 2 C do5. Q Q [ Revise(
i, 
j)6. end Fig. 2. Ar
-
onsisten
y �ltering algorithm.the Revise operator as equivalent to a forward 
he
king test) the total CPU timeand the number of visited sear
h nodes.5 Experimental EvaluationWe adopt the same evaluation pro
edure used in [6, 7℄ and use the randomDTP generator de�ned by Stergiou. DTP instan
es are generated a

ording tothe parameters hk; n;m;Li (k: number of disjun
ts per 
lause, n: number ofvariables, m: number of disjun
tion (temporal 
onstraints); L: a positive integersu
h that all the 
onstants ri are sampled in the interval [�L;L℄). In parti
ular,a

ording to [6, 7℄ experimental sets are generated with k = 2, L = 100 and thedomain of ri is on integers not on reals as in the general de�nition of DTP.Experimental results are plotted for n 2 f10; 12; 15; 20; 25; 30g, where ea
h
urve represents the number of 
onsisten
y 
he
ks versus the ratio � = m=n (inboth the results of Figures 3 and 4 � = m=n is an integer value whi
h ranges from2 to 14). The median number of 
he
ks over 100 random samples for di�erentvalues of � is plotted in Figures 3(a)-3(f) where three di�erent type of resultsare 
ompared: (1) the performan
e of the best algorithm proposed in [6℄ andlabeled with SK; (2) the results of the SAT-based solving methods, there aretwo methods: the �rst one labeled with TSATIS(2), whi
h 
orresponds to thebest results 
laimed in the work [7℄, and a se
ond one, labeled with TSATIS(3),whi
h represents some new results only published on the TSAT web page (see thereferen
e [7℄ for the URL); (3) the performan
e of our 
onstraint-based approa
h,in parti
ular the 
urve labeled with CSPi 
orresponds to the best results inthe paper [11℄, and the one labeled with CSPineg represent the new resultsobtained with the heuristi
 strategy de�nited in Se
tion 4. Figure 4(d) plots theper
entage of problems solvable by CSPineg on di�erent n. The algorithms areimplemented in Common Lisp and the reported results are obtained on a SUNUltraSpar
 10 (440MHz). All the results are obtained setting a timeout of 1000se
onds of CPU time.There are several 
omments on the CSPineg performan
e: (a) all the 
urveshave the same behavior of the previous results. It is 
on�rmed that the harder in-stan
es are obtained for � 2 f6; 7g and for su
h values the per
entage of solvableproblems be
omes < 10%. When the number of variables n in
reases the hardestregion narrows; (b) the median number of forward 
he
ks show that CSPinegsigni�
antly improves over CSPi. This fa
t shows that the new sele
tion vari-able strategy is very e�e
tive, and indire
tly 
on�rms that there 
ould be further
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spa
e for investigating improvements of the CSP approa
h; (
) the CSPineg
ompares very well with the pre-existing approa
hes, it outperforms the othersfor n 2 f10; 12; 15; 20g and it is 
ompetitive with TSATIS(3) for n 2 f25; 30g.However, further work will be needed to 
learly outperform TSATIS(3) on all n.One possible dire
tion of resear
h is the use of more e�e
tive �ltering strategiesto redu
e the dimension of the sear
h tree. However, the use of a more powerful�ltering strategy has a pri
e of an higher 
omputational time. Hen
e, the realproblem is �nd a good tradeo� among number of 
onsisten
y 
he
ks, number ofsear
h nodes and CPU time.Figure 4(a) shows a 
omparison between the performan
e of our 
onstraint-based algorithm CSPineg and the other one whi
h uses the ar
-
onsisten
y�ltering strategy (labeled with CSPia
) introdu
ed in Se
tion 4. With respe
tto number of forward 
he
ks CSPia
 performs about one order of magnituteworse than CSPineg, where in the 
ase of the ar
-
onsisten
y algorithm we
onsider the test ri+ dxiyj + rj + dxjyi � 0 as equivalent to a forward 
he
k. Onthe other hand, if we 
onsider the CPU time performan
e (Figure 4(
)), the ratiobetween the CSPia
 and CSPineg CPU times is less than 3 in the transitionphase. The analysis is 
ompleted by the results in Figure 4(d), whi
h show thatthe CSPia
 strategy is able to redu
e about 25% the number of sear
h nodesrespe
t to the CSPineg performan
e.About the results of Figure 4 we have the following observations: (a) thear
-
onsisten
y strategy performs an higher number of 
onsisten
y 
he
ks re-spe
t to the forward 
he
king strategy and many of the performed 
he
ks areunne
essary, in fa
t, after ea
h solution modi�
ations, many distan
es on the Gdgraph remain un
hanged, hen
e many tests of the form ri+dxiyj +rj+dxjyi � 0are unne
essarily performed; (b) in our appro
h a 
onsisten
y 
he
k has O(1)time 
omplexity (in the TSAT approa
h is at least O(n)) and this explain thedi�eren
e in performan
e between number of 
onsisten
y 
he
ks and CPU timeshows in Figure 4.The experimental results 
on�rm that the CSP appro
h 
ontains good ideas,in fa
t our results are 
omparable with the ones obtained by the TSAT approa
hwhi
h uses one of the best SAT-solver available, in addition, for lower values ofthe ratio � = m=n (� 5) the CSPineg is signi�
antly better with respe
t to allthe others (it is to be noted also that in many pra
ti
al appli
ations the 
ondi-tion � � 5 is likely to be veri�ed). On the other hand, further investigation isneeded to realize a 
ompetitive ar
-
onsisten
y solving algorithm, in this exper-imentation some useful observations about tradeo�s among number of forward
he
ks, number of sear
h nodes explored, and CPU time are pointed out, andrepresent a good starting point for future resear
h dire
tions.6 Con
lusionThis paper has extended the 
onstraint-based approa
h, initially introdu
ed in[6℄ and later improved in [11℄, to solving the DTP temporal problem. As it ispointed out in the short dis
ussion at the begining of the paper, DTP is goingto be
ome very relevant in many planning appli
ation. We propose two newadditional solving methods for DTP. The �rst one is an heuristi
 strategy for
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variable ordering whi
h improves forward 
he
king performan
e up to an order ofmagnitude respe
t to the results 
laimed in [11℄ and allowing a real 
ompetitionwith the best SAT approa
h. An interesting area where CSPineg 
onstantlyoutperforms all other approa
hes (when � � 5) emerges from an experimentalevaluation. The se
ond solving method uses a more sophisti
ated ar
-
onsisten
y�ltering algorithm. In this 
ase the aim of the method is redu
ing the dimensionof the sear
h tree by the appli
ation of a more e�e
tive �ltering strategy and toexplore the possibility of �nding tradeo�s among number of 
onsisten
y 
he
ks,number of visited sear
h nodes, and CPU time. The results proposed in thepaper suggest that an useful resear
h dire
tion is the de�nition of an in
rementalversion of the ar
-
onsisten
y �ltering algorithm.A
knowledgmentsThis work is supported by ASI (Italian Spa
e Agen
y) under ASI-ARS-99-96
ontra
t and by the Italian National Resear
h Coun
il.Referen
es[1℄ DesJardin, M., Durfee, E., Ortiz, C., Wolverton, M.: A Survey of Resear
h inDistributed, Continual Planning. AI Magazine 20 (1999) 13{22[2℄ Polla
k, M., Horty, J.: There's More to Life Than Making Plans: Plan Manage-ment in Dynami
 Multiagent Environment. AI Magazine 20 (1999) 71{83[3℄ Tsamardinos, I., Polla
k, M.E., Horty, J.F.: Merging Plans with QuantitativeTemporal Constraints, Temporally Extended A
tions, and Conditional Bran
hes.In: Pro
eedings of the 5th International Conferen
e on AI Planning Systems(AIPS-2000. (2000)[4℄ Stergiou, K., Koubarakis, M.: Ba
ktra
king Algorithms for Disjun
tions of Tem-poral Constraints. Arti�
ial Intelligen
e 120 (2000) 81{117[5℄ De
hter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Arti�
ial Intel-ligen
e 49 (1991) 61{95[6℄ Stergiou, K., Koubarakis, M.: Ba
ktra
king Algorithms for Disjun
tions of Tem-poral Constraints. In: Pro
eedings 15th National Conferen
e on AI (AAAI-98).(1998)[7℄ Armando, A., Castellini, C., Giun
higlia, E.: SAT-based Pro
edures for TemporalReasoning. In: Pro
eedings 5th European Conferen
e on Planning (ECP-99).(1999) (available at http://www.mrg.dist.unige.it/~drwho/Tsat).[8℄ Prosser, P.: Hybrid Algorithms for the Constraint Satisfa
tion Problem. Compu-tational Intelligen
e 9 (1993) 268{299[9℄ Harali
k, R., Elliott, G.: In
reasing Tree Sear
h EÆ
ien
y for Constraint Satis-fa
tion Problems. Arti�
ial Intelligen
e 14 (1980) 263{313[10℄ Cook, S., Mit
hell, D.: Finding Hard Instan
es of the Satis�ability Problem: aSurvey. In: Satis�ability Problems: Theory and Appli
ations. DIMACS Series inDis
rete Mathemati
s and Computer S
ien
e N.35 (1998)[11℄ Oddi, A., Cesta, A.: In
remental Forward Che
king for the Disjun
tive TemporalProblem. In Horn, W., ed.: ECAI2000. 14th European Conferen
e on Arti�
ialIntelligen
e, IOS Press (2000) 108{111[12℄ Chleq, N.: EÆ
ient Algorithms for Networks of Quantitative Temporal Con-straints. In: Pro
eedings of the Workshop CONSTRAINTS'95 (held in 
onjun
-tion with FLAIRS-95). (1995) 40{45
240


