
Constraint-based Strategies for the DisjuntiveTemporal Problem: Some New ResultsAngelo OddiIP-CNR, Italian National Researh CounilViale Marx 15, I-00137 Rome, Italyoddi�ip.rm.nr.itAbstrat. The Disjuntive Temporal Problem (DTP) involves the sat-isfation of a set of onstraints represented by disjuntive formulas of theform x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk. DTP is a quitegeneral temporal reasoning problem whih inludes the well-known Tem-poral Constraint Satisfation Problem (TCSP) introdued by Dehter,Meiri and Pearl. This paper desribes a basi onstraint satisfation al-gorithm where several aspets of the urrent literature are integrated,in partiular the so-alled inremental forward heking. Hene, two newextended solving strategies are proposed and experimentally evaluated.The new results are both very ompetitive with respet to the urrentbest results and open further researh diretions that onerns, in par-tiular, the use of ar-onsisteny �ltering strategies.Keywords: onstraint reasoning for planning and sheduling, temporalreasoning, onstraint algorithms.1 IntrodutionIn many reent Arti�ial Intelligene appliations the need of a more expressivetemporal reasoning frame is inreasing more and more. For example, in ontinualplanning appliations [1℄ a relevant apability is the ontinuous management oftemporal plans [2, 3℄. To this purpose, the representation of temporal disjun-tion allows a leverage of systems' apability, for example, it avoids a too earlyommitment on ation orderings. Other interesting appliations of the temporalmodel proposed in this paper are disussed in the work [4℄, these appliationsrange from sheduling and planning to temporal database with inde�nite infor-mation.The Temporal Constraint Satisfation Problem (TCSP) [5℄ is a way to repre-sent temporal disjutions, it allows onstraints of the form x�y � r1_x�y � r2_: : :_x�y � rk. A further generalization of the TCSP is proposed in [6, 4℄ where aproblem has onstraints of the form x1�y1 � r1_x2�y2 � r2_: : :_xk�yk � rk.In [7℄ this last problem is referred to as Disjuntive Temporal Problem (DTP)and we use this name in the paper. DTPs have been studied in several previ-ous works: (a) in [6, 4℄ several onstraint-based (CSP) algorithms (in the lineof [8℄) are de�ned and experimentally ompared. One of them, based on for-ward heking [9℄, is shown to be the best; (b) in [7℄ DTP is modeled as apropositional satisfability (SAT [10℄) problem and solved with a state-of-the-art
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SAT-solver plus some additional proessing. Experiments show an improvementof up to two orders of magnitude with respet to the results in [6℄. () �nallyin [11℄ the onstraint-based algorithm proposed in [6, 4℄ is improved exploitingthe quantitative temporal information in the solution \distane graph". Usingthis knowledge an inremental version of the forward heking is obtained andshown to be ompetitive with the results proposed in [7℄.Our starting point in the work [11℄ was the observation of the sharp di�erenebetween the results shown in [6℄ and [7℄ and the idea of using the \quantitativereasoning" that an ome out from a temporal onstraint network representation.We basially observe that the e�ets of quantitative temporal information toimprove global performane of DTPs has not been explored enough in previousworks. Using suh knowledge we were able to de�ne an inremental forwardheking algorithm whih has omparable performane (measured as number offorward heks) with the best SAT-based version proposed in [7℄.This paper follows the same CSP-based approah and again fous on using\quantitative reasoning" that an ome out from a temporal onstraint networkrepresentation. In partiular we propose a new heuristi strategy for variableordering used in our CSP framework and an ar-onsisteny �ltering algorithm.The rationale behind the new results is quite general and an be exploited inother solvers that rely on \quantitative temporal reasoning".The paper is strutured as follows. Setion 2 introdues the basi oneptsused in the paper. Setion 3 gives a basi CSP algorithm whih integrates resultsfrom both previous works, inluded the inremental forward heking. Setion 4introdues two additional solving algorithms for solving DTP instanes, andan experimental evaluation of the di�erent approahes is given in Setion 5.Setion 6 ends the paper with some onlusions.2 PreliminariesThe Disjuntive Temporal Problem (DTP) involves a �nite set of temporal vari-ables x1; y1; x2; y2 : : : xn; yn ranging over the reals and a �nite set of onstraintsC = f1; 2; : : : mg of the form x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk,where ri are real numbers. A DTP is onsistent if an assignment to the variablesexists suh that in eah onstraints i 2 C at least one disjunt xij � yij � rijis satis�ed. One way to hek for onsisteny of a DTP onsists of hoosing onedisjunt for eah onstraint i and see if the onjuntion of the hosen disjuntsis onsistent. It is worth observing that this is equivalent to extrating a \par-tiular" STP (the Simple Temporal Problem de�ned in [5℄) from the DTP andheking onsisteny of suh a STP. If the STP is not onsistent another one isseleted, and so on. Both previous approahes to DTP [6, 4, 7, 11℄ do this basisearh step.Previous Work. All [6, 4, 7, 11℄ share a \two layered" algorithmi struture.An upper layer of reasoning is responsible for guiding the searh that extrats theset of disjunts, a lower layer represents the quantitative information of the tem-poral reasoning problem. In [6℄ a general CSP formulation is used at the upperlevel while the quantitative information is managed by using the inremental di-
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retional path onsisteny (IDPC) algorithm of [12℄. In [7℄ at the upper level theDTP is enoded as a SAT problem, a SAT-solver extrats an STP to be heked,a simpli�ed version of the Simplex algorithm is used at the lower level to hekfor its onsisteny. Stergiou and Kubarakis de�ne di�erent baktraking algo-rithms for managing the upper-level and experimentally verify that the versionusing forward heking is the best. Forward heking is used after eah hoie totest whih of the possible next hoies are ompatible with urrent partial STP.In the rest of the paper their best algorithm is alled SK. Armando, Castelliniand Giunhiglia fous their attention on the SAT enoding, eah disjunt is apropositional formula, and they use a state of the art SAT-solver enrihed with aform of forward heking biased by the temporal information. Their basi versionis alled TSAT and is shown to improve up to one order of magnitude with re-gard to SK. Then they add a further preproessing step alled IS that basiallyprodues a more aurate SAT enoding beause it odi�es mutual exlusiononditions among propositions that exists in the temporal information, but werelost by the �rst standard enoding.DTP Consisteny Cheking as a Meta-CSP. Before introduing our al-gorithm we undersore the possibility of representing the onsisteny hekingproblem as a meta-CSP problem, where eah DTP onstraint  2 C representsa (meta) variable and the set of disjunts represents variable's domain valuesD = fÆ1; Æ2; : : : Ækg. A meta-CSP problem is onsistent if exists at least an el-ement S (solution) of the set D1 �D2 � : : : �Dm suh that the orrespondingset of disjunts S = fÆ1; Æ2; : : : Æmg Æi 2 Di is temporally onsistent.Eah value Æi 2 Di represents an inequality of the form xi � yi � ri anda solution S an be represented as a labeled graph Gd(VS ; ES) alled \dis-tane graph" [5℄. The set of nodes VS oinides with the set of DTP variablesx1; y1; x2; y2 : : : xn; yn and eah disjunt xi � yi � ri is represented by a diretedge (yi; xi) from yi to xi labeled with ri. A path from a node xi to yj on thegraph is a set of ontiguous edges (xi; yi); (yi; yi1); (yi1; yi2); : : : ; (xil; yj) and thelength of the path is the sum of the edges' labels. The set of disjunts S or-responds to an STP. S is a solution to the meta-CSP problem if Gd does notontain losed path with negative length (negative yles) [5℄. From the graphGda numerial solution of the problem an be extrated as follows. Let dxiyi be theshortest path distane on Gd from the node xi to yi, without loss of generalitywe an assume a variable xi as referene point, for example x1, in this way thetuple (dx1x1 ; dx1x2 ; : : : dx1xn) is a solution of the original DTP problem. In fat,the previous values represent the shortest distane from the referene node x1 toall the other ones (in partiular dx1x1 = 0). For eah edge xi � yi � ri in Gd asit is well known values (dx1x1 ; dx1x2 ; : : : dx1xn) must hold the Bellman's inequal-ities: dx1xi � dx1yi + ri, that is dx1xi � dx1yi � ri. Hene (dx1x1 ; dx1x2 ; : : : dx1xn)is a solution for the DTP.This view of the onsisteny heking problem is used to de�ne our CSP ap-proah and in partiular is useful to understand our inremental forward hekingmethod.
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CSP-DTP-SOLVER(dtp, S)1. if ChekConsisteny(dtp)2. then if IsaSolution(dtp)3. then return(S)4. else begin5.  SeletVariable(dtp)6. Æ  ChooseValue(dtp, )7. CSP-DTP-SOLVER(dtp, S [ fÆg)8. end9. else return(Fail)10. end Fig. 1. A CSP solver for the DTP.3 A CSP Algorithm for DTPIn this work we mainly follow the onstraint-based approah of Stergiu andKubarakis [6, 4℄ for solving DTP instanes. Figure 1 shows a CSP proedurewhih starts from an empty solution S and basially exeutes three steps: (a) theurrent partial solution is heked for onsisteny (Step 1) by the funtion Chek-Consisteny. This funtion �lters also the searh spae from inonsistent states.If the partial solution is a omplete solution (Step 2) the algorithm exits. If thesolution is still inomplete the following two steps are exeuted; (b) a (meta)variable (a onstraint i) is seleted at Step 5 by a variable ordering heuristi;() a disjunt xi � yi � ri is hosen (Step 6) from the domain variable Di andadded to S (represented at the lower level as a Gd graph). Hene the solver isreursively alled on the partial updated solution S [ fÆg.The ChekConsisteny funtion is the ore of the CSP algorithm, it both up-dates the set of distanes dxiyj and the domain variablesDi by forward heking.In partiular it exeutes two main steps:Temporal propagation. every time a new inequality xi � yi � ri is addedto the Gd graph, the set of distanes dxixj is updated by a simple O(n2)algorithm.Forward heking. After the previous step, for eah not assigned meta-variablethe domain Di is heked for onsisteny (forward heking). Given the ur-rent solution represented by Gd, eah value xi � yi � ri belonging to a notassigned variable and whih indues a negative yles on Gd is removed. Inother words, eah time a value Æi � xi�yi � ri satis�es the test ri+dxiyi < 0,then Æi is removed from the orresponding domain Di. In the ase that onedomain Di beomes empty, the funtion ChekConsisteny returns false.The ChekConsisteny step ontributes to avoid investigation of searh statesproved inonsistent and the other two steps (Steps 5 and 6 of Figure 1) are usedto guide the searh aording to heuristi estimators.SeletVariable. It applies the simple and e�etive Minimum Remaining Values(MRV) heuristi: variables with the minimum number of values are seleted�rst. It is worth noting that the heuristi just ranks the possible hoies
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deiding whih one to do �rst but all the hoies should be done (it is not anon deterministi searh step).ChooseValue. This represents a non deterministi operator whih starts a dif-ferent omputation for eah domain values. Obviously in our implementationwe use a depth-�rst searh strategy, where there is no partiular values order-ing heuristi. However, in the ase a onstraint (variable) is always satis�edby the urrent partial solution Sp, that is, a onstraint disjunt xi � yi � riexists suh that holds the ondition dyixi < ri, no branhing is reated. Infat, the urrent onstraint is impliitly \ontained" in the partial solutionand it will be satis�ed in all the solution reated from Sp.3.1 Integrating SAT FeaturesThe urrent version of our CSP solver integrates also the so-alled semantibranhing [7℄. This is a feature that in the SAT approah omes for free andthat in the CSP temporal representation is to be expliitly inserted. It avoidsto test again ertain onditions previously proved inonsistent. The idea behindsemanti branhing is the following, let us suppose that the algorithm builds apartial solution Sp = fÆ1; Æ2; : : : Æpg and a not assigned meta-variable is seletedwhih has a disjunt set of two elements fÆ0 ; Æ00g. Let us suppose that the disjuntÆ0 is seleted �rst and no feasible solution exists from the partial solution Sp [fÆ0g. In other words, eah searh path from the node Sp [ fÆ0g arrives to aninfeasible state. In this ase the depth-�rst searh proess removes the deisionÆ0 from the urrent solution and tries the other one (Æ00). However, even if theprevious omputation is not able to �nd a solution, it demonstrates that withregard to the partial solution Sp no solution an ontain the disjunt Æ0 . If wesimply try Æ00 we lose the previous information, hene, before trying Æ00 , we addthe ondition :Æ0 (that is x0�y0 > ri) to the partial solution. It is worth nothingthat in this ase it is important to make expliit the semanti branhing byadding the negation beause the values in the domains Di are not self-exlusive.In other ases, for example a sheduling problem, where branhing is done withregard to the temporal ordering of pairs of ativitiesA and B, semanti branhingis not useful. In fat when A before B is hosen the ase B before A is impliitlyexluded.In this setion we have desribed our basi algorithm that integrates some ofthe previous analysis in a meta-CSP searh framework. From now on we all thisalgorithm CSP and it is the base for the desription of the inremental forwardheking of the next setion.3.2 Inremental Forward ChekingThe algorithms for solving DTP introdued at the beginning of this setion isbased on the meta-CSP shema with some additional features. In partiular,it uses the enrihed baktraking shema alled semanti branhing. To furtherimprove the performane of the CSP approah we have investigated aspets on-neted to the quantitative temporal information. This aspet has reeived lessattention in [6, 7, 4℄. In partiular in this setion we introdue a method to
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signi�antly derease the number of forward heks by using the temporal infor-mation. Its general idea is relatively simple.Rationale. When a new disjunt Æ is added to a partial solution, the temporalpropagation algorithm inside ChekConsisteny updates only a subset of the dis-tanes dxixj (usually a \small" subset). The forward heking test on disjuntsis performed w.r.t. the distanes in the graph Gd. It is of no use to performa forward heking test of the form dxiyi + ri < 0 on a disjunt Æi when thedistane dxiyi has not been hanged w.r.t. the previous state.This basi observation an be niely integrated in CSP with the additional ostof a stati preproessing needed to reate for eah pair of nodes hxi; yji the setof a�eted meta values AMV (xi; yj).A�eted meta-values w.r.t. a pair hxi; yji. Given a distane dxiyj on Gdthe set of a�eted meta values disriminates whih subset of disjunts are af-feted by an update of dxiyj . The set AMV (xi; yj) assoiated to the distanedxiyj (or the pair hxi; yji) is de�ned as the set of disjunts x � y � r whosetemporal variables x and y respetively oinide with the variables yj and xi(AMV (xi; yj) := fx� y � r : x = yj ; y = xig).Given a DTP, the set of its AMV s is omputed one for all with a preproessingstep with a spae omplexity O(m + n2) and a time omplexity O(n3 lnn) (asexplained below eah set AMV is represented as a sorted list aording to thevalues r). The information stored in the AMV s an be used in a new versionof CSP we all \inremental forward heking"(CSPi). It requires a modi�-ation of the ChekConsisteny funtion. The new inremental version of theChekConsisteny works in two main steps:1. The distanes dxiyj are updated and the set of distanes that have beenhanged is olleted.2. given suh set, for eah dxiyj the orresponding AMV (xi; yj) is taken, andits values are forward heked. In partiular, all the set AMV (xi; yj) arerepresented as a list of disjunts sorted aording to the value of r and theforward heking test dxiyj + r < 0 is performed from the disjunt with thesmallest value of r. In this way, when a test fails on the list element Æ, it willfail also on the rest of the list and the forward heking proedure an stopon AMV (xi; yj).In the experimental setion we show that the algorithm CSPi (onstraint-basedsolver with inremental forward heking) strongly improves with respet tothe basi CSP and beomes ompetitive with the best results available in theliterature.4 New Constraint-based Solving Strategies for DTPIn this setion we propose two additional solving strategies for DTP based onthe work [11℄. In partiular we propose: (1) a new variable ordering heuristi;(2) an ar-onsisteny �ltering strategy.
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The rational behind the �rst method is based on the observation that given aDTP problem, and onsiderd a value Æi � xi�yi � ri, during the solving proessÆi is removed by forward heking from its domain Di when indues negativeyles in the urrent solution represented by the Gd graph. On the basis of theprevious observation we propose the following variable ordering strategy: seletthe subset of variables with minimum number of remaining values xi�yi � ri andwithin this subset, the variable with maximal number of negative oeÆients ri.The values Æi with negative oeÆients ri are ruial to the existene of a solutionto a DTP. In fat, it is simple to see that a DTP instane without negative rivalues has always a solution. On the other hand, the presene of negative rivalues generate negative yles on the graph Gd and indues inonsistent partialsolutions. This strategy has the main purpose of pruning the searh tree in itsearly stages, trying to reate as many as possible negative yles, in this waythe strategy maximizes the probability of �nding negative yles at the earlysteps of the searh tree. As we will see in the experimental setion this strategyis e�etive in the transistion phase of a DTP problem where the probability of�nd a solution is very low.The seond solving method an be explained by giving a new version of theChekConsisteny algorithm used in the general algorithmi template desribedin Figure 1. The aim of this solving method is reduing the dimension of thesearh tree by the appliation of a more e�etive �ltering strategy and to ex-plore the possibility of �nding tradeo�s among number of onsisteny heks,number of visited searh nodes, and CPU time. In partiular, we propose anar-onsisteny �ltering algorithm suh that, among the set of �ltering methodsanalyzed during our experimentation, is the one whih gave the better per-formane both in CPU time and number of onsisteny heks. The proposed�ltering algorithm works in two main steps.1. It applies the inremental forward heking method desribed in Setion 3.2.When at least one variable domain beames empty, ChekConsisteny re-turns false, otherwise the following seond step is exeuted.2. The set of not assigned variables whih are modi�ed by the appliation ofthe �rst step is onsidered, and used to inizialize the propapagation queueQ of an ar-onsisteny �ltering method. The �ltering method is exeutedto remove further values, in the ase at least one variable domain beamesempty, ChekConsisteny returns false, otherwise returns true.Figure 2 shows the ar-onsisteny �ltering algorithm. It takes as an input theset Qinit of modi�ed variables and applies the 2-onsisteny �ltering startegy bythe Revise operator whih is the ore of the method. In this ase the operator hasthe following de�nition: Revise(i, j) removes from the domains Di and Djeah value xi�yi � ri whih does not have support. That is, a value xi�yi � riis removed from the domain Di when there is no value xj � yj � rj in the setDj suh that ri + dxiyj + rj + dxjyi � 0 holds. When the proedure stops, itreturns the set of variables with redued domain of values.In the experimental setion we ompare this strategy with the other ones,trying to �nd some onlusions about the relations among the number of on-sisteny heks (we onsider the test ri+ dxiyj + rj + dxjyi � 0 performed inside
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Ar-onsisteny(Qinit)1. Q Qinit2. while (Q 6= ; and 6 9Di = ;) do begin3. i  Pop(Q)4. foreah not assigned variable j 2 C do5. Q Q [ Revise(i, j)6. end Fig. 2. Ar-onsisteny �ltering algorithm.the Revise operator as equivalent to a forward heking test) the total CPU timeand the number of visited searh nodes.5 Experimental EvaluationWe adopt the same evaluation proedure used in [6, 7℄ and use the randomDTP generator de�ned by Stergiou. DTP instanes are generated aording tothe parameters hk; n;m;Li (k: number of disjunts per lause, n: number ofvariables, m: number of disjuntion (temporal onstraints); L: a positive integersuh that all the onstants ri are sampled in the interval [�L;L℄). In partiular,aording to [6, 7℄ experimental sets are generated with k = 2, L = 100 and thedomain of ri is on integers not on reals as in the general de�nition of DTP.Experimental results are plotted for n 2 f10; 12; 15; 20; 25; 30g, where eahurve represents the number of onsisteny heks versus the ratio � = m=n (inboth the results of Figures 3 and 4 � = m=n is an integer value whih ranges from2 to 14). The median number of heks over 100 random samples for di�erentvalues of � is plotted in Figures 3(a)-3(f) where three di�erent type of resultsare ompared: (1) the performane of the best algorithm proposed in [6℄ andlabeled with SK; (2) the results of the SAT-based solving methods, there aretwo methods: the �rst one labeled with TSATIS(2), whih orresponds to thebest results laimed in the work [7℄, and a seond one, labeled with TSATIS(3),whih represents some new results only published on the TSAT web page (see thereferene [7℄ for the URL); (3) the performane of our onstraint-based approah,in partiular the urve labeled with CSPi orresponds to the best results inthe paper [11℄, and the one labeled with CSPineg represent the new resultsobtained with the heuristi strategy de�nited in Setion 4. Figure 4(d) plots theperentage of problems solvable by CSPineg on di�erent n. The algorithms areimplemented in Common Lisp and the reported results are obtained on a SUNUltraSpar 10 (440MHz). All the results are obtained setting a timeout of 1000seonds of CPU time.There are several omments on the CSPineg performane: (a) all the urveshave the same behavior of the previous results. It is on�rmed that the harder in-stanes are obtained for � 2 f6; 7g and for suh values the perentage of solvableproblems beomes < 10%. When the number of variables n inreases the hardestregion narrows; (b) the median number of forward heks show that CSPinegsigni�antly improves over CSPi. This fat shows that the new seletion vari-able strategy is very e�etive, and indiretly on�rms that there ould be further
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spae for investigating improvements of the CSP approah; () the CSPinegompares very well with the pre-existing approahes, it outperforms the othersfor n 2 f10; 12; 15; 20g and it is ompetitive with TSATIS(3) for n 2 f25; 30g.However, further work will be needed to learly outperform TSATIS(3) on all n.One possible diretion of researh is the use of more e�etive �ltering strategiesto redue the dimension of the searh tree. However, the use of a more powerful�ltering strategy has a prie of an higher omputational time. Hene, the realproblem is �nd a good tradeo� among number of onsisteny heks, number ofsearh nodes and CPU time.Figure 4(a) shows a omparison between the performane of our onstraint-based algorithm CSPineg and the other one whih uses the ar-onsisteny�ltering strategy (labeled with CSPia) introdued in Setion 4. With respetto number of forward heks CSPia performs about one order of magnituteworse than CSPineg, where in the ase of the ar-onsisteny algorithm weonsider the test ri+ dxiyj + rj + dxjyi � 0 as equivalent to a forward hek. Onthe other hand, if we onsider the CPU time performane (Figure 4()), the ratiobetween the CSPia and CSPineg CPU times is less than 3 in the transitionphase. The analysis is ompleted by the results in Figure 4(d), whih show thatthe CSPia strategy is able to redue about 25% the number of searh nodesrespet to the CSPineg performane.About the results of Figure 4 we have the following observations: (a) thear-onsisteny strategy performs an higher number of onsisteny heks re-spet to the forward heking strategy and many of the performed heks areunneessary, in fat, after eah solution modi�ations, many distanes on the Gdgraph remain unhanged, hene many tests of the form ri+dxiyj +rj+dxjyi � 0are unneessarily performed; (b) in our approh a onsisteny hek has O(1)time omplexity (in the TSAT approah is at least O(n)) and this explain thedi�erene in performane between number of onsisteny heks and CPU timeshows in Figure 4.The experimental results on�rm that the CSP approh ontains good ideas,in fat our results are omparable with the ones obtained by the TSAT approahwhih uses one of the best SAT-solver available, in addition, for lower values ofthe ratio � = m=n (� 5) the CSPineg is signi�antly better with respet to allthe others (it is to be noted also that in many pratial appliations the ondi-tion � � 5 is likely to be veri�ed). On the other hand, further investigation isneeded to realize a ompetitive ar-onsisteny solving algorithm, in this exper-imentation some useful observations about tradeo�s among number of forwardheks, number of searh nodes explored, and CPU time are pointed out, andrepresent a good starting point for future researh diretions.6 ConlusionThis paper has extended the onstraint-based approah, initially introdued in[6℄ and later improved in [11℄, to solving the DTP temporal problem. As it ispointed out in the short disussion at the begining of the paper, DTP is goingto beome very relevant in many planning appliation. We propose two newadditional solving methods for DTP. The �rst one is an heuristi strategy for
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variable ordering whih improves forward heking performane up to an order ofmagnitude respet to the results laimed in [11℄ and allowing a real ompetitionwith the best SAT approah. An interesting area where CSPineg onstantlyoutperforms all other approahes (when � � 5) emerges from an experimentalevaluation. The seond solving method uses a more sophistiated ar-onsisteny�ltering algorithm. In this ase the aim of the method is reduing the dimensionof the searh tree by the appliation of a more e�etive �ltering strategy and toexplore the possibility of �nding tradeo�s among number of onsisteny heks,number of visited searh nodes, and CPU time. The results proposed in thepaper suggest that an useful researh diretion is the de�nition of an inrementalversion of the ar-onsisteny �ltering algorithm.AknowledgmentsThis work is supported by ASI (Italian Spae Ageny) under ASI-ARS-99-96ontrat and by the Italian National Researh Counil.Referenes[1℄ DesJardin, M., Durfee, E., Ortiz, C., Wolverton, M.: A Survey of Researh inDistributed, Continual Planning. AI Magazine 20 (1999) 13{22[2℄ Pollak, M., Horty, J.: There's More to Life Than Making Plans: Plan Manage-ment in Dynami Multiagent Environment. AI Magazine 20 (1999) 71{83[3℄ Tsamardinos, I., Pollak, M.E., Horty, J.F.: Merging Plans with QuantitativeTemporal Constraints, Temporally Extended Ations, and Conditional Branhes.In: Proeedings of the 5th International Conferene on AI Planning Systems(AIPS-2000. (2000)[4℄ Stergiou, K., Koubarakis, M.: Baktraking Algorithms for Disjuntions of Tem-poral Constraints. Arti�ial Intelligene 120 (2000) 81{117[5℄ Dehter, R., Meiri, I., Pearl, J.: Temporal Constraint Networks. Arti�ial Intel-ligene 49 (1991) 61{95[6℄ Stergiou, K., Koubarakis, M.: Baktraking Algorithms for Disjuntions of Tem-poral Constraints. In: Proeedings 15th National Conferene on AI (AAAI-98).(1998)[7℄ Armando, A., Castellini, C., Giunhiglia, E.: SAT-based Proedures for TemporalReasoning. In: Proeedings 5th European Conferene on Planning (ECP-99).(1999) (available at http://www.mrg.dist.unige.it/~drwho/Tsat).[8℄ Prosser, P.: Hybrid Algorithms for the Constraint Satisfation Problem. Compu-tational Intelligene 9 (1993) 268{299[9℄ Haralik, R., Elliott, G.: Inreasing Tree Searh EÆieny for Constraint Satis-fation Problems. Arti�ial Intelligene 14 (1980) 263{313[10℄ Cook, S., Mithell, D.: Finding Hard Instanes of the Satis�ability Problem: aSurvey. In: Satis�ability Problems: Theory and Appliations. DIMACS Series inDisrete Mathematis and Computer Siene N.35 (1998)[11℄ Oddi, A., Cesta, A.: Inremental Forward Cheking for the Disjuntive TemporalProblem. In Horn, W., ed.: ECAI2000. 14th European Conferene on Arti�ialIntelligene, IOS Press (2000) 108{111[12℄ Chleq, N.: EÆient Algorithms for Networks of Quantitative Temporal Con-straints. In: Proeedings of the Workshop CONSTRAINTS'95 (held in onjun-tion with FLAIRS-95). (1995) 40{45
240


