Constraint-based Strategies for the Disjunctive
Temporal Problem: Some New Results

Angelo Oddi

IP-CNR, Italian National Research Council
Viale Marx 15, I-00137 Rome, Italy

oddi@ip.rm.cnr.it

Abstract. The Disjunctive Temporal Problem (DTP) involves the sat-
isfaction of a set of constraints represented by disjunctive formulas of the
form z1 —y1 <riVaxe—y2 <1r2V...Vxr —yr < 1. DTP is a quite
general temporal reasoning problem which includes the well-known Tem-
poral Constraint Satisfaction Problem (TCSP) introduced by Dechter,
Meiri and Pearl. This paper describes a basic constraint satisfaction al-
gorithm where several aspects of the current literature are integrated,
in particular the so-called incremental forward checking. Hence, two new
extended solving strategies are proposed and experimentally evaluated.
The new results are both very competitive with respect to the current
best results and open further research directions that concerns, in par-
ticular, the use of arc-consistency filtering strategies.

Keywords: constraint reasoning for planning and scheduling, temporal
reasoning, constraint algorithms.

1 Introduction

In many recent Artificial Intelligence applications the need of a more expressive
temporal reasoning frame is increasing more and more. For example, in continual
planning applications [1] a relevant capability is the continuous management of
temporal plans [2, 3]. To this purpose, the representation of temporal disjunc-
tion allows a leverage of systems’ capability, for example, it avoids a too early
commitment on action orderings. Other interesting applications of the temporal
model proposed in this paper are discussed in the work [4], these applications
range from scheduling and planning to temporal database with indefinite infor-
mation.

The Temporal Constraint Satisfaction Problem (TCSP) [5] is a way to repre-
sent temporal disjuctions, it allows constraints of the form x—y < r Vz—y < ryV
...Vz—y < 7. A further generalization of the TCSP is proposed in [6, 4] where a
problem has constraints of the form z1 —y; <7y Vao—ys <roV...Vop—yr < .
In [7] this last problem is referred to as Disjunctive Temporal Problem (DTP)
and we use this name in the paper. DTPs have been studied in several previ-
ous works: (a) in [6, 4] several constraint-based (CSP) algorithms (in the line
of [8]) are defined and experimentally compared. One of them, based on for-
ward checking [9], is shown to be the best; (b) in [7] DTP is modeled as a
propositional satisfability (SAT [10]) problem and solved with a state-of-the-art

229

230

SAT-solver plus some additional processing. Experiments show an improvement
of up to two orders of magnitude with respect to the results in [6]. (c) finally
in [11] the constraint-based algorithm proposed in [6, 4] is improved exploiting
the quantitative temporal information in the solution “distance graph”. Using
this knowledge an incremental version of the forward checking is obtained and
shown to be competitive with the results proposed in [7].

Our starting point in the work [11] was the observation of the sharp difference
between the results shown in [6] and [7] and the idea of using the “quantitative
reasoning” that can come out from a temporal constraint network representation.
We basically observe that the effects of quantitative temporal information to
improve global performance of DTPs has not been explored enough in previous
works. Using such knowledge we were able to define an incremental forward
checking algorithm which has comparable performance (measured as number of
forward checks) with the best SAT-based version proposed in [7].

This paper follows the same CSP-based approach and again focus on using
“quantitative reasoning” that can come out from a temporal constraint network
representation. In particular we propose a new heuristic strategy for variable
ordering used in our CSP framework and an arc-consistency filtering algorithm.
The rationale behind the new results is quite general and can be exploited in
other solvers that rely on “quantitative temporal reasoning”.

The paper is structured as follows. Section 2 introduces the basic concepts
used in the paper. Section 3 gives a basic CSP algorithm which integrates results
from both previous works, included the incremental forward checking. Section 4
introduces two additional solving algorithms for solving DTP instances, and
an experimental evaluation of the different approaches is given in Section 5.
Section 6 ends the paper with some conclusions.

2 Preliminaries

The Disjunctive Temporal Problem (DTP) involves a finite set of temporal vari-
ables z1,y1,T2,¥Y2 . . . Tpn, Y ranging over the reals and a finite set of constraints
C={cr,co,...cptoftheformay —yy <ryVas—y2 <ra V...V —yp <1,
where r; are real numbers. A DTP is consistent if an assignment to the variables
exists such that in each constraints ¢; € C' at least one disjunct z;; — y;; < 745
is satisfied. One way to check for consistency of a DTP consists of choosing one
disjunct for each constraint ¢; and see if the conjunction of the chosen disjuncts
is consistent. It is worth observing that this is equivalent to extracting a “par-
ticular” STP (the Simple Temporal Problem defined in [5]) from the DTP and
checking consistency of such a STP. If the STP is not consistent another one is
selected, and so on. Both previous approaches to DTP [6, 4, 7, 11] do this basic
search step.

Previous Work. All [6, 4, 7, 11] share a “two layered” algorithmic structure.
An upper layer of reasoning is responsible for guiding the search that extracts the
set, of disjuncts, a lower layer represents the quantitative information of the tem-
poral reasoning problem. In [6] a general CSP formulation is used at the upper
level while the quantitative information is managed by using the incremental di-

rectional path consistency (IDPC) algorithm of [12]. In [7] at the upper level the
DTP is encoded as a SAT problem, a SAT-solver extracts an STP to be checked,
a simplified version of the Simplex algorithm is used at the lower level to check
for its consistency. Stergiou and Kubarakis define different backtracking algo-
rithms for managing the upper-level and experimentally verify that the version
using forward checking is the best. Forward checking is used after each choice to
test which of the possible next choices are compatible with current partial STP.
In the rest of the paper their best algorithm is called SK. Armando, Castellini
and Giunchiglia focus their attention on the SAT encoding, each disjunct is a
propositional formula, and they use a state of the art SAT-solver enriched with a
form of forward checking biased by the temporal information. Their basic version
is called TSAT and is shown to improve up to one order of magnitude with re-
gard to SK. Then they add a further preprocessing step called IS that basically
produces a more accurate SAT encoding because it codifies mutual exclusion
conditions among propositions that exists in the temporal information, but were
lost by the first standard encoding.

DTP Counsistency Checking as a Meta-CSP. Before introducing our al-
gorithm we underscore the possibility of representing the consistency checking
problem as a meta-CSP problem, where each DTP constraint ¢ € C' represents
a (meta) variable and the set of disjuncts represents variable’s domain values
D, = {61,02,...0r}. A meta-CSP problem is consistent if exists at least an el-
ement S (solution) of the set Dy X D2 X ... X Dy, such that the corresponding
set of disjuncts S = {d1,02,...0,,} d; € D; is temporally consistent.

Each value 0; € D; represents an inequality of the form z; — y; < r; and
a solution S can be represented as a labeled graph G4(Vs, Es) called “dis-
tance graph” [5]. The set of nodes Vs coincides with the set of DTP variables
T1,Y1,%L2,Y2 - - - Tn,Yn and each disjunct z; — y; < r; is represented by a direct
edge (y;, ;) from y; to x; labeled with r;. A path from a node z; to y; on the
graph is a set of contiguous edges (s,), (i, ¥i1), (Y1, Yi2), - - -, (Zar, y;) and the
length of the path is the sum of the edges’ labels. The set of disjuncts S cor-
responds to an STP. S is a solution to the meta-CSP problem if G4 does not
contain closed path with negative length (negative cycles) [5]. From the graph G4
a numerical solution of the problem can be extracted as follows. Let d,,; be the
shortest path distance on Gy from the node x; to y;, without loss of generality
we can assume a variable x; as reference point, for example z, in this way the
tuple (dy, > dayzgy - - - duyz,) is @ solution of the original DTP problem. In fact,
the previous values represent the shortest distance from the reference node z; to
all the other ones (in particular d,,,, = 0). For each edge z; —y; < r; in G4 as
it is well known values (dy,z,,dz 29, - - - Ay,) Mmust hold the Bellman’s inequal-
ities: dy,z; < dg,y; + 73, that is dg, z; — dpyy; < ;. Hence (dpyo1,de1a0, - - - doyz,)
is a solution for the DTP.

This view of the consistency checking problem is used to define our CSP ap-
proach and in particular is useful to understand our incremental forward checking
method.

231

232

CSP-DTP-SOLVER(dtp, S)

1. if CheckConsistency(dtp)

2. then if IsaSolution(dtp)

3 then return(S)

4 else begin

5. ¢ < SelectVariable(dtp)

6. 0 < ChooseValue(dtp, c)

7 CSP-DTP-SOLVER (dtp, S U {6})
8 end

9 else return(Fail)

1

0.end
Fig.1. A CSP solver for the DTP.

3 A CSP Algorithm for DTP

In this work we mainly follow the constraint-based approach of Stergiu and
Kubarakis [6, 4] for solving DTP instances. Figure 1 shows a CSP procedure
which starts from an empty solution S and basically executes three steps: (a) the
current partial solution is checked for consistency (Step 1) by the function Check-
Consistency. This function filters also the search space from inconsistent states.
If the partial solution is a complete solution (Step 2) the algorithm exits. If the
solution is still incomplete the following two steps are executed; (b) a (meta)
variable (a constraint ¢;) is selected at Step 5 by a variable ordering heuristic;
(c) a disjunct z; — y; < r; is chosen (Step 6) from the domain variable D; and
added to S (represented at the lower level as a G4 graph). Hence the solver is
recursively called on the partial updated solution S U {d}.

The CheckConsistency function is the core of the CSP algorithm, it both up-
dates the set of distances d, ;y; and the domain variables D; by forward checking,.
In particular it executes two main steps:

Temporal propagation. every time a new inequality z; — y; < r; is added
to the G4 graph, the set of distances d,,,, is updated by a simple O(n?)
algorithm.

Forward checking. After the previous step, for each not assigned meta-variable
the domain D; is checked for consistency (forward checking). Given the cur-
rent solution represented by G4, each value z; — y; < r; belonging to a not
assigned variable and which induces a negative cycles on G4 is removed. In
other words, each time a value §; = x;—y; < r; satisfies the test r;4+dy,,,; <0,
then §; is removed from the corresponding domain D;. In the case that one
domain D; becomes empty, the function CheckConsistency returns false.

The CheckConsistency step contributes to avoid investigation of search states
proved inconsistent and the other two steps (Steps 5 and 6 of Figure 1) are used
to guide the search according to heuristic estimators.

SelectVariable. It applies the simple and effective Minimum Remaining Values
(MRV) heuristic: variables with the minimum number of values are selected
first. It is worth noting that the heuristic just ranks the possible choices

deciding which one to do first but all the choices should be done (it is not a
non deterministic search step).

ChooseValue. This represents a non deterministic operator which starts a dif-
ferent computation for each domain values. Obviously in our implementation
we use a depth-first search strategy, where there is no particular values order-
ing heuristic. However, in the case a constraint (variable) is always satisfied
by the current partial solution S,, that is, a constraint disjunct z; —y; <r;
exists such that holds the condition d,,; < r;, no branching is created. In
fact, the current constraint is implicitly “contained” in the partial solution
and it will be satisfied in all the solution created from S,.

3.1 Integrating SAT Features

The current version of our CSP solver integrates also the so-called semantic
branching [7]. This is a feature that in the SAT approach comes for free and
that in the CSP temporal representation is to be explicitly inserted. It avoids
to test again certain conditions previously proved inconsistent. The idea behind
semantic branching is the following, let us suppose that the algorithm builds a
partial solution S, = {d1,02,...d,} and a not assigned meta-variable is selected
which has a disjunct set of two elements {6’ .0 }. Let us suppose that the disjunct
§' is selected first and no feasible solution exists from the partial solution S, U
{6'}. In other words, each search path from the node S, U {d'} arrives to an
infeasible state. In this case the depth-first search process removes the decision
¢ from the current solution and tries the other one (6). However, even if the
previous computation is not able to find a solution, it demonstrates that with
regard to the partial solution S, no solution can contain the disjunct & . If we
simply try 6 we lose the previous information, hence, before trying 6, we add
the condition =4 (that is ' —y > ;) to the partial solution. It is worth nothing
that in this case it is important to make explicit the semantic branching by
adding the negation because the values in the domains D; are not self-exclusive.
In other cases, for example a scheduling problem, where branching is done with
regard to the temporal ordering of pairs of activities A and B, semantic branching
is not useful. In fact when A be fore B is chosen the case B before A is implicitly
excluded.

In this section we have described our basic algorithm that integrates some of
the previous analysis in a meta-CSP search framework. From now on we call this
algorithm C'SP and it is the base for the description of the incremental forward
checking of the next section.

3.2 Incremental Forward Checking

The algorithms for solving DTP introduced at the beginning of this section is
based on the meta-CSP schema with some additional features. In particular,
it uses the enriched backtracking schema called semantic branching. To further
improve the performance of the CSP approach we have investigated aspects con-
nected to the quantitative temporal information. This aspect has received less
attention in [6, 7, 4]. In particular in this section we introduce a method to

233

234

significantly decrease the number of forward checks by using the temporal infor-
mation. Its general idea is relatively simple.

Rationale. When a new disjunct ¢ is added to a partial solution, the temporal
propagation algorithm inside CheckConsistency updates only a subset of the dis-
tances dg,,,; (usually a “small” subset). The forward checking test on disjuncts
is performed w.r.t. the distances in the graph Gg4. It is of no use to perform
a forward checking test of the form d,,,, + 7; < 0 on a disjunct J; when the
distance d,,,, has not been changed w.r.t. the previous state.

This basic observation can be nicely integrated in C'SP with the additional cost
of a static preprocessing needed to create for each pair of nodes (z;,y;) the set
of affected meta values AMV (z;,y;).

Affected meta-values w.r.t. a pair (z;,y;). Given a distance d,,,;, on Gq4
the set of affected meta values discriminates which subset of disjuncts are af-
fected by an update of d,,,. The set AMV (z;,y;) associated to the distance
dy.y; (or the pair (z;,y;)) is defined as the set of disjuncts —y < r whose
temporal variables and y respectively coincide with the variables y; and z;
(AMV (zi,y;) ={z—y <r:z=y;,y=1;}).

Given a DTP, the set of its AMV's is computed once for all with a preprocessing
step with a space complexity O(m + n?) and a time complexity O(n3Inn) (as
explained below each set AMV is represented as a sorted list according to the
values). The information stored in the AMV's can be used in a new version
of CSP we call “incremental forward checking” (C'SPi). It requires a modifi-
cation of the CheckConsistency function. The new incremental version of the
CheckConsistency works in two main steps:

1. The distances d,,,; are updated and the set of distances that have been
changed is collected.

2. given such set, for each d,,,, the corresponding AMV (z;,y;) is taken, and
its values are forward checked. In particular, all the set AMV (x;,y;) are
represented as a list of disjuncts sorted according to the value of r and the
forward checking test dg,,; +r < 0 is performed from the disjunct with the
smallest value of r. In this way, when a test fails on the list element ¢, it will
fail also on the rest of the list and the forward checking procedure can stop
on AMV (z;,y;).

In the experimental section we show that the algorithm C'SPi (constraint-based
solver with incremental forward checking) strongly improves with respect to
the basic C'SP and becomes competitive with the best results available in the
literature.

4 New Constraint-based Solving Strategies for DTP

In this section we propose two additional solving strategies for DTP based on
the work [11]. In particular we propose: (1) a new wvariable ordering heuristic;
(2) an arc-consistency filtering strategy.

The rational behind the first method is based on the observation that given a
DTP problem, and considerd a value §; = x; —y; < r;, during the solving process
0; is removed by forward checking from its domain D; when induces negative
cycles in the current solution represented by the G4 graph. On the basis of the
previous observation we propose the following variable ordering strategy: select
the subset of variables with minimum number of remaining values r;—y; < r; and
within this subset, the variable with mazimal number of negative coefficients r;.
The values §; with negative coefficients r; are crucial to the existence of a solution
to a DTP. In fact, it is simple to see that a DTP instance without negative r;
values has always a solution. On the other hand, the presence of negative r;
values generate negative cycles on the graph G4 and induces inconsistent partial
solutions. This strategy has the main purpose of pruning the search tree in its
early stages, trying to create as many as possible negative cycles, in this way
the strategy maximizes the probability of finding negative cycles at the early
steps of the search tree. As we will see in the experimental section this strategy
is effective in the transistion phase of a DTP problem where the probability of
find a solution is very low.

The second solving method can be explained by giving a new version of the
CheckConsistency algorithm used in the general algorithmic template described
in Figure 1. The aim of this solving method is reducing the dimension of the
search tree by the application of a more effective filtering strategy and to ex-
plore the possibility of finding tradeoffs among number of consistency checks,
number of visited search nodes, and CPU time. In particular, we propose an
arc-consistency filtering algorithm such that, among the set of filtering methods
analyzed during our experimentation, is the one which gave the better per-
formance both in CPU time and number of consistency checks. The proposed
filtering algorithm works in two main steps.

1. It applies the incremental forward checking method described in Section 3.2.
When at least one variable domain becames empty, CheckConsistency re-
turns false, otherwise the following second step is executed.

2. The set of not assigned variables which are modified by the application of
the first step is considered, and used to inizialize the propapagation queue
Q of an arc-consistency filtering method. The filtering method is executed
to remove further values, in the case at least one variable domain becames
empty, CheckConsistency returns false, otherwise returns true.

Figure 2 shows the arc-consistency filtering algorithm. It takes as an input the
set Qinit of modified variables and applies the 2-consistency filtering startegy by
the Revise operator which is the core of the method. In this case the operator has
the following definition: Revise(c;, ¢j) removes from the domains D., and D.,
each value x; —y; < r; which does not have support. That is, a value x; —y; < r;
is removed from the domain D.; when there is no value z; — y; < r; in the set
D, such that r; + dy,y; + 7 + dg;y, > 0 holds. When the procedure stops, it
returns the set of variables with reduced domain of values.

In the experimental section we compare this strategy with the other ones,
trying to find some conclusions about the relations among the number of con-
sistency checks (we consider the test r; +dg,y; + 7 + dq;y, > 0 performed inside

235

236

Arc-consistency (Qinit)
- Q Qinit
while (Q # 0§ and AD,; = () do begin
ci + Pop(Q)
foreach not assigned variable c¢; € C' do
Q <+ QU Revise(cs, ¢;)
end

ootk w e

Fig. 2. Arc-consistency filtering algorithm.

the Revise operator as equivalent to a forward checking test) the total CPU time
and the number of visited search nodes.

5 Experimental Evaluation

We adopt the same evaluation procedure used in [6, 7] and use the random
DTP generator defined by Stergiou. DTP instances are generated according to
the parameters (k,n,m,L) (k: number of disjuncts per clause, n: number of
variables, m: number of disjunction (temporal constraints); L: a positive integer
such that all the constants r; are sampled in the interval [—L, L]). In particular,
according to [6, 7] experimental sets are generated with k = 2, L = 100 and the
domain of r; is on integers not on reals as in the general definition of DTP.

Experimental results are plotted for n € {10,12,15,20, 25,30}, where each
curve represents the number of consistency checks versus the ratio p = m/n (in
both the results of Figures 3 and 4 p = m/n is an integer value which ranges from
2 to 14). The median number of checks over 100 random samples for different
values of p is plotted in Figures 3(a)-3(f) where three different type of results
are compared: (1) the performance of the best algorithm proposed in [6] and
labeled with SK; (2) the results of the SAT-based solving methods, there are
two methods: the first one labeled with T'SATjg sy, which corresponds to the
best results claimed in the work [7], and a second one, labeled with T'S AT} g3,
which represents some new results only published on the T'S AT web page (see the
reference [7] for the URL); (3) the performance of our constraint-based approach,
in particular the curve labeled with C'SPi corresponds to the best results in
the paper [11], and the one labeled with C'SPineg represent the new results
obtained with the heuristic strategy definited in Section 4. Figure 4(d) plots the
percentage of problems solvable by C'SPineg on different n. The algorithms are
implemented in Common Lisp and the reported results are obtained on a SUN
UltraSparc 10 (440MHz). All the results are obtained setting a timeout of 1000
seconds of CPU time.

There are several comments on the C'SPineg performance: (a) all the curves
have the same behavior of the previous results. It is confirmed that the harder in-
stances are obtained for p € {6, 7} and for such values the percentage of solvable
problems becomes < 10%. When the number of variables n increases the hardest
region narrows; (b) the median number of forward checks show that C'SPineg
significantly improves over C'SPi. This fact shows that the new selection vari-
able strategy is very effective, and indirectly confirms that there could be further

space for investigating improvements of the CSP approach; (c) the C'SPineg
compares very well with the pre-existing approaches, it outperforms the others
for n € {10,12,15,20} and it is competitive with T'SATg(3) for n € {25,30}.
However, further work will be needed to clearly outperform T'SATyg s on all n.
One possible direction of research is the use of more effective filtering strategies
to reduce the dimension of the search tree. However, the use of a more powerful
filtering strategy has a price of an higher computational time. Hence, the real
problem is find a good tradeoff among number of consistency checks, number of
search nodes and CPU time.

Figure 4(a) shows a comparison between the performance of our constraint-
based algorithm CSPineg and the other one which uses the arc-consistency
filtering strategy (labeled with C'SPiac) introduced in Section 4. With respect
to number of forward checks C'SPiac performs about one order of magnitute
worse than C'SPineg, where in the case of the arc-consistency algorithm we
consider the test r; +dg,y; +7; +dz;y; > 0 as equivalent to a forward check. On
the other hand, if we consider the CPU time performance (Figure 4(c)), the ratio
between the CSPiac and C'SPineg CPU times is less than 3 in the transition
phase. The analysis is completed by the results in Figure 4(d), which show that
the C'SPiac strategy is able to reduce about 25% the number of search nodes
respect to the C'SPineg performance.

About the results of Figure 4 we have the following observations: (a) the
arc-consistency strategy performs an higher number of consistency checks re-
spect to the forward checking strategy and many of the performed checks are
unnecessary, in fact, after each solution modifications, many distances on the Gy
graph remain unchanged, hence many tests of the form r; +dg,,, +7; +dg,y, >0
are unnecessarily performed; (b) in our approch a consistency check has O(1)
time complexity (in the TSAT approach is at least O(n)) and this explain the
difference in performance between number of consistency checks and CPU time
shows in Figure 4.

The experimental results confirm that the CSP approch contains good ideas,
in fact our results are comparable with the ones obtained by the TSAT approach
which uses one of the best SAT-solver available, in addition, for lower values of
the ratio p = m/n (< 5) the CSPineg is significantly better with respect to all
the others (it is to be noted also that in many practical applications the condi-
tion p < 5 is likely to be verified). On the other hand, further investigation is
needed to realize a competitive arc-consistency solving algorithm, in this exper-
imentation some useful observations about tradeoffs among number of forward
checks, number of search nodes explored, and CPU time are pointed out, and
represent a good starting point for future research directions.

6 Conclusion

This paper has extended the constraint-based approach, initially introduced in
[6] and later improved in [11], to solving the DTP temporal problem. As it is
pointed out in the short discussion at the begining of the paper, DTP is going
to become very relevant in many planning application. We propose two new
additional solving methods for DTP. The first one is an heuristic strategy for

237

238

100000

10000

1000

T T T T

SK —+—
TSATIs(2) -
CSPi -----
CSPineg &

10

1e+006

6 8 10 12 14

100000

10000

1000

10

T T T T

SK —+—
TSATIs(2)
CSP

CSPineg

1e+007

1e+006

100000

10000

1000

100 T

T T
TSATis(2) ——
TSATIs(3) -

SPi %
Kok CSPineg 8-

6 8 10 12 14

100000

10000

1000

10

1e+007

10 12

14

1e+006

100000

10000

1000 £

100 *

CSPineg

le+07

le+06

100000

10000

1000

100

10 12

14

TSATis(2) ——
TSATis(3) -
CSPineg ---%*---

Fig. 3. Median number of forward checks for n € {10, 12, 15, 20, 25, 30}.

14

1e+007 T T

1e+006

100000

10000

1000 .

" CSPineg ——
CSPiac ---*---

100 L L

10 12 14

(a) Median number of forward checks for

n=25
100 T T T T
K= X CSPineg —+—
CSPiac --x---
10
1k
0.1 %
2

(c) Average CPU ti

n =25

ime

in seconds for

100000 T T T

" CSPineg ——
CSPiac ---*---

10000

1000

100

(b) Average number of search nodes for

14

n =25
100 w8 T T
n=10 ——
n=12 --x---
n=15 ---%---
80 | n=20 & -
n=25 ---m--
n=30 ---o--
60 - B
40 + e
20 B
0 S " "
2 10 12 14

(d) Percentage of solvable problems

Fig. 4. Other experimental results.

239

240

variable ordering which improves forward checking performance up to an order of
magnitude respect to the results claimed in [11] and allowing a real competition
with the best SAT approach. An interesting area where C'SPineg constantly
outperforms all other approaches (when p < 5) emerges from an experimental
evaluation. The second solving method uses a more sophisticated arc-consistency
filtering algorithm. In this case the aim of the method is reducing the dimension
of the search tree by the application of a more effective filtering strategy and to
explore the possibility of finding tradeoffs among number of consistency checks,
number of visited search nodes, and CPU time. The results proposed in the
paper suggest that an useful research direction is the definition of an incremental
version of the arc-consistency filtering algorithm.

Acknowledgments

This work is supported by ASI (Italian Space Agency) under ASI-ARS-99-96
contract and by the Italian National Research Council.

References

[1] DesJardin, M., Durfee, E., Ortiz, C., Wolverton, M.: A Survey of Research in
Distributed, Continual Planning. AI Magazine 20 (1999) 13-22

[2] Pollack, M., Horty, J.: There’s More to Life Than Making Plans: Plan Manage-
ment in Dynamic Multiagent Environment. AI Magazine 20 (1999) 71-83

[3] Tsamardinos, I., Pollack, M.E., Horty, J.F.: Merging Plans with Quantitative
Temporal Constraints, Temporally Extended Actions, and Conditional Branches.
In: Proceedings of the 5th International Conference on AI Planning Systems
(AIPS-2000. (2000)

[4] Stergiou, K., Koubarakis, M.: Backtracking Algorithms for Disjunctions of Tem-
poral Constraints. Artificial Intelligence 120 (2000) 81-117

[6] Dechter, R., Meiri, L., Pearl, J.: Temporal Constraint Networks. Artificial Intel-
ligence 49 (1991) 61-95

[6] Stergiou, K., Koubarakis, M.: Backtracking Algorithms for Disjunctions of Tem-
poral Constraints. In: Proceedings 15th National Conference on AI (AAAI-98).
1998

[7] EArma)rldo, A Castellini, C., Giunchiglia, E.: SAT-based Procedures for Temporal
Reasoning. In: Proceedings 5th European Conference on Planning (ECP-99).
(1999) (available at http://www.mrg.dist.unige.it/” drwho/Tsat).

[8] Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Compu-
tational Intelligence 9 (1993) 268-299

[9] Haralick, R., Elliott, G.: Increasing Tree Search Efficiency for Constraint Satis-
faction Problems. Artificial Intelligence 14 (1980) 263-313

[10] Cook, S., Mitchell, D.: Finding Hard Instances of the Satisfiability Problem: a
Survey. In: Satisfiability Problems: Theory and Applications. DIMACS Series in
Discrete Mathematics and Computer Science N.35 (1998)

[11] Oddi, A., Cesta, A.: Incremental Forward Checking for the Disjunctive Temporal
Problem. In Horn, W., ed.: ECAI2000. 14th European Conference on Artificial
Intelligence, IOS Press (2000) 108-111

[12] Chleq, N.: Efficient Algorithms for Networks of Quantitative Temporal Con-
straints. In: Proceedings of the Workshop CONSTRAINTS’95 (held in conjunc-
tion with FLAIRS-95). (1995) 40-45

