
Improvements to SAT-based conformant planning?
Claudio Castellini1;2, Enrico Giunchiglia2, and Armando Tacchella31 Division of Informatics — Univ. of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK2 DIST — Università di Genova, Viale Causa 13, 16145, Genova,Italia3 Dept. of Computer Science — Rice University, 6100 Main St. MS132, 77005 Houston, Texas

Abstract. Planning as satisfiability is an efficient technique for classical plan-
ning. In previous work by the second author, this approach has been extended to
conformant planning, that is, to planning domains having incomplete informa-
tion about the initial state and/or the effects of actions. In this paper we present
some domain independent optimizations to the basic procedure described in the
previous work. A comparative experimental analysis shows that the resulting pro-
cedure is competitive with other state-of-the-art conformant planners on domains
with a high degree of parallelism.

1 Introduction

Planning as satisfiability [1] is an efficient technique for classical planning. In the classi-
cal setting, the idea behind planning as satisfiability is simple: For any action descriptionD, it is possible to compute a propositional formulatrDi whose satisfying assignments
correspond to the possible transitions caused by the execution of an action inD. In trDi
there is a propositional variableAi for each ground action symbolA, and two propo-
sitional variablesFi andFi+1 for each ground fluentF in D. Intuitively,Fi represents
the value ofF in the initial state of the transition, andFi+1 represents the value ofF
in the resulting state, after having performed the action. Then, the problem of finding a
plan of lengthn leading from an initial stateI to a goal stateG corresponds to finding
an assignment satisfying I0 ^ ^n�1i=0 trDi ^Gn (1)

(see [2] for more details). This simple idea had a lot of impact in the classical plan-
ning community, mainly because it led to very impressive results (see, e.g., [2]). In [3],
the planning as satisfiability approach has been extended toconformant planning, that
is, to planning problems having incomplete information about the initial state and/or
the effects of actions. Some preliminary experimental results reported in [4] show that
the approach can be competitive w.r.t.CGP [5], a conformant planner based on plan
graphs [6].? A special thank to Paolo Ferraris for many fruitful discussions on the topic of this paper. Paolo

has also participated to the design of the architecture ofC-PLAN, and has developed the first
version ofC-PLAN. Norman McCain has made possible to integrate the Causal Calculator inC-PLAN. The first two authors are supported by ASI, CNR and MURST. Thethird author is
partially supported by NSF grants CCR-9700061 and CCR-9988322, BSF grant 9800096, and
a grant from the Intel Corporation.

241

In this paper we present some domain independent optimizations to the basic proce-
dure described in [3]. Some of these optimizations have beenincorporated inC-PLAN,
a SAT-based system for planning in domains whose action description component is
specified using the highly expressive action languageC [7]. As a consequence,C-PLAN

allows for conformant planning in domains with constraints, concurrent actions, and
nondeterminism. A comparative experimental analysis shows thatC-PLAN is competi-
tive with other state-of-the-art conformant planners on domains with an high degree of
parallelism.

The paper is structured as follows. In Section 2 we briefly review the conformant
planning via SAT approach. In Section 3 we discuss the weaknessesof and optimiza-
tions to the basic procedure. In Section 4 we perform the experimental comparative
analysis. We end the paper in Section 5 with some conclusions.

The material here presented is part of [8]. In [8], we give theprecise definitions,
statements, proofs, and we also present some additional experimental analysis.

2 Conformant planning via SAT

This Section introduces some terminology and notation thatwill be used in the rest of
the paper. Precise definitions are not given for lack of space. See [3] or [8].

We start with a set of atoms partitioned into a set offluent symbolsand a set of
action symbols. A formula is a propositional combination of atoms. Anaction is an
interpretation of the action symbols. Intuitively, to execute an action� means to execute
concurrently the “elementary actions” represented by the action symbols satisfied by�.
In the rest of the paper, an action� is represented by the set of action symbols satisfied
by�.

An action descriptionD is a finite set of expressions describing how actions change
the state of the world, i.e., describing their preconditions and (possibly nondeterminis-
tic) effects. Regardless of howD is specified, we assume to have a formulatrDi whose
satisfying assignments correspond to the transitions ofD, as in the classical planning
as satisfiability framework outlined in the introduction.1

A planning problemfor D is characterized by two formulasI andG in the fluent
signature, i.e., is a triple� = hI;D;Gi, whereI andG encode the initial and goal
state(s) respectively. Aplan(of lengthn � 0) is a finite sequence�1; : : : ;�n of actions.

Consider a planning problem� = hI;D;Gi. A plan �1; : : : ;�n is possiblefor� if, starting from an arbitrarily chosen initial state, the consecutive execution of the
actions�1; : : : ; �n can lead to a goal state. According to the results in [9, 7], possible
plans of lengthn correspond to the assignment satisfying (1), as in the classical setting.
However, if we have incomplete information about the initial state and/or actions are
non deterministic, then possible plans are not guaranteed to be valid. As pointed out
in [9], in order for a plan�1; : : : ;�n to be valid we have to check

– that the plan is “always executable” in any initial state, i.e., executable for any initial
state and any possible outcome of the actions in the plan, and

– that any “possible result” of executing the plan in any initial state is a goal state.

1 In [3], we use the term “causally explained transition”: here we simply say transition.

242

P := I0 ^ ^n�1i=0 trDi ^ Gn; V := I0 ^ StateD0 ^ :Z0 ^ ^n�1i=0 trtDi ^ :(Gn ^ :Zn);
function C-SAT() return C-SAT GENDLL (cnf(P), fg).

function C-SAT GENDLL (', �)
if ' = fg then return C-SAT TEST(�);
if fg 2 ' then return False;
if f a unit clausefLg occurs in' g then return C-SAT GENDLL (assign(L; '),� [fLg);L := f a literal occurring in' g;
return C-SAT GENDLL (assign(L; '),� [fLg) or C-SAT GENDLL (assign(L; '),� [fLg).

function C-SAT TEST(�)� := f the set of literals in� corresponding to action literalsg;
foreachfplan�1; : : : ;�n s.t. each element in� is a conjunct in̂ n�1i=0 �i+1i g

if not SAT(̂ n�1i=0 �i+1i ^ V) then exit with �1; : : : ;�n;
return False.

Fig. 1.C-SAT, C-SAT GENDLL andC-SAT TEST.

As shown in [3], we can check if a plan�1; : : : ;�n is valid for� by verifying whetherI0 ^ StateD0 ^ :Z0 ^ ^n�1i=0 �i+1i ^ ^n�1i=0 trtDi j= Gn ^ :Zn: (2)

where

– StateD0 is a formula representing the set of “possible initial states”,
– Z is a newly introduced fluent symbol, and
– trtDi is a formula defined on the basis oftrDi .

Thus, we may divide the problem of finding a valid plan for� into two parts:

1. generatepossible plans�1; : : : ;�n by finding assignments satisfying the formula
(1), and

2. testwhether each generated plan�1; : : : ;�n is valid by verifying whether (2) holds.

This is the idea behind the procedureC-SAT in Figure 1. In the Figure,cnf(P) is a
set of clauses corresponding toP ,L is the literal complementary toL and, for any literalL and set of clauses', assign(L;') is the set of clauses obtained from' by deleting
the clauses in whichL occurs as a disjunct, and eliminatingL from the others. As it
can be seen,C-SAT is the Davis-Logemann-Loveland (DLL) procedure [10], except
that, as soon as one assignment satisfyingcnf(P) is found, the procedureC-SAT TEST

is invoked. Indeed, each assignment satisfyingcnf(P) corresponds to a set of possible
plans, andC-SAT TEST checks whether any of these are valid. Since all the possible
assignments satisfyingcnf(P) are potentially generated and tested,C-SAT is correct
and complete for�; n: Any returned plan is valid for� (correctness); and, if False is
returned, there is no valid plan of lengthn for � (completeness). However,C-SAT only
checks the existence of valid plans of lengthn. Indeed, even assuming that a plan is
returned, we are not guaranteed of its optimality (we say that a plan of lengthn is
optimal if it is valid and there is no valid plan of length< n). Thus, if we are looking
for optimal plans, we have to considern = 0; 1; 2; 3; 4; : : :, and for each value ofn, callC-SAT. This is the idea behind the systemC-PLAN [4, 8].

243

1 2 3 4 5

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

1

2

3

4

5

Fig. 2. A robot navigation problem

3 Improvements to SAT-Based conformant planning

In order to understand how the basic procedure above described works consider the
following robot navigation problem: We are given a5� 5 grid, and1 robot is moving
in it. It starts from the bottom-left corner of the grid and its goal is to reach the right
side. The robot can movenorth; east; south; west, and its duty is not trivial because
there can be some objects in some locations of the grid. In order to have some nonde-
terminism, we assume to have one object in locations(1; 4); (2; 2); (4; 3), and also that
either locations(3; 1); (5; 5) or (3; 5); (5; 1) are occupied. Figure 2 depicts the resulting
scenario. The initial position of the robot is indicated by acircle and occupied locations
are marked with a black square. A dashed line outlines the goal locations. Squares filled
with a pattern indicate that the corresponding locationsmaybe occupied.

According to our definitions in the previous Section, we see that the shortest possi-
ble plans are of length5: Bothfeastg; feastg; feastg; fnorthg; feastg
and feastg; feastg; fnorthg; feastg; feastg
are possible. On the other hand, any optimal valid plan, e.g.,fnorthg; fnorthg; feastg; feastg; fsouthg; feastg; feastg
is at least7 steps long. However, before finding a valid plan,C-PLAN will generate and
test all the possible plans of length 5, 6, and it may generatealso some of the possible
plans of length 7. (The possible plans of length 6 are those inwhich a robot does not
move for one time step). Indeed, the main weaknesses ofC-PLAN are that, at eachn,

1. it generates and testsall the possible plans. Indeed, in many cases we can generate
only a subset of the possible plans, at the same time keeping completeness of the
procedure, and

2. there is no interaction between generation and testing: This may lead to explore
huge portions of the search space without finding a solution because of some wrong
choices at the beginning of the search tree.

In the following Subsections we describe two domain independent optimizations which
alleviate the first two weaknesses.

244

3.1 Eliminating possible plans

The basic idea is to consider only plans which are possible ina “deterministic version”
of the original planning problem. In a deterministic version, all sources of nondeter-
minism (in the initial state and/or in the effects of the actions) are eliminated. This is
possible without losing completeness, and it is a consequence of the following fact.

Consider two planning problems� = hI;D;Gi and�0 = hI 0; D0; G0i in the same
fluent and action signatures, and such that

1. every initial state ofD0 is also an initial state ofD, (i.e.,I 0 � I is valid),
2. for every action�, the set of states ofD in which� is executable is a subset of the

set of states ofD0 in which� is executable,
3. every transition ofD0 is also a transition ofD, (i.e.,trD0 � trD is valid),
4. every goal state of� is also a goal state of�0 (i.e.,G � G0 is valid).

If a plan is not possible for�0 then it is not valid for�. Then, inC-PLAN we can:

– generate possible plans for�0, and
– test whether each of the generated possible plans is indeed valid.

The result is still a correct and complete planning procedure (for the given planning
problem� and lengthn). Indeed, in choosing�0, we want to minimize the set of possible
plans generated and then tested. Hence, we want�0 to be a deterministic version of�.
A planning problem�0 = hI 0; D0; G0i is a deterministic version of� if it also satisfies
the following conditions:

1. I 0 is satisfied by a single state,
2. for each action�, the set of states in which� is executable inD is equal to the set

of states ofD0 in which� is executable,
3. for any action� and state�, there is at most one state�0 such thath�; �; �0i is a

transition ofD0,
4. G is equal toG0.

Of course, unless the planning problem� is already deterministic, there are many
deterministic versions (possibly exponentially many). The obvious question is whether
there is one which is “best” according to some criterion. Going back to our robot navi-
gation problem, we have two deterministic versions:

– If locations(3; 1); (5; 5) are occupied, the shortest plan (in the deterministic do-
main) has lengthN1 = 7,

– If locations(3; 5); (5; 1) are occupied, the shortest plan has lengthN2 = 5.

Indeed, any valid plan for the original nondeterministic planning problem has length
greater or equal to7, i.e., to the max betweenN1 andN2. This is not by chance. In fact,
let S be the set of deterministic versions of�. For each planning problem�0 in S, letN(�0) be the length of the shortest plan for�0. Then, the length of any valid plan for�
is greater or equal to

max�02SN(�0):
On the basis of this fact, we can introduce an order onS according to which�0 2 S is
better than�00 2 S if N(�0) � N(�00): (3)

245

In other words, we prefer the deterministic versions which start to have solutions (each
corresponding to a possible plan for the original planning problem) for the biggest pos-
sible value ofn. In our robot navigation problem, this would lead us to choose the
deterministic version in which the locations(3; 1); (5; 5) are the ones which are occu-
pied.

Determining the setS of deterministic versions of� is in general not an easy task.
Even assuming that determiningS is possible, finding the�0 2 S such to satisfy (3)
for each�00 2 S seems impractical at best. What we propose is the following.For
simplicity, we assume to have nondeterminism only in the initial state: Analogous con-
siderations hold for actions with nondeterministic effects. Under this assumption, we
modify ourC-SAT GENDLL procedure in Figure 1 in order to do the following:

– once an assignment� satisfyingcnf(P) is found, we determine the assignment�0 � � to the fluent variables at time0,
– if the possible plan corresponding to� is not valid, and the planning problem is not

already deterministic, then we disallow future assignments extending�0, by adding
to I the clause consisting of the complement of the literals satisfied by�0.

In this way, we progressively eliminate some initial statesfor which there is a determin-
istic version having a possible plan of lengthn. Given that some initial states have not
yet been eliminated, the corresponding deterministic versions of the original planning
problem have length� n. At the end, i.e., when we get to a deterministic planning
problem�0, �0 is a deterministic version of� and it satisfies (3) for each�00 2 S.

In the example of Figure 2, this optimization has the effect of eliminating the initial
state in whichf(3; 5); (5; 1)g are occupied. This elimination occurs immediately after
the first possible but not valid plan (e.g.,feastg; feastg; feastg; fnorthg; feastg) is
found.

3.2 Incorporating Backjumping and Learning

We do not enter into the details about how backjumping and learning are implemented
in SAT, and assume that the reader is familiar with the topic (see, e.g., [11–13]). Here we
do the same as in [12, 13], except that we have to extend the procedure there described in
order to account for the rejection of assignments corresponding to possible but not valid
plans. Indeed, what we can simply do — assuming� is an assignment corresponding to
a possible but not valid plan� = �1; : : : ;�n — is to returnFalseand set_n�1i=0 :�i+1i
as the initial working reason. However, are there any other (better) choices? According
to the definition of valid plan, there are two possible causeswhy� is not valid:

1. executing�1; : : : ;�k in some initial state can lead to a state�k, and�k+1 is not
executable in�k, or

2. � is always executable in any initial state, but one of the possible outcomes of
executing� in an initial state is not a goal state.

In both cases,C-SAT TEST determines an assignment�0 satisfying^n�1i=0 �i+1i ^ V ,
and thus returnsFalse. Also notice that in the first case,�0 satisfies:Z0; : : : ;:Zk; Zk+1; : : : ; Zn

246

GPT CMBP CplanjP j-jT j Total #s Total #s #pp Last Tot.searchTotal
2-1 0.03 2 0.00 1 1 0.00 0.00 0.00
4-1 0.03 4 0.01 1 1 0.00 0.00 0.00
6-1 0.04 6 0.02 1 1 0.00 0.00 0.00
8-1 0.15 8 0.08 1 1 0.00 0.00 0.00
10-1 0.27 10 0.61 1 1 0.00 0.00 0.00
15-1 17.05 15 42.47 1 1 0.00 0.00 0.00
20-1 MEM � MEM 1 1 0.00 0.00 0.00

Table 1.Bomb in the toilet: Classic version

with k < n. Then we can set_ki=0:�i+1i as the initial working reason for rejecting�:
Any assignment satisfyinĝki=0�i+1i corresponds to a not valid plan. Of course, setting_ki=0:�i+1i as working reason for rejecting� is better than setting_n�1i=0 :�i+1i : sincek < n each disjunct in_ki=0:�i+1i is also in_n�1i=0 :�i+1i , and, if k < n � 1, the
viceversa is not true.

In the example of Figure 2, this optimization has the following effect: If the possible
planfeastg; feastg; feastg; fnorthg; feastg is tried, then it is rejected with a reason
which inhibits the further generation of possible plans beginning withfeastg; feastg.

4 Experimental Analysis

The ideas presented in Section 2 and the optimizations described in Section 3 have
been implemented inC-PLAN. C-PLAN accepts action descriptions specified inC, and
thus it naturally allows for, e.g., concurrency, constraints and nondeterminism. Our cur-
rent version (ver. 2) ofC-PLAN has been implemented on top ofSIM, an efficient SAT
checker developed by our group [13].

To evaluateC-PLAN’s effectiveness we consider an elaboration of the traditional
“bomb in the toilet” problem from [14]. There is a finite setP of packages and a fi-
nite setT of toilets. One of the packages is armed because it contains abomb. Dunking
a package in a toilet disarms the package and is possible onlyif the package has not been
previously dunked. We first consider planning problems withjP j = 2; 4; 6; 8; 10; 15; 20,
andjT j = 1. We compare our system with Bonet’s and Geffner’sGPT [15], and Cimatti’s
and Roveri’sCMBP [16, 17] planners. These are two among the most recent conformant
planners, and according to the results presented in [17], also the most effective to date.
We remark that bothCMBP andGPT are sequential planners: they try to execute at most
one action at each step. Furthermore,CMBP computes all the valid plans, not just one
like GPT andC-PLAN. The results for these three systems are shown in Table 1. In the
table, we show

– for GPT, the total time the system takes to solve the problem,
– for CMBP, the number of steps (column “#s”) (i.e., the number of elementary ac-

tions) and the total time needed to solve the problem (column“Total”),
– for C-PLAN,� the number of steps (i.e., the number of parallel actions) (column “#s”);

247

� the number of possible plans generated before finding a validone (column
“#pp”);� the search time taken by the system at the last step (column “Last”);� the total search time, being the sum over all steps of the timetaken byC-SAT GENDLL andC-SAT TEST (column “Tot.search”); and� the total time taken by the system to solve the problem, excluding the off-line
time necessary to computetrDi andtrtDi (column “Total”). This total time does
not coincide with “Tot.search” because it includes also thetimes necessary for
expanding the formula, and for doing some other computationinternal to the
system.

Times are in seconds, and all the tests have been run on a Pentium III, 850MHz,
512MBRAM running Linux SUSE 7.0. For practical reasons, we stopped the execu-
tion of a system if its running time exceeded 1200s of CPU timeor if it required more
than the 512MB of available RAM. In the table, the first case isindicated with “TIME”
and the second with “MEM”.

As it can be seen from Table 1,C-PLAN takes full advantage of its ability to execute
actions concurrently. Indeed, it solves the problem in onlyone step, by dunking all
the packages at the same time. Furthermore, the time taken byC-PLAN is always not
measurable.CMBP and GPT have comparable performances, withCMBP being better
of a factor of 2-3. However, the most interesting data about these systems is that whenjP j = 20 they both run out of memory. Indeed, bothGPT andCMBP can require huge
amounts of memory:GPT for storing the set of belief states visited, andCMBP for storing
(as Binary Decision Diagrams, BDD [18]) the transition relation and the set of belief
states visited.

We also consider the elaboration of the “bomb in the toilet” in which dunking a
package clogs the toilet. There is the additional action of flushing the toilet, which
is possible only if the toilet is clogged. The results are shown in Table 2 forjP j =2; 4; 6; 8; 10 and jT j = 1; 5; 10. With one toilet, these problems are the “sequential
version” of the previous. With multiple toilets they are similar to the “BMTC” problems
in [17]. As we can see from Table 2, when there is only one toilet C-PLAN “Total” time
increases rapidly compared to the other solvers. Indeed,jT j = 1 represents the purely
sequential case in which the only valid plan consists in repeatedly dunking a package
and flushing the toilet till all the packages have been dunked. On the other hand, we
see, e.g., forjP j = 6 andjT j = 1, that most ofC-PLAN time is not spent in the search.
By analysing these numbers and profilingC-PLAN code, we discovered that

– most of the search time is spent byC-SAT GENDLL : on all the experiments we tried,
each call ofC-SAT TEST takes an hardly measurable time,

– the time taken by the system to expand the formula at each stepcan be consider-
able, but (since the expansion is done once for each step) does not account for the
possible big differences between “Tot.search” and “Total”. This is evident if we
compare row 6-1 in Table 2 with row 6-1 in Table 3: The formulasto expand in the
two cases are equal, and the number of expansion is the same. However, the “Total”
time in Table 2 is significantly bigger than the “Total” time in Table 3,

– the possible big differences are due to the fact that, in our current version, each timeC-SAT TEST is invoked byC-SAT GENDLL , we pay a cost linear in the size of theV formula. This cost is due to the copying of theV formula from one data-structure

248

GPT CMBP CplanjP j-jT j Total #s Total #s #pp Last Tot.searchTotal
2-1 0.10 3 0.00 3 6 0.00 0.00 0.01
2-5 0.04 2 0.01 1 1 0.00 0.00 0.00
2-10 0.05 2 0.03 1 1 0.00 0.00 0.00
4-1 0.04 7 0.00 7 540 0.12 0.15 0.65
4-5 0.23 4 0.79 1 1 0.00 0.00 0.00
4-10 2.23 4 11.30 1 1 0.00 0.00 0.01
6-1 0.09 11 0.04 11 5256115.39 49.39 221.55
6-5 3.29 7 16.80 3 9834656.92 57.34 419.53
6-10 74.15 � MEM 1 1 0.00 0.00 0.01
8-1 0.41 15 0.20 � � � � TIME
8-5 32.07 11 112.48 � � � � TIME
8-10 MEM � MEM 1 1 0.00 0.00 0.01
10-1 2.67 19 1.55 � � � � TIME
10-5 MEM 15 974.45 � � � � TIME
10-10 MEM � MEM 1 1 0.00 0.00 0.04

Table 2.Bomb in the toilet: Multiple toilets, clogging, one bomb.

to another internal ofSIM. This linear cost, multiplied by the number of timesC-
SAT TEST is invoked, accounts for the difference between “Tot.search” and “Total”
in the example 6-1 of Table 2.

We remark that the potentially exponential cost of verifying a plan does not arise in
practice, at least on all the experiments we tried. As a matter of fact, each time a plan
is verified, the corresponding set of unit clauses is added totheV formula and (if the
plan is not valid) the empty set of clauses is generated aftervery few splits. This was
expected (see the Section on implementation in [3]): what weunderestimated is the cost
paid because of copying theV formula. We believe that this cost is also responsible for
many ofC-PLAN’s timeouts, and that a better engineering of the system, meant to solve
this particular problem, will allowC-PLAN to be even more competitive. In any case,C-PLAN’s performances are not too bad compared to the ones of the other solvers:C-
PLAN, CMBP, GPT do not solve 4, 3, 3 problems respectively.

Finally, we consider the same problem as before, except thatwe do not know how
many packages are armed. These problems, with respect to theones previously consid-
ered, present a higher degree of uncertainty. We consider the same values ofjP j andjT j
and report the same data as before. The results are shown in Table 3.

Contrarily to what could be expected,C-PLAN performances are much better on the
problems in Table 3 than on those in Table 2. This is most evident if we compare the
number of plans generated and tested byC-PLAN before finding a solution. For example,
if we consider the four packages and one toilet problem,

– with one bomb, as in Table 2,C-PLAN generates 540 possible plans and takes 0.65s
to solve the problem (0.15s of search time),

– with possibly multiple bombs, as in Table 3,C-PLAN generates 15 possible plans
and takes 0.02s to solve the problem (0.02s is also the searchtime).

249

GPT CMBP CplanjP j-jT j Total #s Total #s #pp Last Tot.search Total
2-1 0.03 3 0.00 3 3 0.00 0.00 0.00
2-5 0.04 2 0.00 1 1 0.00 0.00 0.00
2-10 0.24 2 0.02 1 1 0.00 0.00 0.02
4-1 0.17 7 0.01 7 15 0.01 0.02 0.02
4-5 0.06 4 0.54 1 1 0.01 0.00 0.01
4-10 0.38 4 7.13 1 1 0.02 0.00 0.02
6-1 0.08 11 0.03 11 117 0.25 1.39 2.01
6-5 0.33 7 10.71 3 48 0.62 0.66 1.36
6-10 7.14 � MEM 1 1 0.00 0.00 0.00
8-1 0.06 15 0.17 15 119512.23 147.25 184.29
8-5 2.02 11 90.57 3 268114.84 15.60 317.13
8-10 MEM � MEM 1 1 0.00 0.00 12.68
10-1 0.21 19 1.02 � � � � TIME
10-5 12.51 15 591.33 � � � � TIME
10-10 MEM � MEM 1 1 0.00 0.00 0.06

Table 3.Bomb in the toilet: Multiple toilets, clogging, possibly multiple bombs.

To understand why, consider for simplicity the case in whichthere is only one toilet and
two packagesP1 andP2. Forn = 0

– there are no possible plans if we know that there is one bomb, and
– there is the possible plan consisting of the empty sequence of actions, correspond-

ing to assuming that neitherP1 norP2 is armed, in the case we know nothing. This
plan is not valid, and, because of the determinization,C-PLAN adds a clause to the
initial state saying that at least one package is armed.

Forn = 1, C-PLAN in both cases tries 2 possible plans. If we assume that it generates
first the plan in whichP1 is dunked

– if we further assume that there is one bomb, it rejects it, and—because of the
determinization— it adds a clause to the initial state whichallows to conclude that
the bomb is inP2. Then, forn = 2 andn = 3, any plan in whichP2 is dunked is
possible.

– in the other case, it rejects it, and —because of the determinization— it adds a
clause to the initial state saying that the bomb is not inP1 or is in P2. Then, it
generates the other plan in which onlyP2 is dunked. Also this plan is rejected and
a clause saying that a bomb is inP1 or not inP2 is added to the initial state. Thus,
there is now only one initial state satisfying all the constraints: namely the one in
which bothP1 andP2 are armed. This allowsC-PLAN to conclude that there are no
possible plans forn = 2, and to immediately generate a valid plan atn = 3.

The optimizations described in Section 3 help a lot. Indeed,if we consider the four
packages and one toilet problem, and disable the optimizations,

– if we have one bomb, as in Table 2,C-PLAN generates 2145 possible plans and
takes 0.54s to solve the problem (0.24s in the last step),

250

– if we have possibly multiple bombs, as in Table 3,C-PLAN generates 3743 possible
plans and takes 0.93s to solve the problem (0.72s in the last step).

BesidesC-PLAN’s performances, alsoCMBP and GPT seem to get benefits by the
added nondeterminism. Overall,C-PLAN, CMBP andGPT do not solve respectively2,3 and2 of the considered problems. On the ones they solve, we get roughly the same
picture that we had before:C-PLAN takes full advantage of its ability to concurrently
execute actions, and thus behaves better on problems with multiple toilets.

Overall,GPT, CMBP andC-PLAN do not solve 6, 7, 6 respectively of the 37 examples
that we tried.

5 Conclusions and related work

We have presented some optimizations to the basic procedurefor conformant planning
described in [3]. The procedure and the optimizations have been implemented inC-
PLAN ver. 2, a SAT-based conformant planner based on theSIM SAT library.C-PLAN

incorporates the Causal Calculator [9], and is thus able to reason about action descrip-
tions specified inC. C allows for, e.g., concurrency, constraints, and nondeterminism.
This causesC-PLAN to be one of most expressive conformant planners among the cur-
rently available. From the experimental analysis we get that GPT, CMBP andC-PLAN do
not solve 6, 7, 6 respectively of the 37 examples that we tried. Most important, whileC-
PLAN runs out of time,CMBP andGPT run out of memory. This seems to point out thatC-PLAN range of applicability is different from the range of applicability of CMBP and
GPT. Analogous results supporting this fact are reported in [19] where it is shown that
for classical, highly parallel domains the planning as satisfiability approaches appear to
do best. The fact that SAT-based approaches and BDD-based approaches have different
range of applicability is also confirmed by

– previous work comparing BDD and DLL as SAT procedures, see [20],
– recent work in symbolic reachability in formal verification, see [21, 22].

Beside the already cited [15, 16], two other works on conformant planning are [5]
and [24]. In [5], the authors propose an approach based on plan graphs. The underlying
idea is to construct a planning graph for every possible deterministic version of the
original planning problem. Constraints over planning graphs ensure conformance. The
main weakness of the approach is that there can be exponentially many deterministic
version, causing the creation of exponentially many planning graphs. In [24], Rintanen
reduces the problem of conformant and conditional planningto the problem of deciding
the satisfiability of a Quantified Boolean Formula (QBF). Ourapproach is similar to
Rintanen’s: The search performed by our generate and test procedure resembles the one
of a QBF solver if run on formulas corresponding to conformant planning problems. On
the other hand, by dealing with the original planning problem, we are able to introduce
optimizations —like the ones described in Section 3— which take into account the
nature of the original problem.

In [23], a new algorithm for conformant planning based on “heuristic-symbolic
search”, is proposed and the experimental results are impressive. A detailed analysis
of the paper and the results is in our agenda.

251

References

1. Henry Kautz and Bart Selman. Planning as satisfiability. In Proc. ECAI-92, pages 359–363.
2. Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional logic and

stochastic search. InProc. AAAI-96, pages 1194–1201.
3. Enrico Giunchiglia. Planning as satisfiability with expressive action languages: Concurrency,

constraints and nondeterminism. InProc. KR-2000.
4. Paolo Ferraris and Enrico Giunchiglia. Planning as satisfiability in nondeterministic do-

mains. InProc. AAAI-2000.
5. David Smith and Daniel Weld. Conformant graphplan. InProc. AAAI-98, pages 889–896.
6. Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. InProc. of

IJCAI-95, pages 1636–1642, 1995.
7. Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explanation:

Preliminary report. InProc. AAAI-98, pages 623–630.
8. Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. SAT-based planning in

complex domains: Concurrency, constraints and nondeterminism, 2001. Unpublished.
9. Norman McCain and Hudson Turner. Fast satisfiability planning with causal theories. In

Proc. KR-98.
10. M. Davis, G. Logemann, and D. Loveland. A machine programfor theorem proving.Journal

of the ACM, 5(7), 1962.
11. Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational

Intelligence, 9(3):268–299, 1993.
12. Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to solve

real-world SAT instances. InProc. AAAI-97, pages 203–208.
13. Enrico Giunchiglia, Marco Maratea, Armando Tacchella,and Davide Zambonin. Evaluating

search heuristics and optimization techniques in propositional satisfiability. InProc. of the
International Joint Conference on Automated Reasoning (IJCAR’2001), 2001.

14. Drew McDermott. A critique of pure reason.Computational Intelligence, 3:151–160, 1987.
15. Blai Bonet and Hector Geffner. Planning with incompleteinformation as heuristic search in

belief space. InProc. AIPS, 2000.
16. Alessandro Cimatti and Marco Roveri. Conformant planning via model checking. InProc.

ECP-99.
17. Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic model checking.

Journal of Artificial Intelligence Research, 13:305–338, 2000.
18. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3):293–318, September 1992.
19. Patrick Haslum and Hector Geffner. Admissible heuristics for optimal planning. In

Proc. AIPS-2000, pages 140–149.
20. T. E. Uribe and M. E. Stickel. Ordered Binary Decision Diagrams and the Davis-Putnam

Procedure. InProc. of the 1st International Conference on Constraints inComputational
Logics, 1994.

21. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
Proc. TACAS-99.

22. Fady Copty, Limor Fix, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella, and Moshe
Vardi. Benefits of bounded model checking at an industrial setting. In Proc. CAV-2001.

23. A. Cimatti, E. Giunchiglia, M. Pistore, E. Roveri, R. Sebastiani, and A. Tacchella. NuSMV
Version 2: BDD-based + SAT-based symbolic model checking, 2001. Unpublished.

24. Jussi Rintanen. Constructing conditional plans by a theorem prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

252

