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Abstract. Planning as satisfiability is an efficient technique for sieal plan-
ning. In previous work by the second author, this approachbezn extended to
conformant planning, that is, to planning domains havirgpimplete informa-
tion about the initial state and/or the effects of actionsthis paper we present
some domain independent optimizations to the basic proeeaikscribed in the
previous work. A comparative experimental analysis shdwasthe resulting pro-
cedure is competitive with other state-of-the-art confamtplanners on domains
with a high degree of parallelism.

1 Introduction

Planning as satisfiability [1] is an efficient technique flassical planning. In the classi-
cal setting, the idea behind planning as satisfiabilityrngsé: For any action description
D, itis possible to compute a propositional formtit whose satisfying assignments
correspond to the possible transitions caused by the éreaftan action inD. In trP
there is a propositional variabl&; for each ground action symbdl, and two propo-
sitional variabled’; and F;, for each ground fluenk in D. Intuitively, F; represents
the value ofF" in the initial state of the transition, anfd; represents the value &t
in the resulting state, after having performed the actidren the problem of finding a
plan of lengthn leading from an initial staté to a goal stat€s corresponds to finding
an assignment satisfying

Io ANZGrP NG (1)

(see [2] for more details). This simple idea had a lot of imipache classical plan-
ning community, mainly because it led to very impressiveltsgsee, e.g., [2]). In [3],
the planning as satisfiability approach has been extendedtimrmant planning, that
is, to planning problems having incomplete information attthe initial state and/or
the effects of actions. Some preliminary experimentalltesaported in [4] show that
the approach can be competitive w.ctGP [5], a conformant planner based on plan
graphs [6].

* A special thank to Paolo Ferraris for many fruitful discoss on the topic of this paper. Paolo
has also participated to the design of the architectui@eEAN, and has developed the first
version ofC-PLAN. Norman McCain has made possible to integrate the Causatl@gdr in
C-PLAN. The first two authors are supported by ASI, CNR and MURST. fhirel author is
partially supported by NSF grants CCR-9700061 and CCR-3288BSF grant 9800096, and
a grant from the Intel Corporation.
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In this paper we present some domain independent optirimtd the basic proce-
dure described in [3]. Some of these optimizations have bremnwporated irC-PLAN,

a SAT-based system for planning in domains whose actionriggéisnn component is
specified using the highly expressive action languafg. As a consequencé;PLAN
allows for conformant planning in domains with constrajrtsncurrent actions, and
nondeterminism. A comparative experimental analysis shibatC-PLAN is competi-
tive with other state-of-the-art conformant planners omdims with an high degree of
parallelism.

The paper is structured as follows. In Section 2 we brieflyewthe conformant
planning via SAT approach. In Section 3 we discuss the wesslasef and optimiza-
tionsto the basic procedure. In Section 4 we perform the expet@mheomparative
analysis. We end the paper in Section 5 with some conclusions

The material here presented is part of [8]. In [8], we give pirecise definitions,
statements, proofs, and we also present some additionalimental analysis.

2 Conformant planning via SAT

This Section introduces some terminology and notationuliabe used in the rest of
the paper. Precise definitions are not given for lack of spaee [3] or [8].

We start with a set of atoms partitioned into a setfloént symbolsand a set of
action symbolsA formulais a propositional combination of atoms. Attionis an
interpretation of the action symbols. Intuitively, to enézan actiomy means to execute
concurrently the “elementary actions” represented by thieasymbols satisfied by.

In the rest of the paper, an actiofis represented by the set of action symbols satisfied
by a.

An action descriptiotD is a finite set of expressions describing how actions change
the state of the world, i.e., describing their precond#iand (possibly hondeterminis-
tic) effects. Regardless of hof is specified, we assume to have a formufa whose
satisfying assignments correspond to the transition®,adis in the classical planning
as satisfiability framework outlined in the introductibn.

A planning problenfor D is characterized by two formuldsand( in the fluent
signature, i.e., is a triple = (I, D,G), wherel andG encode the initial and goal
state(s) respectively. lan(of lengthn > 0) is a finite sequence’; . . . ; o™ of actions.

Consider a planning problem = (I, D,G). A plana';...;a" is possiblefor
m if, starting from an arbitrarily chosen initial state, thensecutive execution of the
actionsal,...,a" can lead to a goal state. According to the results in [9, 73sjtue
plans of lengtm correspond to the assignment satisfying (1), as in theickssetting.
However, if we have incomplete information about the ihisgate and/or actions are
non deterministic, then possible plans are not guaranteee tvalid. As pointed out
in [9], in order for a plamy'; . . . ; @™ to be valid we have to check

— thatthe plan is “always executable” in any initial state,,iexecutable for any initial
state and any possible outcome of the actions in the plan, and
— that any “possible result” of executing the plan in any aliitate is a goal state.

1 In [3], we use the term “causally explained transition”:énere simply say transition.
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P:=Ig AN'ZJtUP AGy; Vi=Io A Stat§’ A =Zo AN ttP A =(Gr A=Z0);
function C-sAT() return C-SAT_GENp( | (cnf(P), {}).

function C-SAT_GENp_ | (¢, 1)
if ¢ = {} then return C-SAT_TEST(1);
if {} € pthenreturn False
if { a unit clausg{L} occurs iny } then return C-SAT_GENp| | (assigi{L, ¢),u U {L});
L :={ aliteral occurring inp };
return C-SAT_GENpy | (assigi{L, ¢),u U {L}) or C-SAT_GENp | (assigiL, ¢),u U {L}).

function C-SAT_TEST(u)
a ;= { the set of literals inu corresponding to action litergls
foreach {plana’;...;a" s.t. each element i is a conjunct i~ o ™'}
if not SAT(A? ;o™ A V) then exitwith ;.. .;a™;
return False

Fig. 1.C-sSAT, C-SAT_GENp__ | andC-SAT_TEST.

As shown in [3], we can check if a plan'; . . . ; o™ is valid for = by verifying whether
I A Statg’ A =Zo A AP T AN P = G A2, )

1=
where

— Statd’ is a formula representing the set of “possible initial stite
— Z is a newly introduced fluent symbol, and
— trt? is a formula defined on the basistof’.

Thus, we may divide the problem of finding a valid plan fointo two parts:

1. generatepossible plans';...;a” by finding assignments satisfying the formula
(1), and
2. testwhether each generated plah . . . ; o™ is valid by verifying whether (2) holds.

This is the idea behind the proceduieAT in Figure 1. In the Figuresnf(P) is a
set of clauses corresponding®o L is the literal complementary tb and, for any literal
L and set of clauseg, assigr{L, ) is the set of clauses obtained frapby deleting
the clauses in whicli, occurs as a disjunct, and eliminatidigfrom the others. As it
can be seen;-sAT is the Davis-Logemann-Loveland (DLL) procedure [10], exce
that, as soon as one assignment satisfgimigP) is found, the procedur@-sAT_TEST
is invoked. Indeed, each assignment satisfiyinfjP) corresponds to a set of possible
plans, and’-sAT_TEST checks whether any of these are valid. Since all the possible
assignments satisfyingnf(P) are potentially generated and test€dsAT is correct
and complete forr, n: Any returned plan is valid forr (correctness and, if Falseis
returned, there is no valid plan of lengtHor = (completenegsHoweverC-SAT only
checks the existence of valid plans of lengthindeed, even assuming that a plan is
returned, we are not guaranteed of its optimality (we say dhplan of lengthn is
optimalif it is valid and there is no valid plan of length n). Thus, if we are looking
for optimal plans, we have to consider= 0, 1,2, 3,4, .. ., and for each value of, call
C-sAT. This is the idea behind the syst&rPLAN [4, 8].
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Fig. 2. A robot navigation problem
3 Improvements to SAT-Based conformant planning

In order to understand how the basic procedure above descviorks consider the
following robot navigation problem: We are giverba 5 grid, and1 robot is moving
in it. It starts from the bottom-left corner of the grid and goal is to reach the right
side. The robot can movigorth, east, south, west, and its duty is not trivial because
there can be some objects in some locations of the grid. leraodhave some nonde-
terminism, we assume to have one object in locat{dn4), (2, 2), (4, 3), and also that
either locationg3, 1), (5,5) or (3, 5), (5, 1) are occupied. Figure 2 depicts the resulting
scenario. The initial position of the robot is indicated lgirale and occupied locations
are marked with a black square. A dashed line outlines thEgeetions. Squares filled
with a pattern indicate that the corresponding locatimagbe occupied.

According to our definitions in the previous Section, we $&s the shortest possi-
ble plans are of length: Both

{east}; {east}; {east}; {north}; {east}

and
{east}; {east}; {north}; {east}; {east}

are possible. On the other hand, any optimal valid plan, e.g.
{north}; {north}; {east}; {east}; {south}; {east}; {east}

is at leas® steps long. However, before finding a valid pl@rpLAN will generate and
test all the possible plans of length 5, 6, and it may genetdatesome of the possible
plans of length 7. (The possible plans of length 6 are thosehich a robot does not
move for one time step). Indeed, the main weaknessésrefaN are that, at each,

1. it generates and tesafl the possible plans. Indeed, in many cases we can generate
only a subset of the possible plans, at the same time keepimgleteness of the
procedure, and

2. there is no interaction between generation and testihgs may lead to explore
huge portions of the search space without finding a solutmabse of some wrong
choices at the beginning of the search tree.

In the following Subsections we describe two domain indeeahoptimizations which
alleviate the first two weaknesses.



3.1 Eliminating possible plans

The basic idea is to consider only plans which are possitde‘deterministic version”
of the original planning problem. In a deterministic versiall sources of nondeter-
minism (in the initial state and/or in the effects of the ant) are eliminated. This is
possible without losing completeness, and it is a consegpuefthe following fact.

Consider two planning problems= (I, D,G) andr’ = (I', D’,G') in the same
fluent and action signatures, and such that

1. every initial state oD’ is also an initial state ab, (i.e.,I’ D I is valid),

2. for every actiorn, the set of states d? in which « is executable is a subset of the
set of states oD’ in which «a is executable,

3. every transition o)’ is also a transition ob, (i.e.,tr?" > tr? is valid),

4. every goal state of is also a goal state af (i.e.,G D G’ is valid).

If a plan is not possible fox’ then it is not valid forr. Then, inC-PLAN we can:

— generate possible plans fet, and
— test whether each of the generated possible plans is inddied v

The result is still a correct and complete planning procedtor the given planning
problemr and length). Indeed, in choosing’, we want to minimize the set of possible
plans generated and then tested. Hence, we waiut be a deterministic version af

A planning problemx’ = (I', D', G') is a deterministic version of if it also satisfies
the following conditions:

1. I' is satisfied by a single state,

2. for each actiony, the set of states in which is executable irD is equal to the set
of states ofD’ in which « is executable,

3. for any actionx and stater, there is at most one sta#é such tha{o, a, 0') is a
transition ofD’,

4. G is equal toG’'.

Of course, unless the planning problenis already deterministic, there are many
deterministic versions (possibly exponentially many)e Obvious question is whether
there is one which is “best” according to some criterion.r@ddack to our robot navi-
gation problem, we have two deterministic versions:

— If locations (3, 1), (5,5) are occupied, the shortest plan (in the deterministic do-
main) has lengtiv; = 7,
— Iflocations(3,5), (5, 1) are occupied, the shortest plan has lengjth= 5.

Indeed, any valid plan for the original nondeterministiarpiing problem has length
greater or equal tg, i.e., to the max betweeN; andN,. This is not by chance. In fact,
let S be the set of deterministic versionssfFor each planning problemt in S, let
N (7") be the length of the shortest plan for Then, the length of any valid plan far
is greater or equal to

max. es N (7).

On the basis of this fact, we can introduce an ordef@tcording to which’ € S is
better thant” € S if
N(x') > N(a"). ©)
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In other words, we prefer the deterministic versions whieltdo have solutions (each
corresponding to a possible plan for the original plannirabfem) for the biggest pos-
sible value ofn. In our robot navigation problem, this would lead us to cleote
deterministic version in which the locatiof3, 1), (5, 5) are the ones which are occu-
pied.

Determining the se$ of deterministic versions af is in general not an easy task.
Even assuming that determinitgis possible, finding the’ € S such to satisfy (3)
for eachn” € S seems impractical at best. What we propose is the followkiog.
simplicity, we assume to have nondeterminism only in thigaihstate: Analogous con-
siderations hold for actions with nondeterministic effedfinder this assumption, we
modify ourC-SAT_GENp L procedure in Figure 1 in order to do the following:

— once an assignmennt satisfyingcnf(P) is found, we determine the assignment
' C pto the fluent variables at tinfg

— if the possible plan correspondingtads not valid, and the planning problem is not
already deterministic, then we disallow future assignmertending.’, by adding
to I the clause consisting of the complement of the literalsgati byy'.

In this way, we progressively eliminate some initial stdtsvhich there is a determin-
istic version having a possible plan of lengthGiven that some initial states have not
yet been eliminated, the corresponding deterministiciorssof the original planning
problem have length> n. At the end, i.e., when we get to a deterministic planning
problemr’, 7’ is a deterministic version of and it satisfies (3) for eact’ € S.

In the example of Figure 2, this optimization has the effé&lioninating the initial
state in which{(3,5), (5,1)} are occupied. This elimination occurs immediately after
the first possible but not valid plan (e.deast}; {east}; {east}; {north}; {east})is
found.

3.2 Incorporating Backjumping and Learning

We do not enter into the details about how backjumping anchieg are implemented
in SAT, and assume that the reader is familiar with the togee(e.g., [11-13]). Here we
dothe same asin[12, 13], exceptthat we have to extend tlceguoe there described in
order to account for the rejection of assignments corredipgrio possible but not valid
plans. Indeed, what we can simply do — assuming an assignment corresponding to
a possible but not valid plan = o!;...;a"™ —is to returnFalseand setv/?— ! -a‘t!

as the initial working reason. However, are there any otbett¢r) choices? According
to the definition of valid plan, there are two possible cawdeg« is not valid:

1. executingy!;...;a® in some initial state can lead to a stat®, anda**! is not
executable in*, or

2. « is always executable in any initial state, but one of the ipsutcomes of
executingo in an initial state is not a goal state.

In both cases;-SAT_TEST determines an assignmaitsatisfyingA?—' ™! AV,
and thus returnBalse Also notice that in the first casg; satisfies

ﬁZO7'''7ﬁZk:ZI€-‘r17"'7Zn



GPT|| CMBP Cplan
| P|-|T'||| Total ||#s| Total ||#s/#pp|Last Tot.searclilotal
2-1 || 0.03(|2{0.00(1| 1 (0.00 0.00 (0.00
4-1 |/ 0.03||4(0.01}{1| 1 {0.00 0.00 |(0.00
6-1 || 0.04(6]0.02(|1| 1 (0.00 0.00 (0.00
8-1 | 0.15|/8|0.08(|{1| 1 {0.00 0.00 |0.00
10-1 || 0.27||10/ 0.61{|1| 1 |0.00 0.00 |0.00
15-1 ||17.05(15/42.47|1| 1 |0.00 0.00 |0.00
20-1 ([MEM||—|MEM||1]| 1 [0.00 0.00 |0.00

Table 1.Bomb in the toilet: Classic version

with k < n. Then we can set’_;,—a!™" as the initial working reason for rejecting
Any assignment satisfyin;gfzooz?rl corresponds to a not valid plan. Of course, setting
vE_ —alt! as working reason for rejectingis better than setting?= -a‘*': since
k < n each disjunct iv¥_,—a/™ is also inv_}-aitt, and, ifk < n — 1, the
viceversa is not true.

In the example of Figure 2, this optimization has the follogveffect: If the possible
plan{east}; {east}; {east}; {north}; {east} is tried, then it is rejected with a reason
which inhibits the further generation of possible plansibeing with {east}; {east}.

4 Experimental Analysis

The ideas presented in Section 2 and the optimizations ibeslcin Section 3 have
been implemented iG-PLAN. C-PLAN accepts action descriptions specified’irand
thus it naturally allows for, e.g., concurrency, constraand nondeterminism. Our cur-
rent version (ver. 2) of-PLAN has been implemented on top®iv, an efficient SAT
checker developed by our group [13].

To evaluateC-PLAN’s effectiveness we consider an elaboration of the trauktio
“bomb in the toilet” problem from [14]. There is a finite sBtof packages and a fi-
nite setT” of toilets. One of the packages is armed because it contdiomé. Dunking
a package in atoilet disarms the package and is possibléfdiméypackage has not been
previously dunked. We first consider planning problems With= 2, 4, 6, 8, 10, 15, 20,
and|T'| = 1. We compare our system with Bonet’s and GeffnePs[15], and Cimatti’s
and Roveri'scMBP [16, 17] planners. These are two among the most recent coafar
planners, and according to the results presented in [1s§,the most effective to date.

We remark that botkmMBP andGPT are sequential planners: they try to execute at most

one action at each step. FurthermarespP computes all the valid plans, not just one
like GPTandC-PLAN. The results for these three systems are shown in Table theln t
table, we show

— for GPT, the total time the system takes to solve the problem,
— for cmBP, the number of steps (column “#s”) (i.e., the number of eletaey ac-
tions) and the total time needed to solve the problem (coltiratal”),
— for C-PLAN,
e the number of steps (i.e., the number of parallel actior@ufan “#s”);
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e the number of possible plans generated before finding a walel (column
“#pp”);

¢ the search time taken by the system at the last step (colulmst™);

o the total search time, being the sum over all steps of the ttiken by
C-SAT_GENp| | andC-SAT_TEST (column “Tot.search”); and

o the total time taken by the system to solve the problem, ebetuthe off-line
time necessary to compute’ andtrt? (column “Total”). This total time does
not coincide with “Tot.search” because it includes alsotiimes necessary for
expanding the formula, and for doing some other computatitarnal to the
system.

Times are in seconds, and all the tests have been run on aufehtj 850MHz,
512MBRAM running Linux SUSE 7.0. For practical reasons, wepped the execu-
tion of a system if its running time exceeded 1200s of CPU timi¢ it required more
than the 512MB of available RAM. In the table, the first casedscated with “TIME”
and the second with “MEM”.

As it can be seen from Table d;PLAN takes full advantage of its ability to execute
actions concurrently. Indeed, it solves the problem in amtg step, by dunking all
the packages at the same time. Furthermore, the time tak€pPyN is always not
measurablecmepP and GPT have comparable performances, withiBp being better
of a factor of 2-3. However, the most interesting data abloesé systems is that when
|P| = 20 they both run out of memory. Indeed, batir T andcmsp can require huge
amounts of memorypPTfor storing the set of belief states visited, arspP for storing
(as Binary Decision Diagrams, BDD [18]) the transition tigla and the set of belief
states visited.

We also consider the elaboration of the “bomb in the toilatishich dunking a
package clogs the toilet. There is the additional action ughfing the toilet, which
is possible only if the toilet is clogged. The results arevaan Table 2 for|P| =
2,4,6,8,10 and |T'| = 1,5,10. With one toilet, these problems are the “sequential
version” of the previous. With multiple toilets they are danto the “BMTC” problems
in [17]. As we can see from Table 2, when there is only onettGileLAN “Total” time
increases rapidly compared to the other solvers. Indg&d= 1 represents the purely
sequential case in which the only valid plan consists inaigly dunking a package
and flushing the toilet till all the packages have been dun&edthe other hand, we
see, e.g., fofP| = 6 and|T’| = 1, that most oC-PLAN time is not spent in the search.
By analysing these numbers and profilifxgLAN code, we discovered that

— most of the search time is spent®sAT_GENp| | : on all the experiments we tried,
each call ol’-sAT_TESTtakes an hardly measurable time,

— the time taken by the system to expand the formula at eactcatepe consider-
able, but (since the expansion is done once for each steg)mdeccount for the
possible big differences between “Tot.search” and “Tot@Hiis is evident if we
compare row 6-1 in Table 2 with row 6-1 in Table 3: The formutaexpand in the
two cases are equal, and the number of expansion is the saiweverr, the “Total”
time in Table 2 is significantly bigger than the “Total” timeTable 3,

— the possible big differences are due to the fact that, in oureat version, each time
C-SAT_TESTIs invoked byC-SAT_GENp| |, we pay a cost linear in the size of the
V formula. This cost is due to the copying of thiformula from one data-structure



GPT| CMBP Cplan
| P|-|T||| Total ||#s| Total ||#s| #pp | Last|Tot.search Total
2-1 | 0.10(|3| 0.00 |3| 6 |[0.00{ 0.00 0.01
2-5 | 0.04{[2|0.01| 1| 1 (0.00f 0.00 | o0.00
2-10 || 0.05|/2| 0.03||1| 1 |0.00| 0.00 0.00
4-1 |/ 0.04|7|0.00|7|540|0.12| 0.15 | 0.65
4-5 |1 0.23|4| 0791 1 |0.00|f 0.00 0.00
4-10 || 2.23||4|11.30{1| 1 |0.00f 0.00 0.01
6-1 || 0.09(|11] 0.04 (|11]5256115.39 49.39 |221.55
6-5 || 3.29|| 7|16.80|| 3 |9834656.92 57.34 |419.53
6-10 ||74.15|-|MEM ||1| 1 |0.00| 0.00 0.01
8-1 | 0.41(]15/ 0.20 ||—| — — - TIME
8-5 ||32.07|[11 112.4& - = — — TIME
8-10 ||[MEM|-|MEM ||1| 1 |0.00| 0.00 0.01
10-1 || 2.67}|19| 1.55 ||—| — — - TIME
10-5 ||MEM||15 974.43 - - - - TIME
10-10 |MEM||—|{MEM ||1| 1 |0.00| 0.00 0.04

Table 2.Bomb in the toilet: Multiple toilets, clogging, one bomb.

to another internal oM. This linear cost, multiplied by the number of timés
SAT_TESTIs invoked, accounts for the difference between “Tot.98amad “Total”
in the example 6-1 of Table 2.

We remark that the potentially exponential cost of verifym plan does not arise in
practice, at least on all the experiments we tried. As a maftéact, each time a plan
is verified, the corresponding set of unit clauses is addeéded” formula and (if the
plan is not valid) the empty set of clauses is generated after few splits. This was
expected (see the Section on implementation in [3]): whatmgerestimated is the cost
paid because of copying théformula. We believe that this cost is also responsible for
many ofC-PLAN’S timeouts, and that a better engineering of the systemntieaolve
this particular problem, will allow’-PLAN to be even more competitive. In any case,
C-PLAN’s performances are not too bad compared to the ones of tlee sdfversC-
PLAN, CMBP, GPTdO not solve 4, 3, 3 problems respectively.

Finally, we consider the same problem as before, excepttbato not know how
many packages are armed. These problems, with respectdodisereviously consid-
ered, present a higher degree of uncertainty. We considesaime values ¢| and|T'|
and report the same data as before. The results are showhle3a

Contrarily to what could be expectgthPLAN performances are much better on the
problems in Table 3 than on those in Table 2. This is most exideve compare the
number of plans generated and tested4mL AN before finding a solution. For example,
if we consider the four packages and one toilet problem,

— with one bomb, as in Table Z;PLAN generates 540 possible plans and takes 0.65s
to solve the problem (0.15s of search time),

— with possibly multiple bombs, as in Table G;PLAN generates 15 possible plans
and takes 0.02s to solve the problem (0.02s is also the stiareh
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GPT|| CMBP Cplan
|P|-|T’||| Total||#s| Total ||#s| #pp | Last|Tot.search Total
2-1 || 0.03(|3| 0.00|3| 3 [0.00f 0.00 | 0.00
2-5 |/ 0.04{|2| 0.00{ 1| 1 |0.00f 0.00 | 0.00
2-10 |/ 0.24|/2| 0.02 1| 1 |0.00{ 0.00 | 0.02
4-1 || 0.17||7| 0.01 || 7| 15 |0.01| 0.02 0.02
4-5 || 0.06{|4| 054 1| 1 |0.01] 0.00 | 0.01
4-10 || 0.38(|4| 7.13|(1| 1 |0.02| 0.00 | 0.02
6-1 | 0.08(|11] 0.03 (|11]117|0.25| 1.39 2.01
6-5 | 0.33|/7|10.71||3| 48 |0.62| 0.66 | 1.36
6-10 || 7.14||-|[MEM||1| 1 |0.00] 0.00 | 0.00
8-1 || 0.06 (|15 0.17 ||15{119512.23 147.25 |184.29
8-5 || 2.02 |11 90.57|| 3|2681{14.84 15.60 [317.13
8-10 |[MEM||—-|MEM|1| 1 |0.00{ 0.00 |12.68
10-1 || 0.21 |19 1.02 ||—| — | — — TIME
10-5 ||12.51}|15 591.33 o e - TIME
10-10 [MEM||—|MEM |/ 1| 1 |0.00| 0.00 | 0.06

Table 3.Bomb in the toilet: Multiple toilets, clogging, possibly ftiple bombs.

To understand why, consider for simplicity the case in whidre is only one toilet and
two package$’; andP,. Forn =0

— there are no possible plans if we know that there is one bontb, a

— there is the possible plan consisting of the empty sequenaetions, correspond-
ing to assuming that neithét, nor P, is armed, in the case we know nothing. This
plan is not valid, and, because of the determinizatibrLAN adds a clause to the
initial state saying that at least one package is armed.

Forn = 1, C-PLAN in both cases tries 2 possible plans. If we assume that irgerse
first the plan in whichP; is dunked

— if we further assume that there is one bomb, it rejects it, afabcause of the
determinization— it adds a clause to the initial state whailtbws to conclude that
the bomb is inP,. Then, forn = 2 andn = 3, any plan in whichP, is dunked is
possible.

— in the other case, it rejects it, and —because of the deté&ration— it adds a
clause to the initial state saying that the bomb is noPjnor is in P,. Then, it
generates the other plan in which oty is dunked. Also this plan is rejected and
a clause saying that a bomb isfi or not in P, is added to the initial state. Thus,
there is now only one initial state satisfying all the coastts: namely the one in
which bothP,; andP, are armed. This allows-PLAN to conclude that there are no
possible plans fon = 2, and to immediately generate a valid plamat 3.

The optimizations described in Section 3 help a lot. Indéede consider the four
packages and one toilet problem, and disable the optiroizsiti

— if we have one bomb, as in Table @;PLAN generates 2145 possible plans and
takes 0.54s to solve the problem (0.24s in the last step),



— if we have possibly multiple bombs, as in Tabl&3pLAN generates 3743 possible
plans and takes 0.93s to solve the problem (0.72s in thetégst s

BesidesC-PLAN’s performances, alsoMBP and GPT seem to get benefits by the
added nondeterminism. Overall;PLAN, CMBP andGPT do not solve respectively,
3 and?2 of the considered problems. On the ones they solve, we gghhpthe same
picture that we had befor€-pPLAN takes full advantage of its ability to concurrently
execute actions, and thus behaves better on problems witiplatoilets.

Overall,GPT, cMBP andC-PLAN do not solve 6, 7, 6 respectively of the 37 examples
that we tried.

5 Conclusions and related work

We have presented some optimizations to the basic procéaturenformant planning
described in [3]. The procedure and the optimizations haenkimplemented -
PLAN ver. 2, a SAT-based conformant planner based orsteSAT library.C-PLAN
incorporates the Causal Calculator [9], and is thus abledson about action descrip-
tions specified irC. C allows for, e.g., concurrency, constraints, and nondetésm.
This causeg-PLAN to be one of most expressive conformant planners among the cu
rently available. From the experimental analysis we gdtdira, cCMBP andC-PLAN do
not solve 6, 7, 6 respectively of the 37 examples that we.theast important, while-
PLAN runs out of timecmBP andGPTrun out of memory. This seems to point out that
C-PLAN range of applicability is different from the range of applidity of cmsp and
GPT. Analogous results supporting this fact are reported i jll¢ere it is shown that
for classical, highly parallel domains the planning ass$iatbility approaches appear to
do best. The fact that SAT-based approaches and BDD-bapeakahes have different
range of applicability is also confirmed by

— previous work comparing BDD and DLL as SAT procedures, sé§ [2
— recent work in symbolic reachability in formal verificaticsee [21, 22].

Beside the already cited [15, 16], two other works on congmtiplanning are [5]
and [24]. In [5], the authors propose an approach based orgpégphs. The underlying
idea is to construct a planning graph for every possiblergetsstic version of the
original planning problem. Constraints over planning gn@pnsure conformance. The
main weakness of the approach is that there can be expdhenteny deterministic
version, causing the creation of exponentially many plagmjraphs. In [24], Rintanen
reduces the problem of conformant and conditional plantdrige problem of deciding
the satisfiability of a Quantified Boolean Formula (QBF). @pproach is similar to
Rintanen’s: The search performed by our generate and st gure resembles the one
of a QBF solver if run on formulas corresponding to confortydanning problems. On
the other hand, by dealing with the original planning prafleve are able to introduce
optimizations —like the ones described in Section 3— whaketinto account the
nature of the original problem.

In [23], a new algorithm for conformant planning based onuitgic-symbolic
search”, is proposed and the experimental results are sape A detailed analysis
of the paper and the results is in our agenda.
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