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Abstract. Coordination between processing entities is one of the mostwidely
studied areas in multi-agent planning research. Recently,efforts have been made
to understand the formal computational issues of this important area. In this paper,
we make a step toward this direction, and analyze a restricted class of coordina-
tion problems for dependent agents with independent goals acting in the same
environment. We assume that a state-transition description of each agent is given,
and that preconditioning an agent’s transitions by the states of other agents is the
only considered kind of inter-agent dependence. Off-line coordination between
the agents is considered. We analyze some structural properties of these prob-
lems, and investigate the relationship between these properties and the complex-
ity of coordination in this domain. We show that our general problem is provably
intractable, but some significant subclasses are inNP and even polynomial.

1 Introduction

Coordination between processing entities is one of the mostwidely studied areas in
multi-agent planning research. Recently, efforts have been made to understand the for-
mal computational issues in this important area. In this paper, we make a additional step
toward this direction. We describe a restricted class of coordination problems for agents
with independent goals acting in the same environment, thatis the strategy of each
agent should be planned while taking into account strategies of other agents as plan-
ning constraints. In these problems, (i) the set of feasibleplans for each agent is defined
by a state-transition graph, and (ii) preconditioning an agent’s transitionsby thestates
of other agents is the only considered kind of inter-agent dependence. For this problem
class, off-line coordination is considered: structural and computational properties are
investigated, and both tractable and intractable subclasses are presented. Although the
examined class of problems can be seen as significantly restricted, its place in multi-
agent systems was already discussed in AI literature, e.g. [6, 14, 22]. We believe that
the formal model we suggest for the presented problem class can serve as a basis for
further extensions toward a representation of richer multi-agent worlds yet preserving
convenience for computational analysis.

In the area of multi-agent coordination, we identify two main research directions:
multi-agent collaborationandsynthesizing multi-agent plans. In multi-agent collabora-
tion, goal achievement is a team activity, i.e., multiple agents collaborate towards the
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achievement of an overarching goal. During the last decade,various theories for multi-
agent collaboration, e.g. [9, 18, 20], and several generic approaches for corresponding
planning, e.g. [11, 25], were proposed; for an overview of this area see [17]. In addi-
tion, a few formal computational results concerning the coalition formation are found
for both benevolent [24] and autonomous [12] agents.

Synthesizing multi-agent plans addresses synchronization between agents that work
on independent goals in the same environment. In [16], centralized merging of precon-
structed individual agent plans is presented, and it is based on introducing synchro-
nization actions. In [15], a heuristic approach that exploits decomposed search space
is introduced. Whereas in [15, 16] methods for merging plansat the primitive level are
described, in [8] a strategy for plan merge on different levels of hierarchical plans is pre-
sented. In [1, 2], a generic approach for distributed, incremental merging of individual
plans is suggested: the agents are considered sequentially, and the plan for the currently
processed agent is synchronized with the plans chosen for the previously processed
agents. Besides, a few more algorithmic approaches to an application-specific plan syn-
chronization are proposed in [7, 23, 26]. Note that all theseapproaches for inter-agent
synchronization assume that the personal plans are alreadyconstructed, and that the
merging operation is considered only on this fixed set of individual plans (possibly, cer-
tain local modifications of the plans may be allowed). This essentially restricts not only
the quality, but even the ability to find a coordinated plan.

A wider formal model for multi-agent systems that concerns both determining per-
sonal agent plans and their synchronization, is suggested in [22]. With respect to this
model, the cooperative goal achievement problem is defined.It can be roughly stated
as follows: Given a set of benevolent agents in the same environment, each one with
its own, independent goal, does there exist a satisfying system of coordinated personal
plans? In [22], this problem is shown to bePSPACE-complete.

In this paper, we concentrate on a particular class of the cooperative goal achieve-
ment problem. In this problem class, which we denote to assts (state-transition sup-
port), an action (transition) of an agent can be constrainedby the states of other agents.
Following [6, 22], each agent is assumed to be representableas a finite automaton. As in
[8, 15, 16], the coordination process is assumed to be off-line and centralized. Note that
we are not dealing here with many complementary issues of multi-agent systems such
as determining agent behavior, collaboration establishing, decision process distributing,
etc.

We suggest to represent ansts problem domain using a graph language. The two
interrelated graphical structures of our model are as follows:

1. Thestrategy(di)graph: the state-transition graph describing behavior of an agent.
2. Thedependence(di)graph: description of the dependence between the agents.

The strategy graph compactly captures all alternative personal plans for the corre-
sponding agent: its strategies correspond to thepathsfrom the source node to the target
node in its strategy graph. Transition of an agent along an edge is conditioned by the
statesof the agents on which it depends, i.e., their locations at certain nodes in their
strategy graphs. The reader can find some relation between our strategy graphs and the
interactive automata of [21]. The main differences are thatwe (i) address precondition-
ing, not interaction between agents, and (ii) consider off-line planning.
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Fig. 1. Examples of strategy graphs for: (a) single agent, (b) two-agent group: transitions ofX
depend on states ofY .

The nodes of the dependence graph correspond to the agents. An edge(p; q) appears
in the dependence graph if some action of the agentq depends on the state of the agentp. We define subclasses ofsts, mainly with respect to structural properties of the de-
pendence graph, and analyze their complexity. The complexity is measured in terms of
the total size of the strategy graphs and the size of the dependence graph (which is ac-
tually the number of agents). We show that our general problem is provably intractable,
but some significant subclasses are inNP and even polynomial. As far as we know, such
an analysis of the relation between the structural and the computational properties of
a multi-agent coordination problem was not done in previousresearch. Note that this
paper presents only first results of our ongoing research, thus, in particular, we do not
discuss relative significance of the presented problem classes, and we do not provide
wide final conclusions.

The rest of the paper is organized as follows: Section 2 presents and discusses our
model. Section 3 is devoted to the basic case of two agents. Section 4 introduces a clas-
sification ofsts’s subclasses, and presents additional complexity results. For the proofs
and some of the detailed algorithms we refer to the technicalreport [13]. Concluding
remarks are given in Section 5, together with some discussion of related issues and
future work.

2 Graphical Model for STS
In this section we define two graphical structures of thests problem domain. The
strategy graphGA captures the alternative personal strategies of an agentA. The agent’s
states are represented by the nodes ofGA. Each (directed) edge represents a possible
transition between the two corresponding states. Multipletransitions between two states
are possible. If a transition is conditioned, then the corresponding edge has alabel
which describes the condition; when a transition can be doneunder several alternative
conditions, this is modeled by multiple edges, each labeledby a single condition. There
are two unique nodes inGA, the source node and the target node, which represent the
initial and goal states ofA, respectively. The possible agent’s strategies are represented
by the paths from the source node to the target node. For an illustration see Fig. 1(a),
where the possible strategies are:spqt, sprt, sprqt, srt, srqt.

The size of this structure is linear in the length of the problem description. Observe
that in general, the number of different, potentially applicable, strategies may be expo-
nential in the size of the problem even for an acyclic structure; for a general structure,
this number can, formally, be infinite.
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Consider a pair of agentsX andY so thatX depends onY in the following sense:
each transition ofX is preconditioned by a certain state ofY . In graph terms, each
edge inGX is labeled by the name of a node inGY . An example is given in Fig. 1(b),
where the inner graph modelsX and the outer one modelsY . Note that there are two
transitions ofX from the statep to the stater which are preconditioned by different
states ofY . The following pair of strategies forX andY is coordinated: The agentX
begins from states andY begins from stateS. Subsequently, (i)X moves top, (ii)Y moves toP , while X is in p, (iii) X moves toq, (iv) Y moves toQ, (v) X moves
to t, and finally, (iv)Y moves toT . We denote this coordinated multi-agent strategy
by the sequenceh(s; p)(S; P )(p; q)(P;Q)(q; t)(Q;T )i. The other possible coordinated
plans forX andY areh(s; p)(p; r)(S;R)(r; t)(R; T )i andh(s; r)(S;R)(r; t)(R; T )i.
No other coordinated pair of strategies exists. For example, if the agents begin withh(s; p)(S; P )(p; r)i, thenX cannot leaver, since it is impossible forY to reachR after
being inP .

In general, there are several agentsA1; A2; : : : ; An with strategy graphsGi = GAi ,1 � i � n. We say that an agentAi depends on an agentAj if transitions ofAi have
states ofAj as preconditions. Note that a few agents may depend on the same agent, and
an agent may depend on a few other agents. Hence, a transitionof Ai is preconditioned
by states of agents thatAi depends on; in general, a transition can depend on a part of
them.

Thedependence graphG is a digraph whose nodes areAi, 1 � i � n, and there is
an edge fromAj toAi if agentAi depends on agentAj . In what following, we identify
nodes ofG with the corresponding agents. Likewise, we identify the nodes and edges
of Gi with the states and transitions ofAi, respectively. An edge ofGi has a compound
label, each component of which is a state of an immediate predecessor ofAi in G (i.e.,
a node in the strategy graph of this predecessor).

Both the strategy graph and the dependence graph can be constructed straightfor-
wardly, given ansts problem. Likewise, the structural properties of the dependence
graph, which are investigated in this paper, can be verified in low polynomial time in
the size of the graph.

In this paper,eachtransition of an agent is preconditioned by the states ofall agents
that this agent depends on, if the opposite is not declared explicitly. We consider only
connected dependence graphs. The reason is that otherwise the set of agents can be
divided into disjoint subsets that can be considered independently.

A natural motivation for a pair of agentsX andY as above is thatX fulfills some
mission, whileY supports it. In practice, the mission ofX may be a movement towards
a target, whileY either watchesX from certain observation points, or feeds it from
certain warehouses, or protects it from some fortified positions. Such a support is usual
in military and is wide-spread in various other activities.For example, a workerX as-
sembles some compound product, while a mobile craneY moves the (half-assembled)
product from one working place ofX to another. In general, when there are several
agents, each agent is supported by a few agents, and in turn, supports a few other agents.

Having read this far the reader may argue that it is possible that we never know
an agent’s behavior in complete detail, and even if we do, thenumber of states that
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represent an agent’s behavior may be very large. In this case, exploiting and even con-
structing strategy graphs seems to be infeasible.

Indeed, it is not realistic to present detailed models of many real-life systems as
finite state machines. However, as it is argued in [22], the representation an agent uses
need not present the world in sufficient detail to require more expressive description
language. Intuitively, it is possible to distinguish between the physical state of agents
and their computational state. It is the computational state that we have difficulty in
modeling by finite-state machines. However, the computational state of an agent is not
accessible to the other agents. On the other hand, a finite-state description can serve
well as a representation of the physical state. A wider discussion of these and other
issues of finite-automata-based knowledge representationand reasoning can be found
in [22]. Likewise, number of finite-automata-based architectures are discussed in the AI
literature, e.g., see [6].

In case that the number of parameters describing the physical state (and thus the size
of the state space) is still large, it is often possible to take advantage of the structure of
an agent in order to derive a concise description of its state. In particular, an agent may
be viewed as being composed of a number of largely independent components, each
with its own state. Each such component (such as robot’s hand, motor, wheel, etc.) can
be represented by an agent, whose physical state is relatively simple, since it describes
a particular feature of a complex system. In this case, the strategy graphs of the agents
are expected to be of reasonable size.

3 The Basic Case of Two Agents

In the rest of the paper, we study the complexity of various multi-agent coordination
problems based on the model suggested above. In this sectionwe demonstrate our tech-
niques on solving the basic case of agentX depending on agentY . Given the strategy
graphs ofX andY , we build a new graph describingX restricted byY . As a result,
our problem is reduced to the known problem of finding a source-to-target path in this
new graph. Such a reduction becomes possible because of the locality of the original
restrictions.

We describe a solution of our problem as an interleaved sequence of transitions of
agentsX andY , as was shown in Section 2. Let us analyze the structure of a general
coordinated plan� for these agents. As mentioned above, private strategies for X andY are source-to-target paths inGX andGY respectively, and we denote them by�X
and�Y . Let us divide�X into intervals�X1 , �X2 , : : :, �Xm of constancy of labels: all
edges (transitions) in�Xi are labeled (preconditioned) by the same node (state)Ni ofY . TheY ’s path�Y is also divided by the nodesNi into some parts. The considered
plan is as follows: (1) IfN1 6= sY , then agentY moves fromsY to stateN1 along the
initial part of�Y ; (2) AgentX moves along�X1 to its end; (3)Y moves fromN1 toN2
along the next part of�Y ; (4)X moves along�X2 , etc. Finally, ifNm 6= tY , then agentY moves fromNm to tY along the final part of�Y . For illustration see Figure 2.

Let see what “degrees of freedom”� has. For simplicity of notation, we denotesY
by N0 andtY by Nm+1. Observe that the replacement of part of�Y betweenNi toNi+1, 0 � i � m, by any other path fromNi toNi+1 retains the plan feasible. That is,
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�sY �tY� � �N1 � �N2 �Nm �. . .

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::GY
sX tX�X1 �X2 �Xm: : :� �� � � � � � � �:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::GX

Fig. 2. Relation between personal strategies ofX andY
the only requirement for feasibility of�X is theexistenceof such a path for each label
change along�X . Moreover, replacement of any�Xi by another path between its ends
such that all its edges are labeled byNi retains the plan feasible.

Lets now consider building such a coordinated plan� . We take as a central issue
finding an appropriate path�X . As mentioned above, the only critical points in its build-
ing are the moments of label change along�X : if the label changes fromNi to Ni+1,
then a “connecting” path fromNi to Ni+1 in GY must exist. In order to include into
the same framework the cases in which the label of the first edge is notsY and the label
of the last edge is nottY , we extendGX as follows. We add toGX a dummy source~sX , with an edge(~sX ; sX) labeledsY , and a dummy target~tX , with an edge(tX ; ~tX)
labeledtY , and consider path~�X from ~sX to ~tX in this extended graph~GX . It is easy
to see that existence of connecting paths inGY for all critical points in~�X is necessary
and sufficient for the feasibility�X . Indeed, the twin path�Y is the concatenation of
all connecting paths, for0 � i � m. Therefore, the only information we need in order
to build an appropriate path in~GX is whether two edges may be consequent on a path~�X in the above sense, for all pairs of adjacent edges in~GX .

Information on existence of a path between any pair of nodesN 0 andN 00 of GY
(reachabilityof N 00 from N 0) can be obtained by a preprocessing ofGY . Appropri-
ate algorithms are widely known and are very fast; the paths themselves, if any, are
provided by these algorithms as well, e.g. see [10]. Hence, we can form the following
database for all pairs of consequent edges in~GX : If an edgee0 labeledN 0 enters some
node and an edgee00 labeledN 00 leaves the same node, then the pair(e0; e00) is marked
“permitted” if eitherN 0 = N 00 or N 00 is reachable fromN 0 in GY . For example see
Figure 3, where dotted lines show the permitted edge pairs.p P //P
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Fig. 3. Illustration of ~GX with the correspondingGXjY .
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In fact, the suggested construction provides a reduction ofthe problem of finding a
path~�X as defined above to a known problem of finding a path in a graph. Let the new
graphGXjY have theedgesof ~GX as nodes, and let its edges be defined by the permitted
pairs of edges in~GX .1 Now, all we need is a path from the source node(~sX ; sX) to the
target node(tX ; ~tX) in GXjY . Clearly, such a path defines the corresponding path in~GX immediately.

Figure 4 summarizes the algorithm for finding a coordinated plan for agentX de-
pending on (“supported by”) agentY . This algorithm is, evidently, polynomial. The
reader can “execute” it by himself on the example given in Figure 3. This example is
the same as the one in Section 2, and any of the three feasible coordinated plans listed
there can be obtained as the result of such an execution. Thuswe have achieved our
first result, and in what following, we use the presented approach for analyzing other
variants ofsts.

1. Extending strategy graphGX to ~GX .
2. Preprocessing of strategy graphGY : finding a path from any node to any other node (in fact,

it is sufficient to do this for the node pairs needed in the nextphase only).
3. Constructing permitted-edge graphGXjY .
4. Finding a source-to-target path inGXjY , if any, or reporting on non-existence of a coordi-

nated plan, otherwise.
5. Reconstructing from the path found in phase 4 a path~�X in ~GX and its abridged variant�X

in GX .
6. Building a path�Y in GY as the concatenation of paths found at phase 2, for all label

changes along~�X .
7. Outputting properly interleaved strategies�X and�Y .

Fig. 4. Algorithm for the basicsts problem.

Theorem 1. There exists a polynomial time algorithm that, given a pair of agentsX;Y ,
in whichX depends onY , determines existence of a coordinated plan and finds such a
plan, if exists.

This result can be easily generalized to finding anoptimalcoordinated plan. Assume
that the cost function is the sum or the product of weights of states and/or transitions
used in the plan. Since in step 4 of the algorithm, an arbitrary path can be chosen, let us
choose an optimal path; this suffices for global optimality.Any algorithm for finding a
cheapest path in a graph can be used, e.g. see [10].

Now let us require, in addition,simplicityof Y ’s strategy, i.e., let us forbidY to visit
the same state twice. A motivation for this can be that each state ofY relates to some
consumable resources. It turns out that this seemingly non-essential change in the prob-
lem definition, change the problem to beNP-complete. Informally, the reason for this
complexity worsening is that the locality of precondition is thus broken. This result is
mainly interesting from the theoretical point of view, since it points on a computational
sensitivity of our original problem.1 Such a construction is a variant of the so called “edge graph”known in graph theory; the

addition in our case is the exclusion of non-permitted edgesfrom it.
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4 Results for Some Other Subclasses of STS
In this section we discuss various additional complexity results forsts. Problem classes
are defined mainly by the structure of their dependence graph. Moreover, both results
and methods depend crucially on the number and size of possible agent strategies: if
both of them are polynomial in the size of problem domain, then we distinguish such a
class asbounded. Figure 5 summarizes the achieved results, and each box in the figure
denotes ansts’s subclass.

The notation is as follows: First, eachsts subclass is denoted with respect to the
form of the dependence graph:C stands fordirected chain, F^ for directed fork(graph
with exactly one node with a non-zero outdegree),F_ for directed inverse fork(graph
with exactly one node with a non-zero indegree),P for polytree(digraph whose un-
derlying undirected graph is a tree), andS for singly-connected DAG(directed acyclic
graph with at most one directed path between any pair of nodes). Second, the subscript
denotes the number of agents:k stands for a constant bound, andn indicates no bounds.

By default, we assume that each transition of an agent is preconditioned by the
states ofall agents that this agent depends on. Alternatively,� in a superscript denotes
a possibility ofpartial dependence.� in a superscript denotes the requirement that
all strategies chosen aresimple. Note that casesC 2 and C �2 have been discussed in
Section 3. Provably Intra
table C nNP�
ompleteS�n F_�n Fn̂ C �2Polynomial C �kC k

OO

C �2OOP�n
OO

F_n
OO

C 2__??

OO

??��Bounded General�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 5. Complexity results forsts
Coordinating General Agents A natural generalizationC n of the classC 2 (as in
Section 3) occurs when there is a dependence chain: agentsAi, 1 � i � n, withAi dependent onAi�1, i � 2. For simplicity of notation, let us abridgeAi to i in
superscripts (e.g.,Gi instead ofGAi ).

Our approach forC n is to iterate the analysis and the algorithm forC 2 along the
dependence chain. A naive scheme is as follows. For processing pairA3; A2, we need a
database oncoordinatedreachability inG2. Observe that our algorithm forC 2 applied
to pairA2; A1 provides such an information for nodess2; t2; clearly, this can be done
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for any pair of nodes ofG2. Considering pairA2; A1, lets check reachability and store
paths, if any, forall pairs of nodes inG2, as required. Now, we are as if sure that if
we would determine a coordinated plan for pairA3; A2 based on the above reachability
relation forA2, a corresponding strategy forA1 will be obtained easily. Hence, the
situation withA3; A2 is similar to that withA2; A1, and thus we can iterate up toAn.
Personal coordinated strategies can be consequently reconstructed, fromAn�1 toA1.

However, this scheme turns to be inconsistent. The point is that, in fact, the coor-
dinated reachability relation inG2 is on itsedges, not on its nodes, and it is captured
by the edge graphG2j1. Therefore, informally, the right approach is to create an edge
graph forG3 basing onG2j1, not onG2. This idea of recursive edge graph creating can
be generalized for dependence chain of arbitrary length. Using this method, we never
arrive at a deadend as in the naive scheme, and we can obtain any coordinated plan for
this problem. For the detailed algorithm forC n , together with an illustrating example
of its execution and a counterexample for the naive approachwe refer to the technical
report [13].

Theorem 2. (I) There exists an algorithm forC n that determines existence of a coor-
dinated plan and finds such a plan, if exists. This algorithm is polynomial in the total
size of strategy graphs and exponential inn; thusC k is proved to be polynomial.
(II) C n has instances with exponentially sized minimal solutions.

The proof of the exponential lower bound is by the following example. Each agentAi, 2 � i � n, has the strategy graph as follows:si ti�1 ** qi si�1 **si�1jj titi�1jj

The strategy graph forA1 looks the same, except that its edges are unlabeled. This prob-
lem instance has a unique minimal coordinated plan of total length2n+1�2 transitions.

By showing thatC n is provably intractable, theorem 2 emphasizes our motivation
for exploiting various structural restrictions onsts in order to find problem classes
which are polynomial, e.g.,C k , or at least belong toNP. In particular, the subclass ofC n strategy graphs of which are acyclic can be easily shown to belong toNP. However,
the question of its exact hardness is still an open question.The same question is open
for the decision version ofC n .

Theorem 3 summarizes the complexity results for some other classes ofsts (for
notations see Section 4).

Theorem 3. (I) There exists a polynomial time algorithm forF_n that determines exis-
tence of a coordinated plan and finds such a plan, if exists.(II) There exists a polynomial
time algorithm forC �2 that determines existence of a coordinated plan and finds such a
plan, if exists.(III) Fn̂ is NP-complete.(IV) F_�n is NP-complete.

Proof sketch. (I)In F_n , a single agentA1 depends on a group of independent
supporting agentsA2; : : : ; An. The algorithm is similar to that forC 2 . The idea is that
several preconditions on the same transition can be checkedindependently.(II) C �2 is
an extension ofC 2 in which onlysomeof transitions of the supported agent depend on
the state of the supporting agent. The algorithm forC �2 is similar to that forC 2 , except
that a certain modification of the permitted-edge graphGXjY is used.(III),(IV) In Fn̂ , a
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Main
RepeatPruningwhile strategy sets are changing.
If all strategy sets are empty, then report that no coordinated plan exists.

Otherwise, performConstruction.
Pruning

For all edges(Aj ; Ai) in G do:
For each�i 2 Si do:

If Compatibility-Check(�i; �j) returns false for all�j 2 Sj then remove�i from Si.
For each�j 2 Sj do:

If Compatibility-Check(�i; �j) returns false for all�i 2 Si then remove�j from Sj.
Compatibility-Check(�i; �j)

If l(�i)[j℄ with neighboring repetitions removed is a subsequence of�j ,
then return true, else return false.

Construction
Pick any agentA and any strategy for it.
TraverseG undirectly from the nodeA. For each visited nodeA0, choose any strategy ofA0

that is compatible with the strategy chosen for the node fromwhich we came toA0.
Fig. 6. Algorithm for P�n.

single agentA1 supports a group of agentsA2; : : : ; An. The membership inNP can be
easily shown for bothFn̂ andF_�n . In turn, the proofs of hardness forFn̂ andF_�n are
by polynomial reductions from 3-SAT andPATH WITH FORBIDDEN PAIRSproblems,
respectively.

Remarks:The algorithm forC n can be extended forC �n , similarly to the extension
of the C 2 algorithm forC �2 . Results presented for the cases of chain and inverse fork
dependence graphs can be generalized to the case of dependence graph being a tree
directed to its root.

Coordinating Bounded Agents In this section we consider the class of problems for
which the number and size of strategies for each agent is polynomial in the size of the
problem domain. In what follows, such agents are referred asbounded. Let us denote
bySi the set of allowed strategies�i of Ai (i.e., source-to-target paths inGi). We show
that if a dependence graph forms a polytree thensts for bounded agents is polynomial.
However, its extension to singly connected directed graphsis alreadyNP-complete.

ConsiderP�n. Notice that any polytree is an acyclic graph. Denote byl(�i) the se-
quence of edge labels along�i, and bylj(�i)[j℄ the projection ofl(�i) to the nodes ofGj . Figure 6 presents our algorithm forP�n.

Theorem 4. (I) There exists a polynomial time algorithm forP�n with bounded agents
that determines existence of a coordinated plan and finds such a plan, if exists.(II) S�n
for bounded agents isNP-complete.

Proof sketch. (I)According to the analysis in Section 3, the condition ofCompatibility-
Checkconfirms that the checked pair�i; �j is coordinated. Therefore, convergence of
the pruning process ensures that for each agentA: (i) any one of its strategies has at least
one supporting strategy of each predecessor ofA in G, and (ii) any one of its strategies
supports at least one strategy for any successor ofA in G. Hence, ifConstructionhas a
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personal strategy to begin with, then it is surely successful. Polynomiality holds, since
each execution ofPruningdecreases the total number of personal strategies.

(II) Membership inNP for S�n is straightforward, and the hardness proof is by a
polynomial reduction from 3-SAT.

5 Discussion and Conclusions

In this paper, we concerned coordination for a set of agents that work on independent
goals in the same environment. We investigated a particularfamily of the problems of
finding coordinated plans, where actions of an agent depend on the local states of cer-
tain other agents. First, we presented a graphical representation model for this family of
problems. Then, we classified these problems mainly according to the structural proper-
ties of the model. In the main part of the paper, we analyzed the computational proper-
ties of various problem classes. We gave polynomial solutions for several classes, while
for some other we proved theirNP-completeness or even provable intractability. A num-
ber of unsolved problems remains for the further research. The suggested approach—to
find a sufficiently formal description for some problem classes, and to analyze their
computational properties—seems to be prospective in the multi-agent area. Following
some additional observations with respect to results presented in this paper.

First, let each agent and its states be considered as a multi-valued variable and its
values, respectively, and let the set of agents’ transitions be considered as a set of oper-
ators over the above variables. In this context, our resultsconcern complexity analysis
in the area of classical planning over multi-valued variables [4, 19]. Specifically, our
results address the planning problems over multi-valued variables and only unary (=
single effect) operators.

Second, in our model, each agent is assumed to be assigned to apersonal goal,
which is independent of the personal goals of all other agents. However, a supporting
agent may have no explicit personal goal, while supporting activities of some other
agents may be its only destiny. This particular relaxation can be immediately added
into the presented model, with no negative impact on the computational properties of the
problems. The coordinated group of dependent agents can be viewed as collaborating
towards the achievement of some global goal.

Third, in this work we address only groups of fully controlled entities. Therefore,
in particular, our results do not concern state-transitionsettings where agent’s strategy
depends on uncontrolled environment, like that studied in [3, 5].

In the future, we plan to continue with analysis of various classes ofsts. In ad-
dition, we want to examine other forms of dependence betweenthe agents, and other
forms of goal(s) definition for a group of agents. This issueswill be examined in the
context of their impact on the complexity of coordination. We also plan to address re-
lated optimization problems.

References

1. R. Alami, F. Ingrand, and S. Qutub. A Scheme for Coordinating Multi-robot Planning Ac-
tivities and Plans Execution. InProceedings of the 13th European Conference on Artificial
Intelligence – ECAI, Brighton, UK, 1998.

287



2. R. Alami, F. Robert, F. Ingrand, and S. Suzuki. Multi-robot Cooperation through Incremental
Plan-Merging. InInternational Conference on Robotics and Automation, 1995.

3. R.C. Arkin and T. Balch. Cooperative Multiagent Robotic Systems. InArtificial Intelligence
and Mobile Robots. MIT Press, 1998.
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