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Abstract. Coordination between processing entities is one of the mvaizly
studied areas in multi-agent planning research. Receasitbyrts have been made
to understand the formal computational issues of this itambarea. In this paper,
we make a step toward this direction, and analyze a resiridéss of coordina-
tion problems for dependent agents with independent gaaisgain the same
environment. We assume that a state-transition desaripfieach agent is given,
and that preconditioning an agent's transitions by thestaf other agents is the
only considered kind of inter-agent dependence. Off-lioerdination between
the agents is considered. We analyze some structural piegpef these prob-
lems, and investigate the relationship between these grepand the complex-
ity of coordination in this domain. We show that our generalbem is provably
intractable, but some significant subclasses areriand even polynomial.

1 Introduction

Coordination between processing entities is one of the matly studied areas in
multi-agent planning research. Recently, efforts havalmeade to understand the for-
mal computational issues in this important area. In thispape make a additional step
toward this direction. We describe a restricted class ofdioation problems for agents
with independent goals acting in the same environment,ithtite strategy of each
agent should be planned while taking into account strasegfi®other agents as plan-
ning constraints. In these problems, (i) the set of feagilalas for each agentis defined
by a state-transition graph, and (ii) preconditioning aerdg transitionsby thestates
of other agents is the only considered kind of inter-agepeddence. For this problem
class, off-line coordination is considered: structurad @omputational properties are
investigated, and both tractable and intractable sube$ase presented. Although the
examined class of problems can be seen as significantlyctestrits place in multi-
agent systems was already discussed in Al literature, @,44[22]. We believe that
the formal model we suggest for the presented problem cEsserve as a basis for
further extensions toward a representation of richer ragént worlds yet preserving
convenience for computational analysis.

In the area of multi-agent coordination, we identify two maésearch directions:
multi-agent collaboratiorndsynthesizing multi-agent plans multi-agent collabora-
tion, goal achievement is a team activity, i.e., multiplesig collaborate towards the
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achievement of an overarching goal. During the last deczd@&us theories for multi-
agent collaboration, e.g. [9, 18, 20], and several geng@ixaaches for corresponding
planning, e.g. [11, 25], were proposed; for an overview ¢f Hrea see [17]. In addi-
tion, a few formal computational results concerning thelitioa formation are found
for both benevolent [24] and autonomous [12] agents.

Synthesizing multi-agent plans addresses synchronizhétween agents that work
on independent goals in the same environment. In [16], akrdd merging of precon-
structed individual agent plans is presented, and it isdaseintroducing synchro-
nization actions. In [15], a heuristic approach that expldecomposed search space
is introduced. Whereas in [15, 16] methods for merging pktrike primitive level are
described, in [8] a strategy for plan merge on differentleeéhierarchical plans is pre-
sented. In [1, 2], a generic approach for distributed, im@etal merging of individual
plans is suggested: the agents are considered sequetiallshe plan for the currently
processed agent is synchronized with the plans chosen doprétviously processed
agents. Besides, a few more algorithmic approaches to dicaign-specific plan syn-
chronization are proposed in [7,23, 26]. Note that all theggeroaches for inter-agent
synchronization assume that the personal plans are alattructed, and that the
merging operation is considered only on this fixed set ofidldial plans (possibly, cer-
tain local modifications of the plans may be allowed). Thiseasially restricts not only
the quality, but even the ability to find a coordinated plan.

A wider formal model for multi-agent systems that concerothltletermining per-
sonal agent plans and their synchronization, is suggestgzP]. With respect to this
model, the cooperative goal achievement problem is defihedn be roughly stated
as follows: Given a set of benevolent agents in the sameanwvient, each one with
its own, independent goal, does there exist a satisfyingsysf coordinated personal
plans? In [22], this problem is shown to bePACEcomplete.

In this paper, we concentrate on a particular class of thepemdive goal achieve-
ment problem. In this problem class, which we denote temas(state-transition sup-
port), an action (transition) of an agent can be constrdiyetie states of other agents.
Following [6, 22], each agent is assumed to be represerdaladinite automaton. As in
[8,15, 16], the coordination process is assumed to bemdfdind centralized. Note that
we are not dealing here with many complementary issues di-augnt systems such
as determining agent behavior, collaboration establigtiacision process distributing,
etc.

We suggest to represent ams problem domain using a graph language. The two
interrelated graphical structures of our model are as\ialo

1. Thestrategy(di)graph the state-transition graph describing behavior of an tagen
2. Thedependencédi)graph description of the dependence between the agents.

The strategy graph compactly captures all alternativegpedsplans for the corre-
sponding agent: its strategies correspond t#tasfrom the source node to the target
node in its strategy graph. Transition of an agent along ge éslconditioned by the
statesof the agents on which it depends, i.e., their locations gaoenodes in their
strategy graphs. The reader can find some relation betweestrategy graphs and the
interactive automata of [21]. The main differences are Weafi) address precondition-
ing, not interaction between agents, and (ii) considetin#é-planning.
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Fig. 1. Examples of strategy graphs for: (a) single agent, (b) tgenigroup: transitions ok’
depend on states af.

The nodes of the dependence graph correspond to the ager@dgi(p, ¢) appears
in the dependence graph if some action of the agel@pends on the state of the agent
p. We define subclasses gfs, mainly with respect to structural properties of the de-
pendence graph, and analyze their complexity. The contglexineasured in terms of
the total size of the strategy graphs and the size of the diepee graph (which is ac-
tually the number of agents). We show that our general proldeorovably intractable,
but some significant subclasses araiand even polynomial. As far as we know, such
an analysis of the relation between the structural and thepatational properties of
a multi-agent coordination problem was not done in previasearch. Note that this
paper presents only first results of our ongoing researcis, th particular, we do not
discuss relative significance of the presented problensetasand we do not provide
wide final conclusions.

The rest of the paper is organized as follows: Section 2 ptes:d discusses our
model. Section 3 is devoted to the basic case of two agerdtoBd introduces a clas-
sification ofsTs’s subclasses, and presents additional complexity restdtshe proofs
and some of the detailed algorithms we refer to the techmégadrt [13]. Concluding
remarks are given in Section 5, together with some discnssiaelated issues and
future work.

2 Graphical Model for ST'S

In this section we define two graphical structures of ¢tre problem domain. The
strategy graplG4 captures the alternative personal strategies of an aggdite agent’s
states are represented by the node€ 6f Each (directed) edge represents a possible
transition between the two corresponding states. Multijalesitions between two states
are possible. If a transition is conditioned, then the spomding edge has label
which describes the condition; when a transition can be dower several alternative
conditions, this is modeled by multiple edges, each lableyealsingle condition. There

are two unique nodes G4, the source node and the target node, which represent the

initial and goal states ofl, respectively. The possible agent’s strategies are repred
by the paths from the source node to the target node. Forustrdtion see Fig. 1(a),
where the possible strategies atgqt, sprt, sprqt, srt, srqt.

The size of this structure is linear in the length of the peabdescription. Observe
that in general, the number of different, potentially apalile, strategies may be expo-
nential in the size of the problem even for an acyclic striestéor a general structure,
this number can, formally, be infinite.
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Consider a pair of agenfs andY” so thatX depends ofY” in the following sense:
each transition ofX is preconditioned by a certain state Bf In graph terms, each
edge inG¥ is labeled by the name of a nodeG”. An example is given in Fig. 1(b),
where the inner graph models and the outer one models. Note that there are two
transitions ofX from the statep to the state: which are preconditioned by different
states oft". The following pair of strategies fak andY is coordinated: The agenf
begins from state andY begins from stat&. Subsequently, (i)X moves top, (ii)

Y moves toP, while X is in p, (iii) X moves tog, (iv) Y moves toQ, (v) X moves

to ¢, and finally, (iv)Y moves toI'. We denote this coordinated multi-agent strategy
by the sequencs, p)(S, P)(p, q)(P, Q)(q,t)(Q,T)). The other possible coordinated
plans forX andY are((s,p)(p,r)(S, R)(r,t)(R,T)) and{(s,r)(S, R)(r,t)(R,T)).

No other coordinated pair of strategies exists. For exaniptee agents begin with
((s,p)(S, P)(p,r)), thenX cannot leave, since it is impossible foY” to reachR after
being inP.

In general, there are several agents As, . . ., A, with strategy graph€® = G4+,

1 < ¢ < n. We say that an agent; depends on an agedt; if transitions ofA; have
states of4; as preconditions. Note that a few agents may depend on theagent, and

an agent may depend on a few other agents. Hence, a trargditibris preconditioned

by states of agents thal; depends on; in general, a transition can depend on a part of
them.

Thedependence grapf is a digraph whose nodes atg, 1 < i < n, and there is
an edge fromd; to A, if agentA; depends on agent;. In what following, we identify
nodes ofG with the corresponding agents. Likewise, we identify theesand edges
of G with the states and transitions 4f, respectively. An edge @’ has a compound
label, each component of which is a state of an immediateguessor of4; in G (i.e.,
a node in the strategy graph of this predecessor).

Both the strategy graph and the dependence graph can beumtedtstraightfor-
wardly, given ansts problem. Likewise, the structural properties of the depgernd
graph, which are investigated in this paper, can be verifiddw polynomial time in
the size of the graph.

In this papergachtransition of an agent is preconditioned by the statedlafgents
that this agent depends on, if the opposite is not declarplicéky. We consider only
connected dependence graphs. The reason is that othehgisett of agents can be
divided into disjoint subsets that can be considered indegetly.

A natural motivation for a pair of agenf§ andY as above is thak fulfills some
mission, whileY” supports it. In practice, the mission &f may be a movement towards
a target, whileY” either watchesY from certain observation points, or feeds it from
certain warehouses, or protects it from some fortified pmsst Such a supportis usual
in military and is wide-spread in various other activitiEsr example, a workek as-
sembles some compound product, while a mobile ctameoves the (half-assembled)
product from one working place ot to another. In general, when there are several
agents, each agentis supported by a few agents, and intippgis a few other agents.

Having read this far the reader may argue that it is possk#é we never know
an agent’s behavior in complete detail, and even if we dontimaber of states that



represent an agent’s behavior may be very large. In this eapdoiting and even con-
structing strategy graphs seems to be infeasible.

Indeed, it is not realistic to present detailed models of ynaal-life systems as
finite state machines. However, as it is argued in [22], tipeagentation an agent uses
need not present the world in sufficient detail to require enexpressive description
language. Intuitively, it is possible to distinguish beeémehe physical state of agents
and their computational state. It is the computationaksthat we have difficulty in
modeling by finite-state machines. However, the computatistate of an agent is not
accessible to the other agents. On the other hand, a fiaite-description can serve
well as a representation of the physical state. A wider disicen of these and other
issues of finite-automata-based knowledge representatidmeasoning can be found
in [22]. Likewise, number of finite-automata-based ardtiiees are discussed in the Al
literature, e.g., see [6].

In case that the number of parameters describing the phgsata (and thus the size
of the state space) is still large, it is often possible t@tallvantage of the structure of
an agent in order to derive a concise description of its skafgarticular, an agent may
be viewed as being composed of a number of largely indepeémdemponents, each
with its own state. Each such component (such as robot’s,imatbr, wheel, etc.) can
be represented by an agent, whose physical state is réjativgple, since it describes
a particular feature of a complex system. In this case, tla¢esty graphs of the agents
are expected to be of reasonable size.

3 TheBasic Case of Two Agents

In the rest of the paper, we study the complexity of varioudtiragent coordination
problems based on the model suggested above. In this seeidemonstrate our tech-
niques on solving the basic case of ag&ntlepending on agenf. Given the strategy
graphs ofX andY’, we build a new graph describing restricted byY. As a result,
our problem is reduced to the known problem of finding a sotwetarget path in this
new graph. Such a reduction becomes possible because afcday of the original
restrictions.

We describe a solution of our problem as an interleaved seguef transitions of
agentsX andY’, as was shown in Section 2. Let us analyze the structure oherge
coordinated plad! for these agents. As mentioned above, private strategies find
Y are source-to-target paths @* andGY respectively, and we denote them by
ando?¥ . Let us divides® into intervalso;¥, o5, ..., o;x of constancy of labels: all
edges (transitions) in;X are labeled (preconditioned) by the same node (sfste)f
Y. TheY’s patho?" is also divided by the nodes; into some parts. The considered
plan is as follows: (1) IfN; # s¥, then agent” moves froms” to stateN; along the
initial part of o¥’; (2) AgentX moves alongr{* to its end; (3)Y” moves fromN; to N,
along the next part af¥’; (4) X moves alongrs, etc. Finally, if N,,, # t¥', then agent
Y moves fromN,, to t¥ along the final part ofY . For illustration see Figure 2.

Let see what “degrees of freedoiY’ has. For simplicity of notation, we denot&
by Ny andt¥ by N,,.. Observe that the replacement of partodf betweennN; to
Nit+1, 0 < i < m, by any other path fron¥; to N;,, retains the plan feasible. That is,
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Fig. 2. Relation between personal strategiesxodndY”

the only requirement for feasibility of X is theexistencef such a path for each label
change along~. Moreover, replacement of amy® by another path between its ends
such that all its edges are labeledByretains the plan feasible.

Lets now consider building such a coordinated planWe take as a central issue
finding an appropriate path . As mentioned above, the only critical points in its build-
ing are the moments of label change alenty: if the label changes fronV; to N, 1,
then a “connecting” path fron¥; to IV;; in G¥ must exist. In order to include into
the same framework the cases in which the label of the first exligots¥ and the label
of the last edge is nat”, we extend=X as follows. We add t6;* a dummy source
5%, with an edgds™, s*) labeledsY, and a dummy targétt, with an edgdtX, t¥)
labeledtY, and consider pathX from 5% to i in this extended grap&X . It is easy
to see that existence of connecting path&infor all critical points inG~ is necessary
and sufficient for the feasibilitgX . Indeed, the twin path?Y is the concatenation of
all connecting paths, fdr < i < m. Therefore, the only information we need in order
to build an appropriate path iiX is whether two edges may be consequent on a path
&% in the above sense, for all pairs of adjacent edgesin

Information on existence of a path between any pair of nadeand N” of G¥
(reachabilityof N from N') can be obtained by a preprocessing®f. Appropri-
ate algorithms are widely known and are very fast; the pdiemstelves, if any, are
provided by these algorithms as well, e.g. see [10]. Heneecan form the following
database for all pairs of consequent edgeS¥n If an edge:’ labeledN’ enters some
node and an edge’ labeledN" leaves the same node, then the gaire”) is marked
“permitted” if either N/ = N or N'' is reachable fromV' in GY. For example see
Figure 3, where dotted lines show the permitted edge pairs.

Sj'—> s

Fig. 3. lllustration of G* with the corresponding*!Y".



In fact, the suggested construction provides a reductigheoproblem of finding a
pathéX as defined above to a known problem of finding a path in a gragtthie new
graphG~X Y have theedgef GX as nodes, and let its edges be defined by the permitted
pairs of edges i X.! Now, all we need is a path from the source n¢&f, s¥) to the
target nodgtX,#¥X) in GX!Y. Clearly, such a path defines the corresponding path in
GX immediately.

Figure 4 summarizes the algorithm for finding a coordinated jfor agentX de-
pending on (“supported by”) ageii. This algorithm is, evidently, polynomial. The
reader can “execute” it by himself on the example given irufég3. This example is
the same as the one in Section 2, and any of the three feasitndinated plans listed
there can be obtained as the result of such an execution. Wadsave achieved our
first result, and in what following, we use the presented aagn for analyzing other
variants ofSTs.

1. Extending strategy graphi® to GX.

2. Preprocessing of strategy gra@h : finding a path from any node to any other node (in fact,
it is sufficient to do this for the node pairs needed in the péetse only).

3. Constructing permitted-edge graght!Y .

4. Finding a source-to-target path@*!" , if any, or reporting on non-existence of a coord
nated plan, otherwise.

5. Reconstructing from the path found in phase 4 a pattin GX and its abridged variant™
in GX.

6. Building a pathsY in GY as the concatenation of paths found at phase 2, for all label
changes along™>.

7. Outputting properly interleaved strategie$ ando” .

Fig. 4. Algorithm for the basisTs problem.

Theorem 1. There exists a polynomial time algorithm that, given a phagentsX, Y,
in which X depends oY, determines existence of a coordinated plan and finds such a
plan, if exists.

This result can be easily generalized to findingatimalcoordinated plan. Assume
that the cost function is the sum or the product of weightstates and/or transitions
used in the plan. Since in step 4 of the algorithm, an arlyipath can be chosen, let us
choose an optimal path; this suffices for global optimaltyy algorithm for finding a
cheapest path in a graph can be used, e.g. see [10].

Now let us require, in additiorsjmplicityof Y''s strategy, i.e., let us forbill to visit
the same state twice. A motivation for this can be that eaate sifY” relates to some
consumable resources. It turns out that this seeminglyassential change in the prob-
lem definition, change the problem to ke-complete. Informally, the reason for this
complexity worsening is that the locality of preconditianthus broken. This result is
mainly interesting from the theoretical point of view, sritpoints on a computational
sensitivity of our original problem.

1 'Such a construction is a variant of the so called “edge grédpigtvn in graph theory; the
addition in our case is the exclusion of non-permitted ediges it.
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4 Reaultsfor Some Other Subclassesof STS

In this section we discuss various additional complexisyits forsTs. Problem classes
are defined mainly by the structure of their dependence gidpheover, both results
and methods depend crucially on the number and size of pessifent strategies: if
both of them are polynomial in the size of problem domainntive distinguish such a
class adboundedFigure 5 summarizes the achieved results, and each bog figtire
denotes asTs’s subclass.

The notation is as follows: First, easlrs subclass is denoted with respect to the
form of the dependence grapfi:stands fodirected chainF" for directed fork(graph
with exactly one node with a non-zero outdegré®) for directed inverse forkgraph
with exactly one node with a non-zero indegre)or polytree(digraph whose un-
derlying undirected graph is a tree), afdor singly-connected DA@&irected acyclic
graph with at most one directed path between any pair of no8esond, the subscript
denotes the number of agemsstands for a constant bound, andhdicates no bounds.

By default, we assume that each transition of an agent isopdétioned by the
states ofll agents that this agent depends on. Alternativeiy, a superscript denotes
a possibility ofpartial dependencer in a superscript denotes the requirement that
all strategies chosen asimple Note that case€, andCj have been discussed in
Section 3.

Provably Intractable |

E

I
I
NP —complete ‘
[ P
Su| | | Ex F, (o4
\
Polynomial |
I C;
I
| C | c
I
Pr| | | FY G
[

Bounded General

Fig. 5. Complexity results fosTs

Coordinating General Agents A natural generalizatiol,, of the classC; (as in
Section 3) occurs when there is a dependence chain: agents < i < n, with
A; dependent om;_1, i > 2. For simplicity of notation, let us abridgg; to i in
superscripts (e.gG? instead ofG4: ).

Our approach fofC, is to iterate the analysis and the algorithm €@r along the
dependence chain. A naive scheme is as follows. For pracegairAs, A,, we need a
database onoordinatedreachability inG. Observe that our algorithm @, applied
to pair A, A; provides such an information for node? ¢2; clearly, this can be done



for any pair of nodes ofi2. Considering paird,, A;, lets check reachability and store
paths, if any, forall pairs of nodes irG2, as required. Now, we are as if sure that if
we would determine a coordinated plan for pair, A> based on the above reachability
relation for A, a corresponding strategy fot; will be obtained easily. Hence, the
situation with A3, A, is similar to that withA,, A;, and thus we can iterate up th,.
Personal coordinated strategies can be consequentlystegcted, fromA,,_; to A;.

However, this scheme turns to be inconsistent. The poirtag tn fact, the coor-
dinated reachability relation i is on itsedgesnot on its nodes, and it is captured
by the edge grapti?!'. Therefore, informally, the right approach is to create dgee
graph forG? basing onGl', not onG?2. This idea of recursive edge graph creating can
be generalized for dependence chain of arbitrary lengtindtbis method, we never
arrive at a deadend as in the naive scheme, and we can obyadoartinated plan for
this problem. For the detailed algorithm f@},, together with an illustrating example
of its execution and a counterexample for the naive approgctefer to the technical
report [13].

Theorem 2. (1) There exists an algorithm fdt,, that determines existence of a coor-
dinated plan and finds such a plan, if exists. This algoritsmalynomial in the total
size of strategy graphs and exponentiahirthusCy, is proved to be polynomial.

(I1) C,, has instances with exponentially sized minimal solutions.

The proof of the exponential lower bound is by the followingmple. Each agent
A;, 2 <i < n, has the strategy graph as follows:

i—1 i—1
i/t' 0 8" —~—a

S \si,l/ \ti,l/ti

The strategy graph fod, looks the same, except that its edges are unlabeled. THis pro
lem instance has a unique minimal coordinated plan of tetajth2"+! — 2 transitions.

By showing thatC,, is provably intractable, theorem 2 emphasizes our motivati
for exploiting various structural restrictions omrs in order to find problem classes
which are polynomial, e.gCy, or at least belong tap. In particular, the subclass of
C,, strategy graphs of which are acyclic can be easily shownltnbeonpP. However,
the question of its exact hardness is still an open questiba.same question is open
for the decision version df,, .

Theorem 3 summarizes the complexity results for some otlasses ofTs (for
notations see Section 4).

Theorem 3. (1) There exists a polynomial time algorithm 8¢ that determines exis-

tence of a coordinated plan and finds such a plan, if exisits There exists a polynomial

time algorithm forCj that determines existence of a coordinated plan and finds guc
plan, if exists(111) F, is Np-complete(IV) FY” is NP-complete.

Proof sketch. (l)in F), a single agentd; depends on a group of independent
supporting agentd,, ..., A,. The algorithm is similar to that fo€, . The idea is that
several preconditions on the same transition can be chaokegendently(ll) C is
an extension of, in which onlysomeof transitions of the supported agent depend on
the state of the supporting agent. The algorithm@ris similar to that forC,, except
that a certain modification of the permitted-edge graphY” is used(lll),(IV) InF2, a
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Main
RepeaPruningwhile strategy sets are changing.
If all strategy sets are empty, then report that no coordohatan exists.
Otherwise, perfornConstruction
Pruning
For all edgeg 4;, A;) in G do:
For eachr® € S do:
If Compatibility-Checlo;, o;) returns false for all’ € S7 then remover® from S¢.
For eachy’ € S7 do:
If Compatibility-Checlo;, o;) returns false for alr® € S’ then remover’ from §7.
Compatibility-ChecKo;, o)
If I(c*)[4] with neighboring repetitions removed is a subsequenee of
then return true, else return false.
Construction
Pick any agentd and any strategy for it.
Traverseg undirectly from the nodel. For each visited nodd’, choose any strategy of
that is compatible with the strategy chosen for the node frdrith we came tod'.

Fig. 6. Algorithm for PJ;.

single agentd; supports a group of agents,, . .., A,,. The membership inp can be
easily shown for botf#”) andFY" . In turn, the proofs of hardness ff andFY™ are
by polynomial reductions from 3AT and PATH WITH FORBIDDEN PAIRSproblems,
respectively.

RemarksThe algorithm forC,, can be extended fdC7, similarly to the extension
of the G, algorithm forC} . Results presented for the cases of chain and inverse fork
dependence graphs can be generalized to the case of depergtaph being a tree
directed to its root.

Coordinating Bounded Agents In this section we consider the class of problems for
which the number and size of strategies for each agent is\poijal in the size of the
problem domain. In what follows, such agents are referreobasnded Let us denote
by S’ the set of allowed strategie$ of A; (i.e., source-to-target paths@). We show
that if a dependence graph forms a polytree thenfor bounded agents is polynomial.
However, its extension to singly connected directed graphbeadynpP-complete.

ConsiderPT. Notice that any polytree is an acyclic graph. Denotd (ay) the se-
quence of edge labels aloag, and byl; (a*)[j] the projection of(¢*) to the nodes of
G7. Figure 6 presents our algorithm fBf;.

Theorem 4. (I) There exists a polynomial time algorithm f8f, with bounded agents
that determines existence of a coordinated plan and finds aydan, if exists(l1) ST
for bounded agents isp-complete.

Proof sketch. (IAccording to the analysis in Section 3, the conditio@ofmpatibility-
Checkconfirms that the checked pait, o7 is coordinated. Therefore, convergence of
the pruning process ensures that for each agde(i} any one of its strategies has at least
one supporting strategy of each predecesseot of G, and (ii) any one of its strategies
supports at least one strategy for any successdriafG. Hence, ifConstructiorhas a
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personal strategy to begin with, then it is surely succésBhlynomiality holds, since
each execution dPruningdecreases the total number of personal strategies.

(I) Membership inNP for ST is straightforward, and the hardness proof is by a
polynomial reduction from 35AT.

5 Discussion and Conclusions

In this paper, we concerned coordination for a set of agéatsvwtork on independent
goals in the same environment. We investigated a parti¢ahaily of the problems of
finding coordinated plans, where actions of an agent depenbeolocal states of cer-
tain other agents. First, we presented a graphical repsagmmmodel for this family of
problems. Then, we classified these problems mainly acegtdithe structural proper-
ties of the model. In the main part of the paper, we analyzeadtimputational proper-
ties of various problem classes. We gave polynomial saistfor several classes, while
for some other we proved theilPr-completeness or even provable intractability. A num-
ber of unsolved problems remains for the further researsl stiggested approach—to
find a sufficiently formal description for some problem cksssand to analyze their
computational properties—seems to be prospective in thHg-egent area. Following
some additional observations with respect to results pteden this paper.

First, let each agent and its states be considered as avallgd variable and its
values, respectively, and let the set of agents’ trangtimnconsidered as a set of oper-
ators over the above variables. In this context, our resolt&€ern complexity analysis
in the area of classical planning over multi-valued vaegsty, 19]. Specifically, our
results address the planning problems over multi-valueies and only unary (=
single effect) operators.

Second, in our model, each agent is assumed to be assignepets@nal goal,
which is independent of the personal goals of all other agetdwever, a supporting
agent may have no explicit personal goal, while supportictiyities of some other
agents may be its only destiny. This particular relaxatian be immediately added
into the presented model, with no negative impact on the coatipnal properties of the
problems. The coordinated group of dependent agents caieWwed as collaborating
towards the achievement of some global goal.

Third, in this work we address only groups of fully contrallentities. Therefore,
in particular, our results do not concern state-transisiettings where agent’s strategy
depends on uncontrolled environment, like that studie®,5].

In the future, we plan to continue with analysis of variouasssks ofTs. In ad-
dition, we want to examine other forms of dependence bettleeagents, and other
forms of goal(s) definition for a group of agents. This isswilkbe examined in the
context of their impact on the complexity of coordinatione \Also plan to address re-
lated optimization problems.
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