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t. We des
ribe an approximate dynami
 programming algorithm for partiallyobservable Markov de
ision pro
esses represented in fa
tored form. Two 
omplemen-tary forms of approximation are used to simplify a pie
ewise linear and 
onvex valuefun
tion, where ea
h linear fa
et of the fun
tion is represented 
ompa
tly by an alge-brai
 de
ision diagram. In one form of approximation, the degree of state abstra
tionis in
reased by aggregating states with similar values. In the se
ond form of approx-imation, the value fun
tion is simpli�ed by removing linear fa
ets that 
ontributemarginally to value. We derive an error bound that applies to both forms of approx-imation. Experimental results show that this approa
h improves the performan
e ofdynami
 programming and extends the range of problems it 
an solve.1 Introdu
tionMarkov de
ision pro
esses (MDPs) have been adopted as a framework for resear
h in de
ision-theoreti
 planning [2℄. An MDP models planning problems for whi
h a
tions have an un
er-tain e�e
t on the state, and sensory feedba
k 
ompensates for un
ertainty about the state.An MDP is said to be 
ompletely observable if sensory feedba
k provides perfe
t state infor-mation before ea
h a
tion. It is said to be partially observable if sensory feedba
k is noisyand provides partial and imperfe
t state information. Although a partially observable Markovde
ision pro
ess (POMDP) provides a more realisti
 model, it is mu
h more diÆ
ult to solve.Dynami
 programming is the most 
ommon approa
h to solving MDPs. However, a draw-ba
k of 
lassi
 dynami
 programming algorithms is that they require expli
it enumeration ofa problem's state spa
e. Be
ause the state spa
e grows exponentially with the number of statevariables, these algorithms are prey to Bellman's \
urse of dimensionality." To address thisproblem, resear
hers have developed algorithms that exploit a fa
tored state representationto 
reate an abstra
t state spa
e in whi
h planning problems 
an be solved more eÆ
iently.This approa
h was �rst developed for 
ompletely observable MDPs, using de
ision trees toaggregate states with identi
al values [3℄. Improved performan
e was subsequently a
hievedusing algebrai
 de
ision diagrams (ADDs) in pla
e of de
ision trees [9℄. A fa
tored represen-tation has also been exploited in solving POMDPs using both de
ision trees [4℄ and ADDs [8℄.Although this approa
h improves the eÆ
ien
y with whi
h many problems 
an be solved,it provides no bene�t unless there are states with identi
al values that 
an be aggregated.Moreover, the degree of state abstra
tion that 
an be a
hieved in this way may be insuÆ-
ient to make a problem tra
table. Many large MDPs and even small POMDPs resist exa
tsolution. Thus, there is a need for approximation to allow a tradeo� between optimality and
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omputation time. For 
ompletely observable MDPs, an approa
h to approximation thatin
reases the degree of state abstra
tion by aggregating states with similar (rather thanidenti
al) values has been developed, using both de
ision trees [5℄ and ADDs [13℄. This paperdevelops a related approa
h to approximation for the partially observed 
ase.Whereas the value fun
tion of a 
ompletely observable MDP 
an be represented by asingle ADD, the value fun
tion of a POMDP is represented by a set of ADDs. This makesdevelopment of an approximation algorithm for fa
tored POMDPs more 
omplex. We de-s
ribe two 
omplimentary forms of approximation for POMDPs. The �rst is 
losely relatedto approximation in the 
ompletely observable 
ase and involves simplifying an ADD byaggregating states of similar value. In the se
ond form of approximation, the set of ADDsrepresenting the value fun
tion is redu
ed in size, by removing ADDs that 
ontribute onlymarginally to value. The latter te
hnique is often used in pra
ti
e, but has not been analyzedbefore in the literature. We 
larify the relationship between these two forms of approxima-tion, and derive a bound on their approximation error. Experimental results show that thisapproa
h to approximation 
an improve the rate of 
onvergen
e of dynami
 programming,as well as the range of problems it 
an solve.2 Partially observable Markov de
ision pro
essesWe assume a dis
rete-time POMDP with �nite sets of states S, a
tions A, and observationsO. The transition fun
tion Pr(s0js; a), observation fun
tion Pr(ojs0; a), and reward fun
tionr(s; a) are de�ned in the usual way. We assume a dis
ounted in�nite-horizon optimality
riterion with dis
ount fa
tor � 2 (0; 1℄. A belief state, b, is a probability distribution over Smaintained by Bayesian 
onditioning. As is well-known, it 
ontains all information ne
essaryfor optimal a
tion sele
tion. This gives rise to the standard approa
h to solving POMDPs.The problem is re
ast as a 
ompletely observable MDP with a 
ontinuous, jSj-dimensionalstate spa
e 
onsisting of all possible belief states, denoted B. In this form, the POMDP 
anbe solved by iteration of a dynami
 programming operator T that improves a value fun
tionV : B ! < by performing the following \one-step ba
kup" for all belief states b.Vn(b) = TVn�1(b) = maxa2A (r(b; a) + �Xo2OPr(ojb; a)Vn�1(bao)) ; (1)where r(b; a) =Ps2S b(s)r(s; a); bao is the updated belief state after a
tion a and observationo; and Pr(ojb; a) =Ps;s02S Pr(o; s0js; a)b(s) where Pr(o; s0js; a) = Pr(s0js; a)Pr(ojs0; a).The theory of dynami
 programming tells us that the optimal value fun
tion V � is theunique solution of the equation system V = TV , and that V � = limn!1 TnV0, where Tndenotes n appli
ations of operator T to any initial value fun
tion V0. We note that Tn
orresponds to the value iteration algorithm.An important result of Smallwood and Sondik [11℄ is that the dynami
-programmingoperator T preserves the pie
ewise linearity and 
onvexity of the value fun
tion. A pie
ewiselinear and 
onvex value fun
tion V 
an be represented by a �nite set of jSj-dimensionalve
tors of real numbers, V = fv0; v1; : : : ; vkg, su
h that the value of ea
h belief state b isde�ned as: V (b) = max0�i�kXs2S b(s)vi(s):
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Several algorithms for 
omputing the dynami
-programming operator have been developed.The most eÆ
ient, 
alled in
remental pruning [6℄, relies on the fa
t that the updated valuefun
tion Vn of Equation (1) 
an be de�ned as a 
ombination of simpler value fun
tions, asfollows: Vn(b) = maxa2A V an (b)V an (b) = Xo2O V a;on (b)V a;on (b) = r(b; a)jOj + �Pr(ojb; a)Vn�1(bao)Ea
h of these value fun
tions is also pie
ewise linear and 
onvex, and 
an be represented bya unique minimum-size set of ve
tors, denoted Vn, Van, and Va;on respe
tively.The 
ross sum of two sets of ve
tors, U and W , is de�ned as U �W = fu+wju 2 U ; w 2Wg. An operator that takes a set of ve
tors U and redu
es it to its unique minimum formis denoted PRUNE(U). Using this notation, the minimum-size sets of ve
tors de�ned above
an be 
omputed as follows: Vn = PRUNE ([a2AVan)Van = PRUNE (�o2OVa;on )Va;on = PRUNE �fva;o;ijvi 2 Vn�1g� ;where va;o;i is the ve
tor de�ned byva;o;i(s) = r(s; a)jOj + � Xs02S Pr(o; s0js; a)vi(s0): (2)In
remental pruning gains its eÆ
ien
y (and its name) from the way it interleaves pruningand 
ross-sum to 
ompute V an , as follows:Van = PRUNE(:::PRUNE(PRUNE(Va;o1n � Va;o2n )� Va;o3n ) : : :� Va;okn ):PRUNE redu
es a set of ve
tors to a unique, minimal-size set by removing \dominated"ve
tors, that is, ve
tors that 
an be removed without a�e
ting the value of any belief state.There are two tests for dominated ve
tors. One test determines that ve
tor w is dominatedby some other ve
tor u 2 V when w(s) � u(s);8s 2 S: (3)Although this test 
an be performed eÆ
iently, it 
annot dete
t all dominated ve
tors. There-fore, it is supplemented by a se
ond, less eÆ
ient test that determines that a ve
tor w isdominated by a set of ve
tors V when the following linear program 
annot be solved for avalue of d that is greater than zero.variables: d; b(s) 8s 2 Smaximize dsubje
t to the 
onstraintsPs2S b(s)(w(s) � u(s)) � d; 8u 2 VPs2S b(s) = 1
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In a single iteration of in
remental pruning, many linear programs must be solved to dete
tall dominated ve
tors, and the use of linear programming to test for domination has beenfound to 
onsume more than 95% of the running time of in
remental pruning [6℄. The numberof variables in ea
h linear program is determined by the size of the state spa
e. The numberof 
onstraints in ea
h linear program (as well as the number of linear programs that needto be solved) is determined by the size of the ve
tor set being pruned. This re
e
ts the twoprin
ipal sour
es of 
omplexity in solving POMDPs. One sour
e of 
omplexity is shared by
ompletely observable MDPs: the size of the state spa
e. The other sour
e of 
omplexity isunique to POMDPs: the number of linear fun
tions needed to represent the pie
ewise linearand 
onvex value fun
tion.In this paper, we explore two forms of approximation that address these two sour
esof 
omplexity. We use state abstra
tion to redu
e the number of variables in ea
h linearprogram. We use relaxed tests for dominan
e to redu
e the number of 
onstraints in ea
hlinear program, as well as the number of linear programs that need to be solved. Beforedes
ribing our approximation algorithm, we des
ribe the framework for state abstra
tion.3 State abstra
tion and algebrai
 de
ision diagramsWe 
onsider an approa
h to state abstra
tion for MDPs and POMDPs that exploits a fa
toredrepresentation of the problem. We assume the relevant properties of a domain are des
ribedby a �nite set of Boolean state variables, X = fX1; : : : ; Xng, and observations are des
ribedby a �nite set of Boolean observation variables Y = fY1; : : : ; Ymg. We de�ne an abstra
tstate as a partial assignment of truth values to X , 
orresponding to a set of possible states.Algebrai
 de
ision diagrams Instead of using matri
es and ve
tors to represent the POMDPmodel, we use a data stru
ture 
alled an algebrai
 de
ision diagram (ADD) that exploits stateabstra
tion to represent the model more 
ompa
tly. De
ision diagrams are widely used inVLSI CAD to represent and evaluate large state spa
e systems [1℄. A binary de
ision diagramis a 
ompa
t representation of a Boolean fun
tion, Bn ! B. An algebrai
 de
ision diagram(ADD) generalizes a binary de
ision diagram to represent real-valued fun
tions, Bn ! <.Operations su
h as sum, produ
t, and expe
tation (
orresponding to similar operations onmatri
es and ve
tors) 
an be performed on ADDs, and eÆ
ient pa
kages for manipulatingADDs are available [12℄. Hoey et al. [9℄ show how to use ADDs to represent and solve
ompletely observable MDPs. Hansen and Feng [8℄ extend this approa
h to POMDPs, basedon earlier work of Boutilier and Poole [4℄. In the rest of this se
tion, we summarize thisapproa
h to state abstra
tion for POMDPs.Model We represent the state transition fun
tion for ea
h a
tion a using a two-sli
e dynami
belief network (DBN). The DBN has two sets of variables, one set X = fX1; :::; Xng refersto the state before taking a
tion a, and the other set X 0 = fX 01; :::; X 0ng refers to the stateafter.For ea
h post-a
tion variable X 0i , the 
onditional probability fun
tion P a(X 0i jX ) of theDBN is represented 
ompa
tly using an ADD. It is 
onvenient to 
onstru
t a single ADD,P a(X 0jX ), that represents in fa
tored form the state transition fun
tion for all post-a
tionvariables. Hoey et al. [9℄ 
all this a 
omplete a
tion diagram and des
ribe the steps requiredto 
onstru
t it.
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The observation model of a POMDP is represented in fa
tored form, in a similar way.We use an ADD P a(YijX 0) to represent the probability that observation variable Yi is trueafter a
tion a is taken and the state variables 
hange to X 0. Given an ADD, P a(YijX 0), forea
h observation variable Yi, it is again 
onvenient to 
onstru
t a single ADD, P a(YjX 0),that represents in fa
tored form the observation fun
tion for all observation variables. We
all this a 
omplete observation diagram, and it is 
onstru
ted in the same way as a 
ompletea
tion diagram.Given a 
omplete a
tion diagram and a 
omplete observation diagram, a single ADD,P a;o(X 0jX ), representing the transition probabilities for all state variables after a
tion a andobservation o, is 
onstru
ted as follows:P a;o(X 0jX ) = P a(X 0jX )P a(YjX 0):The ADD P a;o(X 0jX ) represents the probabilities Pr(o; s0js; a), just as P a(X 0jX ) representsthe probabilities Pr(s0js; a) and P a(YjX 0) represents the probabilities Pr(ojs0; a).The reward fun
tion for ea
h a
tion a 
an also be represented 
ompa
tly by an ADD,denoted Ra(X ). Similarly, a pie
ewise linear and 
onvex value fun
tion for a POMDP 
an berepesented 
ompa
tly by a set of ADDs. We use the notation V = fv1(X ); v2(X ); : : : ; vk(X )gto denote this value fun
tion.Dynami
 programming Hansen and Feng [8℄ des
ribe how to modify the in
remental pruningalgorithm to exploit this fa
tored representation of a POMDP for 
omputational speedup.We brie
y review their approa
h, and refer to their paper for details.The �rst step of in
remental pruning is generation of the linear fun
tions in the sets Va;on .For a POMDP represented in fa
tored form, the following equation repla
es Equation (2):va;o;i(X ) = Ra(X )jOj + �XX 0 P a;o(X 0jX )vi(X 0):All terms in this equation are represented by ADDs. The symbol PX 0 denotes an ADDoperator 
alled existential abstra
tion that sums over the values of the state variables inP a;o(X 0jX )vi(X 0), exploiting state abstra
tion to 
ompute the expe
ted value eÆ
iently.State abstra
tion is also exploited to perform pruning more eÆ
iently. Re
all that thevalue fun
tion is represented by a set of linear fun
tions. Ea
h linear fun
tion is represented
ompa
tly by an ADD that 
an map multiple states to the same value, 
orresponding to aleaf of the ADD. In this 
ase, the leaf 
orresponds to an abstra
t state. Hansen and Feng [8℄des
ribe an algorithm that �nds a partition of the state spa
e into abstra
t states that is
onsistent with the set of ADDs. Given this abstra
t state spa
e, both tests for dominan
e
an be performed more eÆ
iently. In parti
ular, the number of variables in the linear programused to test for domina
e is redu
ed in proportion to the redu
tion in size of the state spa
e.Be
ause linear programming 
onsumes most of the running time of in
remental pruning, thissigni�
antly improves the performan
e of the algorithm in the best 
ase. In the worst 
ase,performan
e is only slightly worse sin
e the overhead for this approa
h is almost negligible.Hansen and Feng [8℄ report speedups of up to a fa
tor of twenty for the problems they test.The degree of speedup is proportional to the degree of state abstra
tion.
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4 Approximation algorithmAs an approa
h to s
aling up dynami
 programming for POMDPs, the exa
t algorithmreviewed in the previous se
tion has two limitations. First, there may not be suÆ
ientlymany (or even any) states with identi
al values to 
reate an abstra
t state spa
e that issmall enough to be tra
table. Se
ond, although the size of the state spa
e 
ontributes tothe 
omplexity of POMDPs, the primary sour
e of 
omplexity is the potential exponentialgrowth in the number of linear fun
tions (ADDs) needed to represent the value fun
tion.We now des
ribe an approximate dynami
 programming algorithm that addresses bothof these limitations by ignoring di�eren
es of value less than some error threshold Æ. It runsmore eÆ
iently than the exa
t algorithm be
ause it 
omputes a simpler, approximate valuefun
tion for whi
h we 
an bound the approximation error. There are two pla
es in whi
hthe algorithm ignores value di�eren
es { in representing state values, and in representingvalues of belief states. These 
orrespond to two 
omplementary forms of approximation, onein whi
h an ADD representing state values is simpli�ed, and the other in whi
h a set of ADDsrepresenting belief state values is redu
ed in size. In other words, one form of approximationredu
es the size of the state spa
e (using state abstra
tion) and the other redu
es the size ofthe value fun
tion (by pruning more aggressively). Before des
ribing the algorithm, we de�newhat we mean by approximate dynami
 programming and present some theoreti
al resultsthat allow us to bound the approximation errorApproximation with bounded error We begin by de�ning what we mean by an approximatevalue fun
tion and an approximate dynami
 programming operator.De�nition 1. A value fun
tion V̂ approximates a value fun
tion V with approximation errorÆ if kV � V̂ k � Æ. (Note that kV � V̂ k denotes maxb2B jV (b)� V̂ (b)j.)De�nition 2. An operator T̂ approximates the dynami
 programming operator T if for anyvalue fun
tion V , kTV � T̂ V k � Æ.We de�ne an approximate value iteration algorithm T̂n in the same way that we de�nedthe value iteration algorithm Tn. The error between the approximate and exa
t n-step valuefun
tions is bounded as follows.Theorem 1. For any n > 0 and any value fun
tion V ,kTnV � T̂nV k � Æ1� � :To 
ompute a bound on the error between a n-step approximate value fun
tion andthe optimal value fun
tion, we use the Bellman residual between the (n � 1)th and nthapproximate value fun
tions. The following theorem is essentially the same as Theorem 12.2.5of Ortega and Rheinboldt [10℄, who studied approximate 
ontra
tion mappings for systems ofnonlinear equations, and Theorem 4.2 of Cheng [7℄, who �rst applied their result to POMDPs.Theorem 2. The error between the 
urrent and optimal value fun
tion is bounded as follows,kT̂nV � V �k � �1� � kT̂nV � T̂n�1V k+ Æ1� � :
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Value iteration using an approximate dynami
 programming operator 
onverges \weakly,"that is, two su

essive value fun
tions fall within a distan
e 2Æ1�� in the limit. (De
reasing Æafter \weak" 
onvergen
e will allow further improvement, as dis
ussed later.)Theorem 3. For any value fun
tion V and " > 0, there is an N su
h that for all n > N ,kT̂nV � T̂n�1V k � 2Æ1� � + ":Simplifying ADDs We �rst des
ribe an approa
h to approximation that simpli�es an ADDby ignoring small di�eren
es in state values. It is based on a similar approa
h to approxima-tion for 
ompletely observable MDPs [13℄, although modi�
ations are needed to extend thisapproa
h to POMDPs.For 
ompletely observable MDPs, a single ADD represents the value fun
tion. Ea
h leafof the ADD 
orresponds to a distin
t value. If more than one state has the same value,the states are mapped to the same leaf. In this way, a leaf 
an represent a set of states,or equivalently, an abstra
t state. Be
ause state abstra
tion 
an be exploited to a

eleratedynami
 programming, the approa
h to approximation is to in
rease the degree of stateabstra
tion by aggregating states with similar (though not identi
al) values.St-Aubin et al. [13℄ introdu
e the following notation and terminology. The value of astate is represented as a pair [l; u℄, where the lower, l, and upper, u, bounds on the val-ues are both represented. The span of a state, s, is given by span(s) = u� l. The 
ombinedspan of states s1; s2; : : : ; sn with values [l1; u1℄; : : : ; [ln; un℄, is given by 
span(s1; s2; : : : ; sn) =max(u1; : : : ; un)�min(l1; : : : ; ln). The method of approximation is to merge states (and 
or-respondingly, leaves of an ADD) when their 
ombined span is less than Æ. This approximationis performed after ea
h iteration of dynami
 programming. The simpler ADD allows 
ompu-tational speedup, at the 
ost of some approximation error introdu
ed by ignoring di�eren
esof value less than Æ.To implement this approa
h to approximation, St-Aubin et al. [13℄ modi�ed the ADDpa
kage so that a leaf of an ADD 
an represent a range of values, and a single ADD 
anrepresent a ranged value fun
tion. We don't do this be
ause the value fun
tion of a POMDPis represented by a set of ADDs, instead of a single ADD, and we are 
on
erned with upperand lower bounds on the values of belief states. The set of ADDs representing the lowerbound fun
tion may not be the same as the set of ADDs representing the upper boundfun
tion. An alternative to a ranged value fun
tion is to use two ADDs to represent boundson state values { one for lower bounds and one for upper bounds. But this representationwould require performing in
remental pruning twi
e { on
e to 
ompute a pie
ewise linear and
onvex lower bound fun
tion and on
e to 
ompute a pie
ewise linear and 
onvex upper boundfun
tion { doubling the 
omplexity of the algorithm. Instead, we found that we 
an a
hievean equally good result by 
omputing a pie
ewise linear and 
onvex lower bound fun
tiononly, and representing the upper bound by using a s
alar for the approximation error.Figure 1 illustrates the e�e
t of simpli�
ation. The ADD on the left is simpli�ed bymerging leaves that have a 
ombined span of less than Æ = 0:5. The ADD on the rightrepresents a lower bound on the value of ea
h abstra
t state. Adding Æ to ea
h lower boundgives the upper bound. We use the following algorithm to simplify an ADD. The input is anADD and approximation threshold Æ. The output is a simpli�ed ADD with bounded error.
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Fig. 1: Example of ADD simpli�
ation.QUEUE  all leaves of ADD sorted in in
reasingorder of values  remove �rst element from QUEUEX  fsgwhile QUEUE is not emptyt  remove next element from QUEUEif 
span(X[ftg) � ÆX  X [ ftgelsemerge(X) and 
reate new ADD leaf for XX  ftgendifendwhileBe
ause the 
omplexity of ea
h merge is jSj, the 
omplexity of this algorithm is O(jSj2.Performing this simpli�
ation algorithm on ea
h ADD in a pie
ewise linear and 
onvex valuefun
tion results in an approximate value fun
tion with approximation error Æ.Theorem 4. Let V = fv1; : : : ; vng be a pie
ewise linear and 
onvex value fun
tion and letV 0 = fv01; : : : ; v0ng be its approximation su
h that for ea
h v0i, we have jjvi � v0ijj � Æ. ThenkV � V 0k � Æ.Pruning ADDs In Se
tion 2, we des
ribed two tests for dominated linear fun
tions. It haslong been re
ognized that both tests are sensitive to numeri
al impre
ision errors when thevalue representing the degree of domina
e is 
lose to zero. Thus, a pre
ision parameter istypi
ally used to prevent linear fun
tions from being in
luded in the value fun
tion due tonumeri
al impre
ision error. Instead of testing for a value greater than zero to ensure that alinear fun
tion is not dominated, the test is for a value greater that 10�15, for example, orsome number that represent the limit of numeri
al pre
ision on the 
omputer.Many pra
titioners have noti
ed that in
reasing this pre
ision parameter (to a valueof, say, 10�5), has the added bene�t of pruning ve
tors that 
ontribute only marginally tothe value fun
tion. This often results in signi�
ant performan
e improvement. Although thiste
hnique is widely used in pra
ti
e, the e�e
t of this approximation on the error bound of thevalue fun
tion has not been analyzed before in the literature. We 
onsider this se
ond method
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of approximation in this paper be
ause of its 
lose, and 
omplementary, relationship to our�rst method of approximation, whi
h also ignores small di�eren
es of value. Equation (3)gives a test for dominan
e that we generalize to allow approximation as follows.De�nition 3. A linear fun
tion w is approximately dominated by another linear fun
tionu 2 V when w(s) � Æ � u(s); 8s 2 S;where Æ > 0.The linear programming test for domination is generalized to allow approximation as follows.De�nition 4. A linear fun
tion w is approximately dominated by a set of linear fun
tionsV, if the output of the linear program, d, is less than Æ > 0.Let PRUNE0 be the pruning operator that employs these two approximate dominan
e tests.Theorem 5. For any set of ve
tors V,kPRUNE(V)� PRUNE0(V)k � Æ:A

umulation of error Both the approximate ADD simpli�
ation algorithm and the approxi-mate pruning algorithm are applied repeatedly during in
remental pruning. They are appliedto ea
h set Va;on . They are applied to ea
h of the jOj sets of ADDs 
reated by the 
ross-sumoperator during the 
omputation of Van. Finally, they are applied to the set Vn 
reated by theunion of the sets Van. Thus, we must 
onsider how approximation error a

umulates duringthe progress of in
remental pruning.Lemma 1. If a set of ADDs representing value fun
tion V is simpli�ed with approximationerror Æ1 and then pruned with approximation error Æ2, the resulting set of ADDs representsa value fun
tion that approximates V with error Æ1 + Æ2.Lemma 2. If V̂ 1 is an approximation of value fun
tion V 1 with approximation error Æ1,and V̂ 2 is an approximation of value fun
tion V 2 with approximation error Æ2, then:1. V̂ 1 + V̂ 2 is an approximation of V 1 + V 2 with approximation error Æ1 + Æ2, and2. V̂ 1 [ V̂ 2 is an approximation of V 1 [ V 2 with approximation error max(Æ1; Æ2).Theorem 6. Let T̂ denote an approximation of the dynami
 programming operator T 
om-puted by in
remental pruning with simpli�
ation error Æ1 and pruning error Æ2. For any valuefun
tion V , kTV � T̂ V k � (2jOj+ 1)(Æ1 + Æ2):Letting Æ = (2jOj + 1)(Æ1 + Æ2), we 
an use Theorem 2 to 
ompute a bound on the errorbetween the approximate and optimal value fun
tions.Adjustment of approximation Finally, we note that with exa
t dynami
 programming, thedi�eren
e between su

essive value fun
tions always de
reases from one iteration to the next.This is not ne
essarily the 
ase with approximate dynami
 programming. It suggests a strat-egy for redu
ing the approximation parameters over su

essive iterations. Whenever thereis an in
rease in the Bellman residual, we redu
e the approximation parameters (e.g., bythe dis
ount fa
tor 0.5) and the solution 
ontinues to improve. By using a high degree ofapproximation initially and gradually redu
ing it, we may a

elerate the rate of improvementin initial iterations and still eventually a
hieve a result of equal quality as a result found bythe exa
t algorithm. This is explored in the next se
tion.
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tion between ADD simpli�
ationand pruning error on size of value fun
tion.5 Analysis of performan
eHansen and Feng [8℄ use seven test problems to evaluate the performan
e of their exa
t dy-nami
 programming algorithm for fa
tored POMDPs. Among these, the fourth test problem(with six state variables, �ve a
tions, and two observation variables) illustrates the worst-
ase performan
e of the algorithm. Be
ause there are strong dependen
ies among all thestate variables, the algorithm �nds no state abstra
tion. So we use this example as a testof whether the approximation algorithm 
an 
reate state abstra
tions where the exa
t algo-rithm 
annot. Figure 2 
ompares the size of the abstra
t state spa
e 
reated by the exa
t andapproximation algorithms over su

essive iterations. Approximate ADD simpli�
ation makesit possible to solve the problem in an abstra
t state spa
e that varies in size from �ve to thirtystates, 
ompared to 64 states in the original state spa
e. This shows that ADD simpli�
ation
an 
reate useful state abstra
tions for problems with little or no variable independen
e.Figure 4 and 5 show the intera
tion between the two forms of approximation by wayof their e�e
t on the two prin
ipal sour
es of POMDP 
omplexity { the size of the statespa
e and the size of the value fun
tion. The data is 
olle
ted by running the program
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with di�erent pruning and simpli�
ation errors for 30 iterations. The average size of theabstra
t state spa
e and the average size of the value fun
tion are then plotted as a fun
tionof the two types of approximation error. Figure 4 shows that in
reasing the ADD pruningerror has little or no e�e
t on ADD simpli�
ation. Figure 5 shows that in
reasing the ADDsimpli�
ation error only slightly ampli�es the e�e
t of ADD pruning. Thus, the performan
eimprovement a
hieved from ea
h form of approximation is almost independent, with a slightpositive intera
tion e�e
t. The two methods of approximation are 
omplementary. ADDsimpli�
ation de
reases the size of the state spa
e and ADD pruning de
reases the size ofthe value fun
tion.Figure 3 shows the separate e�e
t of ea
h form of approximation on the rate of 
onver-gen
e, as well as their 
ombined e�e
t. (The ADD simpli�
ation error is 0.1 and the ADDpruning error is 0.01.) It shows that using both forms of approximation results in betterperforman
e than using either one alone. It also shows that the approximation algorithm 
an�nd a better solution than the exa
t algorithm, in the same amount of time. The reason forthis is that the approximation algorithm approximates the dynami
-programming operator,whi
h performs a single iteration of dynami
 programming. Dynami
 programming takesmany iterations to 
onverge. Be
ause approximation allows the dynami
-programming oper-ator to be 
omputed faster in ex
hange for slightly less improvement of the value fun
tion,approximation 
an have the e�e
t of in
reasing the rate of improvement. In other words, theapproximation algorithm 
an perform more iterations in the same amount of time, and, as aresult, 
an �nd a better solution in the same amount of time. This is true even though ea
hiteration of the approximation algorithm may not improve the value fun
tion as mu
h as a
orresponding iteration of the exa
t algorithm.We are not only interested in improving the rate of 
onvergen
e of dynami
 programming.We are also interested in solving larger problems than the exa
t algorithm 
an solve. Thes
alability of both the exa
t algorithm and the approximation algorithm is limited by thesame two fa
tors - the size of the state spa
e and the size of the value fun
tion. (The dynami
programming algorithm 
urrently 
annot handle problems with more than about 50 states orvalue fun
tions with more than a few hundred ADDs.) The approximation algorithm s
alesbetter than the exa
t algorithm be
ause it 
an 
ontrol the size of the state spa
e and the sizeof the value fun
tion. It 
ontrols the size of the (abstra
t) state spa
e by using approximationto adjust the degree of state abstra
tion. It 
ontrols the size of the value fun
tion by usingapproximation to adjust the threshold for pruning ADDs, and thus the number of ADDsthat are pruned. This allows the algorithm to �nd approximate solutions to problems withmore states than the exa
t algorithm 
an handle, and to avoid an exponential explosion inthe size of the value fun
tion. The quality of the solution that 
an be found within theselimitations is problem-dependent, but easily estimated by 
omputing the error bound.6 Con
lusionPOMDPs are very diÆ
ult to solve exa
tly and it is widely-re
ognized that approximation isneeded to solve realisti
 problems. We have des
ribed two 
omplementary forms of approxi-mation that improve the performan
e of a dynami
 programming algorithm that 
omputesa pie
ewise linear and 
onvex value fun
tion. The �rst form of approximation in
reases thedegree of state abstra
tion by ignoring state distin
tions that have little e�e
t on value. These
ond form of approximation redu
es the number of linear fun
tions used to represent the
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value fun
tion by removing those that have little e�e
t on value. Both forms of approxima-tion allow 
omputational speedup in ex
hange for a bounded de
rease in solution quality.Both also have tunable parameters that allow the degree of approximation to be adjusted tosuit the problem. We showed that this approa
h to approximation improves both the rate of
onvergen
e of dynami
 programming, and its s
alability.Referen
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