
Approximate Planning for Fatored POMDPsZhengzhu Feng1 and Eri A. Hansen21 Computer Siene Department, University of Massahusetts, Amherst MA 02062fengzz�s.umass.edu,2 Computer Siene Department, Mississippi State University, Mississippi State MS 39762hansen�s.msstate.eduAbstrat. We desribe an approximate dynami programming algorithm for partiallyobservable Markov deision proesses represented in fatored form. Two omplemen-tary forms of approximation are used to simplify a pieewise linear and onvex valuefuntion, where eah linear faet of the funtion is represented ompatly by an alge-brai deision diagram. In one form of approximation, the degree of state abstrationis inreased by aggregating states with similar values. In the seond form of approx-imation, the value funtion is simpli�ed by removing linear faets that ontributemarginally to value. We derive an error bound that applies to both forms of approx-imation. Experimental results show that this approah improves the performane ofdynami programming and extends the range of problems it an solve.1 IntrodutionMarkov deision proesses (MDPs) have been adopted as a framework for researh in deision-theoreti planning [2℄. An MDP models planning problems for whih ations have an uner-tain e�et on the state, and sensory feedbak ompensates for unertainty about the state.An MDP is said to be ompletely observable if sensory feedbak provides perfet state infor-mation before eah ation. It is said to be partially observable if sensory feedbak is noisyand provides partial and imperfet state information. Although a partially observable Markovdeision proess (POMDP) provides a more realisti model, it is muh more diÆult to solve.Dynami programming is the most ommon approah to solving MDPs. However, a draw-bak of lassi dynami programming algorithms is that they require expliit enumeration ofa problem's state spae. Beause the state spae grows exponentially with the number of statevariables, these algorithms are prey to Bellman's \urse of dimensionality." To address thisproblem, researhers have developed algorithms that exploit a fatored state representationto reate an abstrat state spae in whih planning problems an be solved more eÆiently.This approah was �rst developed for ompletely observable MDPs, using deision trees toaggregate states with idential values [3℄. Improved performane was subsequently ahievedusing algebrai deision diagrams (ADDs) in plae of deision trees [9℄. A fatored represen-tation has also been exploited in solving POMDPs using both deision trees [4℄ and ADDs [8℄.Although this approah improves the eÆieny with whih many problems an be solved,it provides no bene�t unless there are states with idential values that an be aggregated.Moreover, the degree of state abstration that an be ahieved in this way may be insuÆ-ient to make a problem tratable. Many large MDPs and even small POMDPs resist exatsolution. Thus, there is a need for approximation to allow a tradeo� between optimality and
289

omputation time. For ompletely observable MDPs, an approah to approximation thatinreases the degree of state abstration by aggregating states with similar (rather thanidential) values has been developed, using both deision trees [5℄ and ADDs [13℄. This paperdevelops a related approah to approximation for the partially observed ase.Whereas the value funtion of a ompletely observable MDP an be represented by asingle ADD, the value funtion of a POMDP is represented by a set of ADDs. This makesdevelopment of an approximation algorithm for fatored POMDPs more omplex. We de-sribe two omplimentary forms of approximation for POMDPs. The �rst is losely relatedto approximation in the ompletely observable ase and involves simplifying an ADD byaggregating states of similar value. In the seond form of approximation, the set of ADDsrepresenting the value funtion is redued in size, by removing ADDs that ontribute onlymarginally to value. The latter tehnique is often used in pratie, but has not been analyzedbefore in the literature. We larify the relationship between these two forms of approxima-tion, and derive a bound on their approximation error. Experimental results show that thisapproah to approximation an improve the rate of onvergene of dynami programming,as well as the range of problems it an solve.2 Partially observable Markov deision proessesWe assume a disrete-time POMDP with �nite sets of states S, ations A, and observationsO. The transition funtion Pr(s0js; a), observation funtion Pr(ojs0; a), and reward funtionr(s; a) are de�ned in the usual way. We assume a disounted in�nite-horizon optimalityriterion with disount fator � 2 (0; 1℄. A belief state, b, is a probability distribution over Smaintained by Bayesian onditioning. As is well-known, it ontains all information neessaryfor optimal ation seletion. This gives rise to the standard approah to solving POMDPs.The problem is reast as a ompletely observable MDP with a ontinuous, jSj-dimensionalstate spae onsisting of all possible belief states, denoted B. In this form, the POMDP anbe solved by iteration of a dynami programming operator T that improves a value funtionV : B ! < by performing the following \one-step bakup" for all belief states b.Vn(b) = TVn�1(b) = maxa2A (r(b; a) + �Xo2OPr(ojb; a)Vn�1(bao)) ; (1)where r(b; a) =Ps2S b(s)r(s; a); bao is the updated belief state after ation a and observationo; and Pr(ojb; a) =Ps;s02S Pr(o; s0js; a)b(s) where Pr(o; s0js; a) = Pr(s0js; a)Pr(ojs0; a).The theory of dynami programming tells us that the optimal value funtion V � is theunique solution of the equation system V = TV , and that V � = limn!1 TnV0, where Tndenotes n appliations of operator T to any initial value funtion V0. We note that Tnorresponds to the value iteration algorithm.An important result of Smallwood and Sondik [11℄ is that the dynami-programmingoperator T preserves the pieewise linearity and onvexity of the value funtion. A pieewiselinear and onvex value funtion V an be represented by a �nite set of jSj-dimensionalvetors of real numbers, V = fv0; v1; : : : ; vkg, suh that the value of eah belief state b isde�ned as: V (b) = max0�i�kXs2S b(s)vi(s):
290

Several algorithms for omputing the dynami-programming operator have been developed.The most eÆient, alled inremental pruning [6℄, relies on the fat that the updated valuefuntion Vn of Equation (1) an be de�ned as a ombination of simpler value funtions, asfollows: Vn(b) = maxa2A V an (b)V an (b) = Xo2O V a;on (b)V a;on (b) = r(b; a)jOj + �Pr(ojb; a)Vn�1(bao)Eah of these value funtions is also pieewise linear and onvex, and an be represented bya unique minimum-size set of vetors, denoted Vn, Van, and Va;on respetively.The ross sum of two sets of vetors, U and W , is de�ned as U �W = fu+wju 2 U ; w 2Wg. An operator that takes a set of vetors U and redues it to its unique minimum formis denoted PRUNE(U). Using this notation, the minimum-size sets of vetors de�ned abovean be omputed as follows: Vn = PRUNE ([a2AVan)Van = PRUNE (�o2OVa;on)Va;on = PRUNE �fva;o;ijvi 2 Vn�1g� ;where va;o;i is the vetor de�ned byva;o;i(s) = r(s; a)jOj + � Xs02S Pr(o; s0js; a)vi(s0): (2)Inremental pruning gains its eÆieny (and its name) from the way it interleaves pruningand ross-sum to ompute V an , as follows:Van = PRUNE(:::PRUNE(PRUNE(Va;o1n � Va;o2n)� Va;o3n) : : :� Va;okn):PRUNE redues a set of vetors to a unique, minimal-size set by removing \dominated"vetors, that is, vetors that an be removed without a�eting the value of any belief state.There are two tests for dominated vetors. One test determines that vetor w is dominatedby some other vetor u 2 V when w(s) � u(s);8s 2 S: (3)Although this test an be performed eÆiently, it annot detet all dominated vetors. There-fore, it is supplemented by a seond, less eÆient test that determines that a vetor w isdominated by a set of vetors V when the following linear program annot be solved for avalue of d that is greater than zero.variables: d; b(s) 8s 2 Smaximize dsubjet to the onstraintsPs2S b(s)(w(s) � u(s)) � d; 8u 2 VPs2S b(s) = 1
291

In a single iteration of inremental pruning, many linear programs must be solved to detetall dominated vetors, and the use of linear programming to test for domination has beenfound to onsume more than 95% of the running time of inremental pruning [6℄. The numberof variables in eah linear program is determined by the size of the state spae. The numberof onstraints in eah linear program (as well as the number of linear programs that needto be solved) is determined by the size of the vetor set being pruned. This reets the twoprinipal soures of omplexity in solving POMDPs. One soure of omplexity is shared byompletely observable MDPs: the size of the state spae. The other soure of omplexity isunique to POMDPs: the number of linear funtions needed to represent the pieewise linearand onvex value funtion.In this paper, we explore two forms of approximation that address these two souresof omplexity. We use state abstration to redue the number of variables in eah linearprogram. We use relaxed tests for dominane to redue the number of onstraints in eahlinear program, as well as the number of linear programs that need to be solved. Beforedesribing our approximation algorithm, we desribe the framework for state abstration.3 State abstration and algebrai deision diagramsWe onsider an approah to state abstration for MDPs and POMDPs that exploits a fatoredrepresentation of the problem. We assume the relevant properties of a domain are desribedby a �nite set of Boolean state variables, X = fX1; : : : ; Xng, and observations are desribedby a �nite set of Boolean observation variables Y = fY1; : : : ; Ymg. We de�ne an abstratstate as a partial assignment of truth values to X , orresponding to a set of possible states.Algebrai deision diagrams Instead of using matries and vetors to represent the POMDPmodel, we use a data struture alled an algebrai deision diagram (ADD) that exploits stateabstration to represent the model more ompatly. Deision diagrams are widely used inVLSI CAD to represent and evaluate large state spae systems [1℄. A binary deision diagramis a ompat representation of a Boolean funtion, Bn ! B. An algebrai deision diagram(ADD) generalizes a binary deision diagram to represent real-valued funtions, Bn ! <.Operations suh as sum, produt, and expetation (orresponding to similar operations onmatries and vetors) an be performed on ADDs, and eÆient pakages for manipulatingADDs are available [12℄. Hoey et al. [9℄ show how to use ADDs to represent and solveompletely observable MDPs. Hansen and Feng [8℄ extend this approah to POMDPs, basedon earlier work of Boutilier and Poole [4℄. In the rest of this setion, we summarize thisapproah to state abstration for POMDPs.Model We represent the state transition funtion for eah ation a using a two-slie dynamibelief network (DBN). The DBN has two sets of variables, one set X = fX1; :::; Xng refersto the state before taking ation a, and the other set X 0 = fX 01; :::; X 0ng refers to the stateafter.For eah post-ation variable X 0i , the onditional probability funtion P a(X 0i jX) of theDBN is represented ompatly using an ADD. It is onvenient to onstrut a single ADD,P a(X 0jX), that represents in fatored form the state transition funtion for all post-ationvariables. Hoey et al. [9℄ all this a omplete ation diagram and desribe the steps requiredto onstrut it.
292

The observation model of a POMDP is represented in fatored form, in a similar way.We use an ADD P a(YijX 0) to represent the probability that observation variable Yi is trueafter ation a is taken and the state variables hange to X 0. Given an ADD, P a(YijX 0), foreah observation variable Yi, it is again onvenient to onstrut a single ADD, P a(YjX 0),that represents in fatored form the observation funtion for all observation variables. Weall this a omplete observation diagram, and it is onstruted in the same way as a ompleteation diagram.Given a omplete ation diagram and a omplete observation diagram, a single ADD,P a;o(X 0jX), representing the transition probabilities for all state variables after ation a andobservation o, is onstruted as follows:P a;o(X 0jX) = P a(X 0jX)P a(YjX 0):The ADD P a;o(X 0jX) represents the probabilities Pr(o; s0js; a), just as P a(X 0jX) representsthe probabilities Pr(s0js; a) and P a(YjX 0) represents the probabilities Pr(ojs0; a).The reward funtion for eah ation a an also be represented ompatly by an ADD,denoted Ra(X). Similarly, a pieewise linear and onvex value funtion for a POMDP an berepesented ompatly by a set of ADDs. We use the notation V = fv1(X); v2(X); : : : ; vk(X)gto denote this value funtion.Dynami programming Hansen and Feng [8℄ desribe how to modify the inremental pruningalgorithm to exploit this fatored representation of a POMDP for omputational speedup.We briey review their approah, and refer to their paper for details.The �rst step of inremental pruning is generation of the linear funtions in the sets Va;on .For a POMDP represented in fatored form, the following equation replaes Equation (2):va;o;i(X) = Ra(X)jOj + �XX 0 P a;o(X 0jX)vi(X 0):All terms in this equation are represented by ADDs. The symbol PX 0 denotes an ADDoperator alled existential abstration that sums over the values of the state variables inP a;o(X 0jX)vi(X 0), exploiting state abstration to ompute the expeted value eÆiently.State abstration is also exploited to perform pruning more eÆiently. Reall that thevalue funtion is represented by a set of linear funtions. Eah linear funtion is representedompatly by an ADD that an map multiple states to the same value, orresponding to aleaf of the ADD. In this ase, the leaf orresponds to an abstrat state. Hansen and Feng [8℄desribe an algorithm that �nds a partition of the state spae into abstrat states that isonsistent with the set of ADDs. Given this abstrat state spae, both tests for dominanean be performed more eÆiently. In partiular, the number of variables in the linear programused to test for dominae is redued in proportion to the redution in size of the state spae.Beause linear programming onsumes most of the running time of inremental pruning, thissigni�antly improves the performane of the algorithm in the best ase. In the worst ase,performane is only slightly worse sine the overhead for this approah is almost negligible.Hansen and Feng [8℄ report speedups of up to a fator of twenty for the problems they test.The degree of speedup is proportional to the degree of state abstration.
293

4 Approximation algorithmAs an approah to saling up dynami programming for POMDPs, the exat algorithmreviewed in the previous setion has two limitations. First, there may not be suÆientlymany (or even any) states with idential values to reate an abstrat state spae that issmall enough to be tratable. Seond, although the size of the state spae ontributes tothe omplexity of POMDPs, the primary soure of omplexity is the potential exponentialgrowth in the number of linear funtions (ADDs) needed to represent the value funtion.We now desribe an approximate dynami programming algorithm that addresses bothof these limitations by ignoring di�erenes of value less than some error threshold Æ. It runsmore eÆiently than the exat algorithm beause it omputes a simpler, approximate valuefuntion for whih we an bound the approximation error. There are two plaes in whihthe algorithm ignores value di�erenes { in representing state values, and in representingvalues of belief states. These orrespond to two omplementary forms of approximation, onein whih an ADD representing state values is simpli�ed, and the other in whih a set of ADDsrepresenting belief state values is redued in size. In other words, one form of approximationredues the size of the state spae (using state abstration) and the other redues the size ofthe value funtion (by pruning more aggressively). Before desribing the algorithm, we de�newhat we mean by approximate dynami programming and present some theoretial resultsthat allow us to bound the approximation errorApproximation with bounded error We begin by de�ning what we mean by an approximatevalue funtion and an approximate dynami programming operator.De�nition 1. A value funtion V̂ approximates a value funtion V with approximation errorÆ if kV � V̂ k � Æ. (Note that kV � V̂ k denotes maxb2B jV (b)� V̂ (b)j.)De�nition 2. An operator T̂ approximates the dynami programming operator T if for anyvalue funtion V , kTV � T̂ V k � Æ.We de�ne an approximate value iteration algorithm T̂n in the same way that we de�nedthe value iteration algorithm Tn. The error between the approximate and exat n-step valuefuntions is bounded as follows.Theorem 1. For any n > 0 and any value funtion V ,kTnV � T̂nV k � Æ1� � :To ompute a bound on the error between a n-step approximate value funtion andthe optimal value funtion, we use the Bellman residual between the (n � 1)th and nthapproximate value funtions. The following theorem is essentially the same as Theorem 12.2.5of Ortega and Rheinboldt [10℄, who studied approximate ontration mappings for systems ofnonlinear equations, and Theorem 4.2 of Cheng [7℄, who �rst applied their result to POMDPs.Theorem 2. The error between the urrent and optimal value funtion is bounded as follows,kT̂nV � V �k � �1� � kT̂nV � T̂n�1V k+ Æ1� � :
294

Value iteration using an approximate dynami programming operator onverges \weakly,"that is, two suessive value funtions fall within a distane 2Æ1�� in the limit. (Dereasing Æafter \weak" onvergene will allow further improvement, as disussed later.)Theorem 3. For any value funtion V and " > 0, there is an N suh that for all n > N ,kT̂nV � T̂n�1V k � 2Æ1� � + ":Simplifying ADDs We �rst desribe an approah to approximation that simpli�es an ADDby ignoring small di�erenes in state values. It is based on a similar approah to approxima-tion for ompletely observable MDPs [13℄, although modi�ations are needed to extend thisapproah to POMDPs.For ompletely observable MDPs, a single ADD represents the value funtion. Eah leafof the ADD orresponds to a distint value. If more than one state has the same value,the states are mapped to the same leaf. In this way, a leaf an represent a set of states,or equivalently, an abstrat state. Beause state abstration an be exploited to aeleratedynami programming, the approah to approximation is to inrease the degree of stateabstration by aggregating states with similar (though not idential) values.St-Aubin et al. [13℄ introdue the following notation and terminology. The value of astate is represented as a pair [l; u℄, where the lower, l, and upper, u, bounds on the val-ues are both represented. The span of a state, s, is given by span(s) = u� l. The ombinedspan of states s1; s2; : : : ; sn with values [l1; u1℄; : : : ; [ln; un℄, is given by span(s1; s2; : : : ; sn) =max(u1; : : : ; un)�min(l1; : : : ; ln). The method of approximation is to merge states (and or-respondingly, leaves of an ADD) when their ombined span is less than Æ. This approximationis performed after eah iteration of dynami programming. The simpler ADD allows ompu-tational speedup, at the ost of some approximation error introdued by ignoring di�erenesof value less than Æ.To implement this approah to approximation, St-Aubin et al. [13℄ modi�ed the ADDpakage so that a leaf of an ADD an represent a range of values, and a single ADD anrepresent a ranged value funtion. We don't do this beause the value funtion of a POMDPis represented by a set of ADDs, instead of a single ADD, and we are onerned with upperand lower bounds on the values of belief states. The set of ADDs representing the lowerbound funtion may not be the same as the set of ADDs representing the upper boundfuntion. An alternative to a ranged value funtion is to use two ADDs to represent boundson state values { one for lower bounds and one for upper bounds. But this representationwould require performing inremental pruning twie { one to ompute a pieewise linear andonvex lower bound funtion and one to ompute a pieewise linear and onvex upper boundfuntion { doubling the omplexity of the algorithm. Instead, we found that we an ahievean equally good result by omputing a pieewise linear and onvex lower bound funtiononly, and representing the upper bound by using a salar for the approximation error.Figure 1 illustrates the e�et of simpli�ation. The ADD on the left is simpli�ed bymerging leaves that have a ombined span of less than Æ = 0:5. The ADD on the rightrepresents a lower bound on the value of eah abstrat state. Adding Æ to eah lower boundgives the upper bound. We use the following algorithm to simplify an ADD. The input is anADD and approximation threshold Æ. The output is a simpli�ed ADD with bounded error.
295

X

Y

1.8

1.2 2.5

Z Z

W

2.7

1.8 1.9 2.2 W 2.5 W

Z Z Z

Y

1.2 1.6 1.3

X

Fig. 1: Example of ADD simpli�ation.QUEUE all leaves of ADD sorted in inreasingorder of values remove �rst element from QUEUEX fsgwhile QUEUE is not emptyt remove next element from QUEUEif span(X[ftg) � ÆX X [ftgelsemerge(X) and reate new ADD leaf for XX ftgendifendwhileBeause the omplexity of eah merge is jSj, the omplexity of this algorithm is O(jSj2.Performing this simpli�ation algorithm on eah ADD in a pieewise linear and onvex valuefuntion results in an approximate value funtion with approximation error Æ.Theorem 4. Let V = fv1; : : : ; vng be a pieewise linear and onvex value funtion and letV 0 = fv01; : : : ; v0ng be its approximation suh that for eah v0i, we have jjvi � v0ijj � Æ. ThenkV � V 0k � Æ.Pruning ADDs In Setion 2, we desribed two tests for dominated linear funtions. It haslong been reognized that both tests are sensitive to numerial impreision errors when thevalue representing the degree of dominae is lose to zero. Thus, a preision parameter istypially used to prevent linear funtions from being inluded in the value funtion due tonumerial impreision error. Instead of testing for a value greater than zero to ensure that alinear funtion is not dominated, the test is for a value greater that 10�15, for example, orsome number that represent the limit of numerial preision on the omputer.Many pratitioners have notied that inreasing this preision parameter (to a valueof, say, 10�5), has the added bene�t of pruning vetors that ontribute only marginally tothe value funtion. This often results in signi�ant performane improvement. Although thistehnique is widely used in pratie, the e�et of this approximation on the error bound of thevalue funtion has not been analyzed before in the literature. We onsider this seond method
296

of approximation in this paper beause of its lose, and omplementary, relationship to our�rst method of approximation, whih also ignores small di�erenes of value. Equation (3)gives a test for dominane that we generalize to allow approximation as follows.De�nition 3. A linear funtion w is approximately dominated by another linear funtionu 2 V when w(s) � Æ � u(s); 8s 2 S;where Æ > 0.The linear programming test for domination is generalized to allow approximation as follows.De�nition 4. A linear funtion w is approximately dominated by a set of linear funtionsV, if the output of the linear program, d, is less than Æ > 0.Let PRUNE0 be the pruning operator that employs these two approximate dominane tests.Theorem 5. For any set of vetors V,kPRUNE(V)� PRUNE0(V)k � Æ:Aumulation of error Both the approximate ADD simpli�ation algorithm and the approxi-mate pruning algorithm are applied repeatedly during inremental pruning. They are appliedto eah set Va;on . They are applied to eah of the jOj sets of ADDs reated by the ross-sumoperator during the omputation of Van. Finally, they are applied to the set Vn reated by theunion of the sets Van. Thus, we must onsider how approximation error aumulates duringthe progress of inremental pruning.Lemma 1. If a set of ADDs representing value funtion V is simpli�ed with approximationerror Æ1 and then pruned with approximation error Æ2, the resulting set of ADDs representsa value funtion that approximates V with error Æ1 + Æ2.Lemma 2. If V̂ 1 is an approximation of value funtion V 1 with approximation error Æ1,and V̂ 2 is an approximation of value funtion V 2 with approximation error Æ2, then:1. V̂ 1 + V̂ 2 is an approximation of V 1 + V 2 with approximation error Æ1 + Æ2, and2. V̂ 1 [V̂ 2 is an approximation of V 1 [V 2 with approximation error max(Æ1; Æ2).Theorem 6. Let T̂ denote an approximation of the dynami programming operator T om-puted by inremental pruning with simpli�ation error Æ1 and pruning error Æ2. For any valuefuntion V , kTV � T̂ V k � (2jOj+ 1)(Æ1 + Æ2):Letting Æ = (2jOj + 1)(Æ1 + Æ2), we an use Theorem 2 to ompute a bound on the errorbetween the approximate and optimal value funtions.Adjustment of approximation Finally, we note that with exat dynami programming, thedi�erene between suessive value funtions always dereases from one iteration to the next.This is not neessarily the ase with approximate dynami programming. It suggests a strat-egy for reduing the approximation parameters over suessive iterations. Whenever thereis an inrease in the Bellman residual, we redue the approximation parameters (e.g., bythe disount fator 0.5) and the solution ontinues to improve. By using a high degree ofapproximation initially and gradually reduing it, we may aelerate the rate of improvementin initial iterations and still eventually ahieve a result of equal quality as a result found bythe exat algorithm. This is explored in the next setion.
297

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

si
ze

 o
f a

bs
tr

ac
t s

ta
te

 s
pa

ce

CPU seconds

exact DP
DP with approximation

Fig. 2: Size of abstrat state spae using exatand approximate ADD simpli�ation. -4

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500

lo
g

of
 e

rr
or

 b
ou

nd

CPU seconds

exact DP
approximate pruning

approximate state abstraction
both approximations

Fig. 3: Rate of onvergene using both forms ofapproximation, separately and together.
0

0.02
0.04

0.06
0.08

0.1
0.12

0.14
0.16

0.18
0.2

Pruning error
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ADD simplification error

10

15

20

25

30

35

Size of abstract state space

Fig. 4: Interation between ADD simpli�ationand pruning error on size of abstrat statespae.
0

0.02
0.04

0.06
0.08

0.1
0.12

0.14
0.16

0.18
0.2

Pruning error
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ADD simplification error

12
14
16
18
20
22
24
26
28
30

Size of value function

Fig. 5: Interation between ADD simpli�ationand pruning error on size of value funtion.5 Analysis of performaneHansen and Feng [8℄ use seven test problems to evaluate the performane of their exat dy-nami programming algorithm for fatored POMDPs. Among these, the fourth test problem(with six state variables, �ve ations, and two observation variables) illustrates the worst-ase performane of the algorithm. Beause there are strong dependenies among all thestate variables, the algorithm �nds no state abstration. So we use this example as a testof whether the approximation algorithm an reate state abstrations where the exat algo-rithm annot. Figure 2 ompares the size of the abstrat state spae reated by the exat andapproximation algorithms over suessive iterations. Approximate ADD simpli�ation makesit possible to solve the problem in an abstrat state spae that varies in size from �ve to thirtystates, ompared to 64 states in the original state spae. This shows that ADD simpli�ationan reate useful state abstrations for problems with little or no variable independene.Figure 4 and 5 show the interation between the two forms of approximation by wayof their e�et on the two prinipal soures of POMDP omplexity { the size of the statespae and the size of the value funtion. The data is olleted by running the program
298

with di�erent pruning and simpli�ation errors for 30 iterations. The average size of theabstrat state spae and the average size of the value funtion are then plotted as a funtionof the two types of approximation error. Figure 4 shows that inreasing the ADD pruningerror has little or no e�et on ADD simpli�ation. Figure 5 shows that inreasing the ADDsimpli�ation error only slightly ampli�es the e�et of ADD pruning. Thus, the performaneimprovement ahieved from eah form of approximation is almost independent, with a slightpositive interation e�et. The two methods of approximation are omplementary. ADDsimpli�ation dereases the size of the state spae and ADD pruning dereases the size ofthe value funtion.Figure 3 shows the separate e�et of eah form of approximation on the rate of onver-gene, as well as their ombined e�et. (The ADD simpli�ation error is 0.1 and the ADDpruning error is 0.01.) It shows that using both forms of approximation results in betterperformane than using either one alone. It also shows that the approximation algorithm an�nd a better solution than the exat algorithm, in the same amount of time. The reason forthis is that the approximation algorithm approximates the dynami-programming operator,whih performs a single iteration of dynami programming. Dynami programming takesmany iterations to onverge. Beause approximation allows the dynami-programming oper-ator to be omputed faster in exhange for slightly less improvement of the value funtion,approximation an have the e�et of inreasing the rate of improvement. In other words, theapproximation algorithm an perform more iterations in the same amount of time, and, as aresult, an �nd a better solution in the same amount of time. This is true even though eahiteration of the approximation algorithm may not improve the value funtion as muh as aorresponding iteration of the exat algorithm.We are not only interested in improving the rate of onvergene of dynami programming.We are also interested in solving larger problems than the exat algorithm an solve. Thesalability of both the exat algorithm and the approximation algorithm is limited by thesame two fators - the size of the state spae and the size of the value funtion. (The dynamiprogramming algorithm urrently annot handle problems with more than about 50 states orvalue funtions with more than a few hundred ADDs.) The approximation algorithm salesbetter than the exat algorithm beause it an ontrol the size of the state spae and the sizeof the value funtion. It ontrols the size of the (abstrat) state spae by using approximationto adjust the degree of state abstration. It ontrols the size of the value funtion by usingapproximation to adjust the threshold for pruning ADDs, and thus the number of ADDsthat are pruned. This allows the algorithm to �nd approximate solutions to problems withmore states than the exat algorithm an handle, and to avoid an exponential explosion inthe size of the value funtion. The quality of the solution that an be found within theselimitations is problem-dependent, but easily estimated by omputing the error bound.6 ConlusionPOMDPs are very diÆult to solve exatly and it is widely-reognized that approximation isneeded to solve realisti problems. We have desribed two omplementary forms of approxi-mation that improve the performane of a dynami programming algorithm that omputesa pieewise linear and onvex value funtion. The �rst form of approximation inreases thedegree of state abstration by ignoring state distintions that have little e�et on value. Theseond form of approximation redues the number of linear funtions used to represent the
299

value funtion by removing those that have little e�et on value. Both forms of approxima-tion allow omputational speedup in exhange for a bounded derease in solution quality.Both also have tunable parameters that allow the degree of approximation to be adjusted tosuit the problem. We showed that this approah to approximation improves both the rate ofonvergene of dynami programming, and its salability.Referenes1. Bahar, R.I.; Frohm, E.A.; Gaona, C.M.; Hahtel, G.D.; Maii, E.; Pardo, A.; and Somenzi, F.Algebrai deision diagrams and their appliations. International Conferene on Computer-Aided Design, 188{191, IEEE, 1993.2. Boutilier, C.; Dean, T.; and Hanks, S. Deision-theoreti planning: Strutural assumptions andomputational leverage. Journal of Arti�ial Intelligene Researh 11:1{94, 1999.3. Boutilier, C.; Dearden, R.; and Goldszmidt, M. Exploiting struture in poliy onstrution. InProeedings of the Fourteenth International Conferene on Arti�ial Intelligene (IJCAI-95),1104{1111, Montreal, Canada, 1995.4. Boutilier, C. and Poole, D. Computing optimal poliies for partially observable deision pro-esses using ompat representations. In Proeedings of the Thirteenth National Conferene onArti�ial Intelligene (AAAI-96), 1168{1175, Portland, OR, 1996.5. Boutilier, C. and Dearden, R. Approximating value trees in strutured dynami programming.In Proeedings of the Fourteenth International Conferene on Mahine Learning, 54{62. Bari,Italy, 1996.6. Cassandra, A.R.; Littman, M.L.; and Zhang, N.L. Inremental pruning: A simple, fast, exatmethod for partially observable Markov deision proesses. In Proeedings of the ThirteenthAnnual Conferene on Unertainty in Arti�ial Intelligene (UAI-97), 54{61, Providene, RI,1997.7. Cheng, H. Algorithms for Partially Observable Markov Deision Proesses. PhD Thesis, Uni-versity of British Columbia, 1988.8. Hansen, E. and Feng, Z. Dynami programming for POMDPs using a fatored state represen-tation. In Proeedings of the Fifth International Conferene on Arti�ial Intelligene Planningand Sheduling, 130-139, Menlo Park, CA: AAAI Press, 2000.9. Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. SPUDD: Stohasti Planning using DeisionDiagrams. In Proeedings of the Fifteenth Conferene on Unertainty in Arti�ial Intelligene(UAI-99), Stokholm, Sweden, 1999.10. Ortega, J.M and Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Vari-ables. Aademi Press: New York, 1970.11. Smallwood, R.D. and Sondik, E.J. The optimal ontrol of partially observable Markov proessesover a �nite horizon. Operations Researh 21:1071{1088, 1973.12. Somenzi, F. CUDD: CU deision diagram pakage. Available from ftp://vlsi.olorado.edu/pub/,1998.13. St-Aubin, R.; Hoey, J.; and Boutilier, C. APRICODD: Approximate Poliy Constrution us-ing Deision Diagrams. In Advanes in Neural Information Proessing Systems 13 (NIPS-00):Proeedings of the 2000 Conferene, Denver, CO, 2000.
300

