
A Forward Searh Planning Algorithm with aGoal Ordering HeuristiIgor Razgon and Ronen I. BrafmanComputer Siene DepartmentBen-Gurion University, 84105, Israelfirazgon,brafmang�s.bgu.a.ilAbstrat. Forward haining is a popular strategy for solving lassialplanning problems and a number of reent suessful planners exploit it.To sueed, a forward haining algorithm must arefully selet its nextation. In this paper, we introdue a forward haining algorithm thatselets its next ation using heuristis that ombine bakward regressionand goal ordering tehniques. Bakward regression helps the algorithmfous on ations that are relevant to the ahievement of the goal. Goalordering tehniques strengthens this �ltering property, foring the for-ward searh proess to onsider ations that are relevant at the urrentstage of the searh proess. One of the key features of our planner isits dynami appliation of goal ordering tehniques: we apply them onthe main goal as well as on all the derived sub-goals. We ompare theperformane of our planner with ff { the winner of the AIPS'00 plan-ning ompetition { on a number of well-known and novel domains. Weshow that our planner is ompetitive with ff, outperforming it on moreomplex domains in whih sub-goals are typially non-trivial.List of keywords: forward haining, bakward regression, goal ordering,relaxed problem1 IntrodutionForward haining is a popular strategy for solving lassial planning problems.Early planning systems, suh as GPS [12℄, used forward haining but were quiklyoverome by regression-based methods suh as partial-order planning [17℄ and,more reently,Graphplan [2℄. These methods were viewed as more informed, orfoused. However, with the aid of appropriate heuristi funtions, reent forward-haining algorithms [3, 6℄ have been able to outperform other planners on manydomains.To sueed, a forward-haining planner must be informed in its seletion ofations. Ideally, the ation hosen at the urrent state must bring us loser tothe goal state. To ahieve this goal, reent forward-haining planners use new,improved heuristi funtions in whih regression tehniques play an importantrole. The idea of bakward regression through forward haining was �rst expli-itly stated by MDermott [13℄. It was impliitly used in GPS and ff [6℄ and in its
25



more general form in Graphplan and its desendants [2, 9, 11℄ (as a polynomialstruture onstruted in a diretion opposite to the main searh diretion). Itwas used also in [1℄ for relevane omputation.In this paper we extend regression-based relevane �ltering tehniques witha dynami goal-ordering heuristis. This results in a planning algorithm { ro(Regression + Goal-Ordering) { that has a better hane of hoosing ations thatare relevant and timely. The bakward regression heuristis used in our planneris somewhat similar to the one used in GPS. That is, we onstrut a sequene ofsubgoals, where the �rst subgoal is the main goal and the last subgoal is satis�edin the urrent state. The di�erene between ro and previous algorithms is inthe way this subgoal sequene is generated. More spei�ally, given the urrentsubgoal in the onstruted sequene, the next subgoal is omputed as follows:we selet the proposition that we believe should be ahieved �rst in the urrentsubgoal { we use a goal ordering heuristis to make this seletion. Then, weselet an ation that has this proposition as an add-e�et. Finally, we add thepreonditions of this hosen ation to the beginning of the onstruted sequene.Thus, we have a ombination of a bakward regression method with a goalordering tehnique, where the ordering is omputed dynamially for all subgoalsof the sequene of goals generated by the bakward regression proess.The ombination of bakward regression with goal ordering is based on thefollowing intuition: One of the main goals of bakward searh in the ontext offorward haining algorithm is to avoid onsidering irrelevant ations. [1℄. How-ever, when a relevant ation is inserted in an inappropriate plae in the plan,we either obtain a plan that is longer than neessary or we must perform ex-pensive baktraking. By ordering subgoals, we strengthen the �ltering propertyof bakward regression and redue the need for baktraking beause we forethe forward haining proess to onsider ations that are relevant at the urrentstage of the searh proess.Typially, goal ordering is done for the original goal only, and prior to theinitiation of searh { it is stati in nature. Next, the problem is divided intosmaller subproblems, eah of whih an be solved separately [12, 10℄. Dynamiordering of propositions is often seen in CSP problems. It was used in the ontextof Graphplan's bakward searh, viewed as a CSP problem, in [8℄. This paperis among the �rst to use dynami goal ordering in the planning proess, and thepartiular dynami goal ordering approah we introdue here is the main novelontribution of this paper.The rest of this paper is organized as follows: Setion 2 provides a short re-view of related work. Setion 3 desribes the proposed algorithm. In Setion 4we provide an empirial omparison between our planner and the winner of theAIPS 2000 planning ompetition, ff [6℄. The main onlusion of our experimen-tal analysis is that ro is ompetitive with ff, outperforming it on domains inwhih the subproblems obtained after ordering the top level goal are non-trivial.Finally, Setion 5 onludes this paper.
26



2 Related WorkIn this setion we provide a short review of forward searh algorithms and goalordering methods and their use in planning. This will help provide some of theneessary bakground and will plae this work in its proper ontext.2.1 Reent forward searh algorithmshsp The hsp algorithm [3℄ is a forward haining algorithm without baktrak.Eah step, the ation leading to the state with minimal approximated dis-tane to the goal is hosen. This distane is approximated by solving a relaxedproblem in whih the delete e�ets of all ations were removed. Given this re-laxed problem, we approximate the distane from the urrent state ur to astate s using the sum (or maximum) of the weights of the propositions thathold in s. The weight of a proposition p is 0 if it belongs to ur. Otherwise,weight(p) = minall ats ahieving p 1 + dist(preond(at)), i.e., one more thanthe minimal distane of the set of preonditions of ations that ahieve p.ff ff (Fast Forward) [6℄ is a forward searh algorithm that selets an ationat eah step using an approximated distane measure. The distane from theurrent state to the goal is approximated by the plan length for ahieving the goalin a relaxed problem indued by the urrent problem. ff uses Graphplan tosolve the relaxed problem. Beause the relaxed problem does not have del-e�ets,there are no mutually exlusive pairs of propositions and ations in the problem.Therefore, it an be solved in polynomial time. To make the measure near-optimal, various heuristis for dereasing the length of the extrated solutionare applied.The algorithm applies breadth-�rst searh from the urrent state s until it�nds a state s0 that has a stritly better value. The ordering tehnique from [10℄,desribed below, is applied to make ff more e�etive. ff won the AIPS 2000planning ompetition.2.2 Goal ordering methodsThere has been muh work on goal ordering methods and their use in planning.Most of this work addresses the following four questions1. How to order two propositions? [7, 10, 8℄2. How to derive a total order on propositions given an ordering on all pairs ofpropositions? [10℄3. How to use a total order on goal propositions in planning? [12, 10, 8℄4. How to inorporate propositions that are not in the top-level goal into thegoal order? [14℄
27



For our purpose, the �rst and the third questions are the most relevant.An interesting lassi�ation of methods determining the order between twogiven propositions is introdued in [7℄. Aording to it, we may onlude thatp < q if at least one of the following onditions holds.1. Goal subsumption. To ahieve q we must ahieve p2. Goal lobbering.When ahieving p we destroy q if it existed in some pre-vious state. An example of goal lobbering is the pair of propositions on(1; 2)and on(2; 3) in the BloksWorld problem. on(2; 3) has to be ahieved beforeon(1; 2), beause on(1; 2) is destroyed in the proess of ahieving on(2; 3)3. Preondition violation. Ahievement of q makes ahievement of p impos-sible (dead-end).Two riteria for ordering propositions based on the priniple of goal lob-bering are given in [10℄. A modi�ed version of the �rst of them is used is theproposed algorithm and desribed in detail in the next setion.A widespread method for using a goal ordering in planning is to iterativelyapply the planning algorithm to ahieve inreasing subsets of the goal. For ex-ample if we have a goal ordering(p1; :::; pn), then �rst we try to ahieve a state s1in whih fp1g holds, starting at the initial state. Next, we try to ahieve fp1; p2gstarting at s1, et. The last plan ahieves the required goal from s1; : : : ; sn�1.By onatenating the resulting plans, we get a omplete plan.3 Algorithm desription.We now proeed to desribe the ro planning algorithm. In Setion 3.1 we de-sribe the algorithm and its ation seletion heuristi. In Setion 3.2 we providemore details on some of the subroutines used during ation seletion. In Setion3.3, we disuss some optimization implemented in the urrent version of ro.Finally, in Setion 3.4., we demonstrate the work of RO on a running example.3.1 The Proposed Algorithm and its Ation Seletion Heuristiro is a forward haining planner with hronologial baktraking. It reeives adomain desription as input and an integer n denoting searh-depth limit (thedefault value of n is 2000).The �rst step of ro is to ompute some data that will be useful duringthe searh proess. In partiular ro onstruts an approximated set of pairs ofmutually exlusive propositions. It is known that exat omputation of all mutualexlusive pairs of preonditions is not less hard than the planning problem [2℄.Therefore, only approximation algorithms are aeptable in this ase. RO obtainsan approximate set of mutual exlusive pairs as the omplement of a set ofreahable pairs whih is found by a modi�ation of Reahable-2 algorithm [4℄.Next, a standard depth-�rst searh with hronologial baktraking is per-formed (Figure 1). (Note, that to obtain the desired plan, we have to run this
28



funtion on the initial state and the empty plan). The heart of this algorithm isthe heuristi seletion of ation that will be appended to the urrent plan (line5). This heuristis is based on bakward searh without baktraks (bakwardregression). The depth of this regression phase, MaxDeep,is a parameter of theplanner (the default value of MaxDeep is 50). The ode of this proedure isgiven in Figure 2.As we an see from the ode in Figure 2, this proedure builds a sequeneof subgoals, starting with the main (i.e., original) goal as its �rst element. Ateah iteration, the urrent (last) subgoal in this sequene is proessed as follows:its propositions are ordered (line 2) and the minimal proposition that is notsatis�ed in the urrent state (the required proposition) is seleted (line 3).Next, an ation ahieving this proposition is hosen (line 4). If this ation isfeasible in the urrent state, it is returned. Otherwise, the set of preonditionsof this ation is appended to the subgoal sequene beoming the new urrentsubgoal, and the proess is repeated.We see that ro ombines goal ordering and bakward regression tehniques:eah time a new subgoal is seleted, its propositions are ordered, and this order-ing is used to selet the next ation for the regression proess. This ombinationis the main novel ontribution of this work.ComputeP lan(CurState;n; CurP lan)1. For i = 1 to Num Feasible Do //Num Feasible is the number of ations feasible inthe urrent state2. Begin3. If Goal � CurState then return CurP lan4. If n = 0 then return FAIL5. at := BakwardReg(CurGoal;MaxDeep) //this funtion hooses an ation whihwas not hosen before6. NewCurState := apply(CurState;at)7. NewCurP lan := append(CurP lan; at)8. Answer = ComputeP lan(NewCurState; n� 1; NewCurP lan)9. If Answer is not FAIL then return (Answer)10. End11. Return FAIL Fig. 1. The main algorithm3.2 Auxiliary proedures for the proposed forward searh heuristisIn this setion, we desribe two auxiliary proedures (lines 2 and 4 of theBakwardReg funtion). The �rst orders the propositions of a given subgoal.The seond �nds an ation ahieving the given proposition and satisfying someadditional onstraints.Goal ordering is based on a number of riteria. The main riterion is a mod-i�ed version of the Graphplan riterion from [10℄. This riterion is mentioned
29



BakwardReg(CurGoal;MaxDeep)1. If MaxDeep = 0 Choose randomly an ation feasible in the urrent step that was nothosen before, and return it2. Order propositions of CurGoal by order of their ahievement3. Let CurProp be the proposition of the CurGoal, whih is minimal inCurGoal n CurState4. Choose an ation at ahieving CurProp that was not hosen before in the CurState.5. If it is not possible to hoose suh an ation, then hoose randomly an ation feasiblein the urrent step that was not hosen before, and return it6. If at is feasible in the urrent state then return at7. Let NewCurGoal be the set of preonditions of at8. Return(BakwardReg(NewCurGoal;MaxDeep� 1))Fig. 2. The Main Heuristi of the Algorithm
in 2.2. It states that for two propositions p and q, p must be ahieved beforeq if every ation ahieving p onits with q. The modi�ed version used herestates that p must be ahieved before q if the perent of ations oniting withq among ations ahieving p is more than the perent of ations oniting withp among ations ahieving q.Thus, if for two given propositions p and q the \hane"that q will be de-stroyed while ahieving p is higher than the \hane" that p will be destroyedwhile ahieving q, it is preferable to ahieve p before q. The original versionof this riterion was derived from analysis of problems suh as BloksWorld,HanoiTower and so on, where it is diretly appliable. The proposed modi�a-tion of this method extends its appliability. For example it is appliable formany Logistis-like problem.Intuitively, the ation seletion funtion uses the following rule: Selet anation that an be the last ation in a plan ahieving the required propositionfrom the urrent state. In partiular, the ation seletion funtion performs threesteps. First, it omputes the relevant set whih ontains the required proposi-tion and all propositions that are mutually exlusive with it. The non-relevantset is determined as the omplement of the relevant set. Next, it builds a tran-sition graph whose nodes orrespond to the elements of the relevant set. Thisgraph ontains an edge (a; b) for eah ation with a preondition a and an add-e�et b. Finally, it selets an ation orresponding to the last edge in a pathfrom a proposition that is true in the urrent state to the required proposi-tion. If there is no suh path, it returns FAIL. If there are few suh paths, ithooses a path with the minimal number of non-relevant preonditions of theorresponding ations (in order to �nd a path as lose as possible to a "real"plan).

30



3.3 OptimizationsThe atual implementation of ro introdues a number of optimizations to theabove algorithm. We desribe them next.The �rst feature is a more ompliated baktrak ondition. There are basi-ally two onditions that an trigger baktraking: either the plan exeeds some�xed length or a state has been visited twie. However, the �rst baktrak mustbe triggered by the �rst ondition. The state we baktrak to is determined asfollows: If no state appears more than one (i.e., we baktraked beause of planlength), we simply baktrak one step. If a state appears twie in the urrentstate sequene, we baktrak to the state prior to seond appearane of the�rst repeated state. For example, suppose our maximal plan length is 6, thestate sequene is (A;C;B;B;C;D), and we have not baktraked before. In thissequene, both B and C appear twie. However, B is the �rst state to ourtwie. Therefore, we baktrak to before the seond appearane of B. Thus, thenew sequene, after baktraking, is (A;C;B). From this point on, we baktrakwhenever the urrent state appears earlier in the sequene, even if plan lengthis smaller than the maximal length.The seond optimization is the memoization of the sequene of subgoalsgenerated by the main heuristis. Instead of reomputing the whole subgoalsequene in eah appliation of the searh heuristi, we use the subgoal sequenethat was onstruted in the previous appliation (if suh a sequene exists). Themodi�ed algorithm eliminates from the tail of the subgoal sequene all subgoalsthat were ahieved in the past, and ontinues onstrution from the resultingsequene.This memoization method has two advantages. First, it saves time by avoid-ing the omputation of the full subgoal sequene. Seond, and more importantly,is that it maintains a onnetion between subsequent appliations of the searhheuristis. This way, eah appliation of the searh heuristi appliation buildson top of the results of the previous appliation and avoids aidental destru-tion of these results. The running example in the next setion demonstrates theusefulness of this approah.3.4 A Running ExampleConsider a well-known instane of the BloksWorld domain alled the SussmanAnomaly. It is an instane with three bloks, its initial state is fon(3; 1); on �table(1); lear(3); on�table(2); lear(2)g and the goal is fon(1; 2); on(2; 3)g. Note,there is only a single reahable state that satis�es the goal riteria. In this state,the proposition on�table(3) holds. However, on�table(3) is not stated expliitlyin the goal. This raises a diÆulty for algorithms that employ goal ordering be-ause they are strongly a�eted by interations between ations in the goal. Forexample, in our ase, the propositions of the goal have to be ordered as follows(on(2; 3); on(1; 2)). However, before ahieving on(2; 3), it is neessary to ahieveon� table(3).
31



Let us run RO on this instane. We onsider the simplest version of theBloksWorld domain with two ations only: one for moving a blok from thetable on top of another blok, and one for moving a blok to the table. Belowwe show the result of eah appliation of the searh heuristis.First appliation.The urrent state is the initial state, i.e. fon(3; 1)on� table(1); lear(3); on�table(2); lear(2)g, the subgoal sequene is not onstruted yet, so it needs to beonstruted from srath. Its �rst subgoal is the main goal whih is ordered as(on(2; 3); on(1; 2)). The required proposition of this level is on(2; 3), RO seletsation put � on(2; 3) to ahieve this proposition. This ation is feasible in theurrent state and it is returned, so the �rst appliation is �nished here. Note,that the �rst appliation of the searh heuristis selets a wrong ation!Seond appliation. The urrent state is fon(2; 3); on(3; 1); on�table(1); lear(2)g.The only subgoals in the subgoal sequene are (on(2; 3); on(1; 2)). RO hoosesthe required proposition to be on(1; 2) and selets ation put � on(1; 2) toahieve this proposition. As we an see, this ation is not feasible in the ur-rent state and so the subgoal sequene is extended. Now, it ontains boththe main goal and the preonditions of ation put � on(1; 2), namely, it is((on(2; 3); on(1; 2))(lear(1); lear(2))). Note, that the ordering of the seondsubgoal is hosen randomly and it does not matter here. Now, the required propo-sition is lear(1). The ation seletion heuristi hooses ation take� out(3; 1).This ation is also not feasible and this fat leads us to further extend the subgoalsequene. The next ordered subgoal in this sequene will be (on(3; 1); lear(3))(again, the order of the propositions does not matter here). The new requiredproposition will be lear(3). To ahieve this proposition, RO selets ationtake � out(2; 3), whih is returned, beause it is feasible in the urrent state.Note that in spite of the fat that after an appliation of this ation we arriveat a state that appeared before, baktraking is not performed beause the �rstbaktrak ours only one we exeed the maximal plan length { and this didnot our, yet.Third appliation. The new urrent state is the initial state! However, wehave learned something in the proess, and this is reeted in the sequene ofsubgoals we now have: ((on(2; 3); on(1; 2))(lear(1); lear(2))). (The last subgoalwas eliminated beause it was fully ahieved). This information was not availablewhen we started our searh. In fat, the new required proposition is lear(1), aproposition that does not appear in the original goal. Beause we have hosenit as the required proposition, we will not repeat past mistakes. The algorithmselets ation take� out(3; 1) to ahieve this proposition. This ation is feasiblein the urrent state, therefore, it is returned.During the fourth and the �fth appliation, the algorithm ahieves the maingoal in a straightforward way: it puts blok 2 on blok 3 and then blok 1 onblok 2.The resulting plan is : (put� on(2; 3); take� out(2; 3); take� out(3; 1); put�on(2; 3); put� on(1; 2))
32



Obviously, this plan is not optimal. The �rst two appliations were spentonstruting a subgoal sequene whih then fored RO to selet the right ations.This feature of RO frequently leads to non-optimal plans. However, we believethat the resulting non-optimal plan usually ontains a near-optimal plan as asubsequene. Therefore, we an run a plan re�nement algorithm [1℄ on the outputof RO and obtain a near optimal plan. In some ases, this may be a more e�etiveapproah for obtaining a near optimal plan.4 Experimental AnalysisTo determine the e�etiveness of ro, we performed a number of experimentsomparing its performane to the ff planner { the winner of the AIPS 2000planning ompetition. These results are desribed and analyzed in this setion.All experiments were onduted on a SUN Ultra4 with 1.1GB RAM. Eahresult is given in the form A=B where A is the running time for the giveninstane, and B is the length of the returned plan. The input language is arestrited version of PDDL without onditional e�ets.The main onlusion of our experimental analysis is that ro is ompetitivewith ff, outperforming it on domains in whih the subproblems obtained afterordering the top level goal are non-trivial.4.1 Classial DomainsIn this subsetion we onsider well known lassial domains, suh as the BloksWorld,the Hanoi Tower, and two versions of the Logistis. The results are presented inthe table below. BloksWorld Hanoi Towersize ro ff size ro ff10 0.4/12 0.08/12 6 0.2/63 0.12/6315 2/18 0.14/17 7 0.3/127 0.3/12720 7/27 0.4/26 8 0.6/255 1.3/25525 19.9/36 1.01/35 9 1.3/511 3.61/51130 46.5/44 2.64/44 10 2.9/1023 23.06/1023Usual Logistis Logistis With Car Transportationsize ro ff size ro ff10 0.8/105 0.65/95 10 0.7/109 0.47/8020 8.5/210 10.5/191 20 7.3/239 8.83/16530 63.4/287 100/312 30 31.2/349 57.29/25040 127.9/419 248.3/383 40 92.7/479 234.17/33550 314.3/522 806.3/479 50 226.3/583 813/420Table 1. BloksWorld Running ResultsWe an see that ro is not ompetitive with ff on the BloksWorld. Thisstems from the simple nature of the subproblems obtained after goal ordering in
33



this domain whih make the additional omputational e�ort of ro redundant inthis ase.However, for some problems harder than BloksWorld, this omputationale�ort is worthwhile. One suh example is the HanoiTower domain. On this do-main, ff outperforms ro for small problem sizes (less than 7 diss). But whenthe number of diss is larger than 7, ro outperforms ff, with the di�ereneinreasing as the domain size inreases.The last example in this part is the Logistis domain. We onsider two ver-sions of this problem. The �rst one is the lassi domain. The seond one is aslight modi�ation of the �rst, where airplanes an load and unload ars.An instane of the Logistis is mainly haraterized by the initial and �naldistributions of pakages among ities. If the number of ities is small relativeto the number of pakages or if the majority of pakages have the same initialand �nal loations, ff outperforms ro. However, when pakages are distributedamong many ities and their �nal loations are also di�erent, ro outperformsff. Table 1 ontains running times for both version on the Logistis domain. Inall the examples we used, eah ity ontained exatly one pakage and the initialand �nal loation of eah pakage was di�erent. In addition, eah instane of theseond version ontains a single ar only.4.2 Modi�ed Classial DomainsIn addition to lassial domains, we onsidered two novel domains whih ombinefeatures of existing domains.Combination of the Logistis with the BloksWorld The �rst suh do-main ombines aspets of the Logistis and BloksWorld domains. Suppose wehave n loations and m objets plaed in these loations. A proposition at(i; k)means that objet i is at loation k. If objet i an move from loation l to loa-tion k, this fat is expressed as moves(i; k; l). We assume the graph of moves tobe undireted for eah objet, that is, moves(i; k; l) implies moves(i; l; k). Ob-jets an transport eah other. Propositions transports(i; k) and in(i; k) meanthat the objet i an transport the objet k and that the objet i is within theobjet k respetively. For this domain, we assume that the transport graph is aDAG. The transport graph is de�ned as follows: the nodes are the objets andan edge (a; b) appears in it i� the objet a an transport the objet b.The BloksWorld features of this domain are expressed by the fat that wean put one objet on another. The proposition expressing BloksWorld-likerelations are lear(i), at(i; k) and on(i; k). Note, that at(i; k) means that theobjet i is \on the table" at the loation k. This type of proposition plays therole of the onneting link between these two ombined domains.The set of ations in this domain is the union of the ations in the Logistisand the BloksWorld domain with a few small modi�ations. In partiular, anobjet an be loaded into another objet or moved between loations only if itis "lear" and "on ground"; also we an put one objet into another only if theyare in the same loation and not within another objet.
34



This domain has an interesting property that neither the Logistis nor theBloksWorld have: Top level goals interat with intermediate goals. An objet,whih is in intermediate level of a tower at some loation, may be required fortransportation of another objet. To do so, we must remove all the objets abovethis objet.To try planners on this domain, we onstruted a simple set of examples, inwhih the planner have to build towers of bloks in a few di�erent loation, andthe moving ubes must be in bottom plaes of these towers. ff behaves badlyon this set: it runs more than hour on an example with 11 ubes. However muhlarger examples of this domain are tratable for ro. For example, it orders 21ubes in 50 seonds and produes plan of length 628 steps.A Modi�ed Hanoi Tower A seond domain we onsider is a modi�ation ofthe Hanoi Tower domain. In this modi�ed version the number of loations isarbitrary. Initially all diss are in the �rst loation. The task is to move them tothe last loation using a number of rules. These rules are almost the same as theHanoi Tower domain rules with two exeptions: The �rst one is that if a dis isplaed on the �nal loation it an't be taken bak from this loation. The seondone is that all diss are enumerated and it is possible to put dis number a ondis number b i� b = a+ 1 or b = a+ 2. In essene, this domain is a simpli�edform of the FreeCell domain.The diÆulty of an instane in this domain depends on two fators: the num-ber of diss and the number of ells. The latter determines the onstrainednessof the instane (the fewer the ells, the more onstrained the instane is).For small number of diss (less than 12) ff outperforms ro independently ofonstrainedness of the proessed instane. This is the ase for weakly onstrainedinstanes with large number of diss, as well. However, tightly onstrained in-stanes of this domain are pratially intratable for ff. The table below presentsrunning results of ro for instanes whose solution for ff takes more than oneand a half hours. The size of an instane is given in form A=B, where A is thenumber of diss, B is the number of loations exept for the �nal one.instane time/length17/5 527.3/93318/6 76/27920/7 52/16022/7 62/18524/8 120/26525/8 152/28726/9 155/24328/9 269/20730/9 550/303Table 2. Running times for the Modi�ed Hanoi Tower domain

35



5 ConlusionsIn this paper we presented a forward searh planning algorithm. An implementa-tion of this algorithm was shown to be ompetitive with ff on domains in whihsubproblems obtained as a result of goal ordering are themselves non-trivial. Ouralgorithm makes a number of novel ontributions:{ A forward searh heuristis ombining bakward regression and goal orderingtehniques.{ A omplex memoization tehnique for reusing subgoal sequenes.{ A novel ombination of the Logistis and the BloksWorld domain.{ A better understanding of the weaknesses and strengths of ff.Referenes1. F. Bahus,Y. Teb Making Forward Chaining Relevant, AIPS-98, pages 54-61,19982. A. Blum, M. Furst Fast Planning Through Planning Graph Analysis, Arti�ialIntelligene, 90(1997), pages 281-300, 1997.3. B. Bonet, H. Ge�ner. Planning as Heuristi Searh: New Results, Arti�ial Intel-ligene, Proeedings of the 5th European Conferene on Planning, pages 359-371,1999.4. R.I.Brafman. Reahability, Relevane, Resolution and the Planning as Satis�abilityApproah,In Proeedings of the IJCAI' 99, 1999.5. P. Haslum, H. Ge�ner. Admissible Heuristis for Optimal Planning, AIPS2000pages 140-149, 2000.6. J. Ho�man, B. Nebel. The ff Planning System:Fast Plan Generation ThroughExtration of Subproblems, to appear in JAIR.7. J. Hullen, F. Weberskirh. Extrating Goal orderings to Improve Partial-OrderPlanning, PuK99, pages 130-144, 1999.8. S. Kambhampati,R. Nigenda. Distane-based Goal-ordering Heuristis for Graph-plan, AIPS2000 pages 315-322, 2000.9. S. Kambhampati,E. Parker,E. Lambreht. Understanding and Extending Graph-plan, 4th European Conferene of Planning, pages 260-272, 1997.10. J. Koehler, J. Ho�man. On Reasonable and Fored Goal Ordering and their Usein an Agenda-Driven Planning Algorithm, JAIR 12(2000), pages 339-386.11. J. Koehler, B. Nebel, J. Ho�man, Y. Dimopoulos. Extending Planning Graphs toADL Subset, ECP97, pages 273-285, 1997.12. R. E. Korf. Maro-Operators: A Weak Method for Learning,Arit�ial Intelligene,26 (1985), pages 35-77.13. D. MDermott. Using regression-math graphs to ontrol searh in planning., Ar-ti�ial Intelligene, 109(1-2), pages 111-159, 1999.14. J.Porteous,L.Sebastia. Extrating and Ordering Landmarks for Planning, Tehni-al Report, Dept. of Computer Siene, University of Durham, September 2000.15. I. Razgon. A Forward Searh Planning Algorithm with a Goal Ordering Heuristi,MS Thesis, Ben-Gurion University, Israel, 2001.16. D. Smith, M. Peot. Suspending Reursion in Partial Order Planning, AIPS96,191-198, 1996.17. D. Weld. An Introdution to Least Commitment Planning, AI Magazine 15(4),pages 27-61, 1994.
36


