Flexible Integration of Planning and Information
Gathering

David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

Universidad Carlos III de Madrid, Computer Science Department, Avenida de la
Universidad n°® 30, CP 28911, Leganés, Madrid, Spain

{dcamacho , dborrajo, molina}@ia. uc3m.es, aler@inf.uc3m.es

Abstract. The evolution of the electronic sources connected through
wide area networks like Internet has encouraged the development of new
information gathering techniques that go beyond traditional information
retrieval and WEB search methods. They use advanced techniques, like
planning or constraint programming, to integrate and reason about het-
ereogeneous information sources. In this paper we describe MAPWEB,
a multiagent framework that integrates planning agents and WEB in-
formation retrieval agents. The goal of this framework is to deal with
problems that require planning with information to be gathered from
the WEB. MAPWEB decouples planning from information gathering, by
splitting a planning problem into two parts: solving an abstract prob-
lem and validating and completing the abstract solutions by means of
information gathering. This decoupling allows also to address an impor-
tant aspect of information gathering: the WEB is a dynamic medium and
more and more companies make their information available in the WEB
everyday. The MAPWEB framework can be adapted quickly to these
changes by just modifying an abstract planning domain and adding the
required information gathering agents. For instance, in a travel assistant
domain, if taxi companies begin to offer WEB information, it would only
be necessary to add new planning operators related to traveling by taxi,
for a more complete travel domain. This paper describes the MAPWEB
planning process, focusing on the aforementioned flexibility aspect.

1 Introduction

In recent years there has been a lot of work in Web information gathering [1, 5-8].
Information gathering intends to integrate a set of different information sources
with the aim of querying them as if they were a single information source [6].
Many different kinds of systems, named mediators, have been developed. They
try to integrate information from multiple distributed and heterogeneous infor-
mation sources, like database systems, knowledge bases, web servers, electronic
repositories. . . (an example is the SIMS [7] architecture). In order that these
systems are practical, they must be able to optimize the query process by se-
lecting the most appropriate WEB sources and ordering the queries. For this
purpose, different algorithms and paradigms have been developed. For instance,
Planning by Rewriting (PbR) [1] builds queries by using planning techniques.

73

74

2 David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

Other examples of information gathering systems are Ariadne [7], Heracles [§],
WebPlan [5].

Some of the previous approaches use planning techniques to select the appro-
priate WEB sources and order the queries to answer generic user queries. That
is, they use planning as a tool for selecting and sequencing the queries. In this
paper we describe MAPWEB, an information gathering system that also uses
planning, but with a different purpose (some preliminary work can be found
in [2,3]). MAPWEB uses planning for both determining the appropriate generic
sources to query and solving actual planning problems. For instance, in this pa-
per, the MAPWEB framework is applied to a travel planning assistant domain
(e-tourism),! where the user needs to find a plan to travel among several places.
Each plan not only determines what steps the user must perform, but which
information sources should be accessed. For instance, if a step is to go from A to
B by plane, the system provides the user the information of what airplane com-
panies should be consulted for further information. This domain is similar to the
travel planning assistant built using the Heracles framework. However, Heracles
constrained network, which is a kind of plan schema, needs to be reprogrammed
everytime the planning domain changes. MAPWEB tries to be more flexible by
using planning techniques to create the plans. For instance, if it is desired to
add a new information source to the system, it is only necessary to change the
planning domain instead of reprogramming the plan schema by hand. For in-
stance, if taxi fares were made suddenly available in the WEB, it would only be
necessary to add a move-by-taxi operator along with the associated WebAgent.?
Actually, MAPWEB can handle planning operators which are not associated to
any information source (because, for instance, the information on a given topic
is not yet available). In that case, plans will contain steps with no detailed in-
formation. This is useful, because even if no specific information is supplied, at
least the user is told that he can fulfill that step by any means.

The paper is structured as follows. Section 2 describes MAPWEB archi-
tecture. Section 3 explains in detail the abstract planning process. Section 4
evaluates empirically the system. Finally, Section 5 summarizes the conclusions
and future lines of work.

2 MAPWEB System Architecture

MAPWEB is structured into several logic layers whose purpose is to isolate
the user from the details of problem solving and WEB access. More specifically,
we considered four layers between users and the WEB: the physical world (the
users), the reasoning layer (that includes user agents, planning agents, and con-
trol agents), the access information layer (that contains WebAgents to retrieve
the desired information), and the information world (which represents the avail-
able information). This four-layer architecture can be seen in Figure 1.

! This domain is a modified version of the Logistics domain.
2 A WebAgent is an information agent specialized in consulting a particular informa-
tion source.

Flexible Integration of Planning and Information Gathering 3

Probler] | |
—s
It
N N
i T
Solutionst |
'
N E
[R
i
Problen‘d 1 N
—_—
™ E
o
Pa—1 T
So\ulions: i
1 !
PHYSICAL | REASONING | wes o INFORMATION
WORLD - LAYER © o LAYER : WORLD

Fig. 1. MAPWEB three-layer architecture.

MAPWEB deploys this architecture using a set of heterogeneous agents.
Next, each of these types of agents will be described:

— UserAgents: They pay attention to user queries and display to users the so-
lution(s) found by the system. When an UserAgent receives problem queries
from the users, it sends them to the PlannerAgents and when they answer
back with the plans, the UserAgent provides the solutions to the user.

— ControlAgents: They handle several control functions like the insertion
and deletion of agents in the system and communication management.

— PlannerAgents: They receive an user query, build an abstract representa-
tion of it, and solve it by means of planning. Then, the PlannerAgents fill in
the information details by querying the WebAgents. The planner that has
been used by the PlannerAgents is PRODIGY4.0 [9].

— WebAgents: Their main goal is to fill in the details of the abstract plans ob-
tained by the PlannerAgents. They obtain that information from the WEB.

The way these agents cooperate is as follows. First, the user interacts with
the UserAgent to input his/her query. The query captures information like the
departure and return dates and cities, one way or return trip, maximum number
of transfers, and some preference criteria. This information is sent to the Plan-
nerAgent, which transforms it into a planning problem. This planning problem
retains only those parts that are essential for the planning process, which is
named the abstract representation of the user query. PRODIGY4.0 generates sev-
eral abstract solutions for the user query. The planning operators in the abstract
solutions require to be completed and validated with actual information which
is retrieved from the WEB. To accomplish this, the PlannerAgent sends infor-
mation queries to specialized WebAgents, that return several records for every
information query. Then, the PlannerAgent integrates and validates the solu-
tions and returns the data to the UserAgent, which in turn displays it to the
user. MAPWEB agents use a subset of the KQML speech acts [4]. The whole
process will be described in full detail in the next section.

75

76

4 David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

3 The Planning Process

As mentioned before, in MAPWEB, the information gathering process is carried
out by a set of WebAgents, but this process is guided by the PlannerAgent that
reasons about the requested problem and the different information sources that
are available.

The planning process is divided into two parts: solving an abstract prob-
lem, and completing it with information gathered from the WEB. Planning is
decoupled this way because of two reasons:

— The abstract planning problem is easier to solve by classical planners. This
is because if all the information about all the available flights, all possible
trains, etc. was included in the planning process, planning would be unfea-
sible.

— It is not necessary to access the WEB during the planning process. Queries
to the WebAgents are carried out only when abstract plans are ready. This
allows to reduce the number of queries, because only those queries that are
required by the solution are ever made.

Planning works as follows. First, the PlannerAgent receives a query from
UserAgent. This query is analyzed and translated into an abstract planning
problem. Second, the PlannerAgent uses its own skills and knowledge about the
problem and tries to solve it. If the solving process is successful, the PlannerA-
gent generates a set of abstract solutions. These solutions are too general and
only have the essential information for the planning process, so they need spe-
cific information to be completed and validated. The PlannerAgent builds a set
of information queries (queries to other agents in the system to request specific
information). It is important to try to optimize the number of queries due to the
high number of possible instantiations. When the queries have been built, the
PlannerAgent selects the set of WebAgents that will be asked. Finally, when the
WebAgents answer with the information found in the WEB (if WebAgents are
successful) the PlannerAgent integrates all the specific information with the ab-
stract solutions to generate the final solutions that will be sent to the UserAgent.
In Figure 2 the modular description of the planning process is shown.

The next subsections explain this process in detail by focusing in the data
structures used by each of the relevant agents: the user query generated by the
UserAgent, the abstract problem, the abstract solutions, the specific knowledge
used by the PlannerAgent, and finally the specific information records retrieved
by the WebAgents.

3.1 The User Query

The planning process starts when the user supplies a problem to be solved. A
user query is a sequence of stages. Each stage is a template that represents a
leg of the trip, and contains several fields to be filled by the user. Table 1 shows
an instance of a possible user query. It will be used to illustrate the rest of the

Flexible Integration of Planning and Information Gathering 5

PLANNER-AGENT

|
|

|

| User Query

|

| e-Tourism
! Domain

|

|

|

|

|

|

—

Abstract iPRODIGY4 0 *‘ Abstract | |Abstract Abstract S:iir;l;
Problem : Solution] |Solution2 " Solution h
Instantiated
(Compiers |
Plans / Validate | (Records
Solutions Retrieved

Queries

UserAgent

WebAgents

Fig.2. Planning Process developed by the PlannerAgent. The user query is
transformed into an abstract planning problem, which is subsequently solved by
PropiGY4.0. Each solution is partially instantiated by means of domain dependent
heuristics. Every operator in a solution generates several WEB queries, which are sent
to the appropriate WebAgents by using the agent hierarchy. The agents return several
records, that are used to complete and validate the abstract solutions.

article. This query is then sent to the PlannerAgent. Besides the information
shown in Table 1, the user can specify the locations inside the city where s/he
wants to start or end the trip (like an airport, a train station, or a bus station).
This is done by means of the user interface provided by the UserAgent.

Table 1. A user problem to go from Turin to Toledo by airplane or train.

Leg Stage Date Restrictions N° Transfers
1 Turin — Madrid Sep. 11th Plane or train Oor 1l

2 3 nights stay Sep. 11th < 15.000 pts -

3 Madrid — Toledo Sep. 14th Plane or train Oor1l

4 Toledo — Turin Sep. 14th Plane or train Oor 1l

3.2 The planning domain and the abstract solutions

The PlannerAgent transforms the user query into an abstract problem. This is
done as follows. First, it defines an abstract city. This city includes all possible
local transports, but only the long range transport terminals that the user wishes
to use are included. Then, this abstract city is copied as many times as the
maximum number of transfers supplied by the user. It is important to remark
that the cities are abstract cities (i.e. they have no attached names, so they are
present in the abstract plan to represent the initial, intermediate, and final travel
points). The rest of details provided by the user are ignored at this stage. The
abstract problem represents the initial state and the goals of the problem that
are the inputs to PrRoDIGY4.0.

In order to solve abstract problems, PRODIGY4.0 requires a domain where
the planning operators are described. Using planning at this stage (instead of
using pre-programmed plans) provides two main advantages:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ﬁ

7

6 David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

1. Flexibility: the system can be adapted to many different versions of travel do-
mains and problems by just changing the domain description or the abstract
problem generation method, respectively.

2. FEasy integration of new WEB sources. The WEB is a dynamic medium: more
and more companies make their information available in the WEB everyday.
If a new information source (like taxi fares) is made available, MAPWEB can
be adapted quickly by just adding a new planning operator and establishing
a relation with a WebAgent specialized in gathering the information from
the WEB.

The abstract problem obtained from Table 1 would be given to the Plan-
nerAgent planner (PrRoDIGY4.0) which would obtain several possible abstract
solutions. In this case, the planner would reply with the plans shown in Figures 3
(solutions with O transfers) and 4 (1 transfer solutions).

Problem: O-Transfers

Solution 1:

<travel-by-airplane userl planeQ airportQ airport2>
<move-by-local-transport userl lbus2 bustop20 trainstat2l city2>

Solution 2:
<move-by-local-transport userl 1lbusO bustopOO trainstatOl cityO>
<travel-by-train userl train0 trainstat0 trainstat2>

Fig. 3. Abstract solutions generated by PrRop1GY4.0 for Leg 1 with 0-Transfer.

Problem: 1-Transfers

Solution 1:

<travel-by-airplane userl planeO airport0O airportl>
<move-by-local-transport lbusl bustoplO trainstatll cityl>
<travel-by-train userl trainl trainstatl trainstat2>

Solution 2:

<travel-by-airplane userl plane0O airport0O airportl>
<travel-by-airplane userl planel airportl airport2>
<move-by-local-transport lbus2 bustop20 trainstat20 city2>

Fig. 4. Abstract solutions generated by PRopIGY4.0 for Leg 1 with 1-Transfers.

This is a set of abstract plans that contain no actual details. Some of the plan
steps might not even be possible because, for instance, there are no companies
linking two cities. Therefore, those plans need to be walidated and completed.
The PlannerAgent acomplishes this task in the following way:

1. The abstract steps in the solution contain unbound variables that relate to
transfer cities. They need to be bound before the WebAgents are queried.

78

Flexible Integration of Planning and Information Gathering 7

The PlannerAgent restricts the number of bindings by applying a geographic
heuristic. This is achieved as follows:
— If the origin and arrival cities belong to the same country, only the cities
in that country are considered as possible transfer cities.
— Else, if the origin and arrival cities belong to the same continent, only
the cities of that continent are considered.
— Otherwise, all cities are considered.

In the case of the first leg of the trip, as Turin and Madrid belong to Europe,

we extract the cities that belong to this continent (currently, about 30).
Table 2 displays the queries that would be generated in this case.

Table 2. Queries partially instantiated.

Query send to the WebAgents N° Transfers
(travel-by-airplane userl plane0? Turin Toledo) 0
(travel-by-train userl train0? Turin Toledo)
(travel-by-airplane userl plane0? Madrid Turin)
(travel-by-train userl train0? Madrid Toledo)
(travel-by-airplane userl plane0? Turin Alicante)
(

(

(

travel-by-airplane userl plane0? Turin Barcelona)
travel-by-airplane userl plane0? Turin Paris)
travel-by-train userl train0? Turin Madrid)

HFHRRROOO

2. Planning operators of the abstract solutions and WEB sources are related by
means of a WebAgent hierarchy. This hierarchy is used by the PlannerAgent
to select the relevant WebAgents that will be used to obtain the information.
This hierarchy allows the PlannerAgent to know which WebAgents know
how to retrieve the required information. In Figure 5 a description of this
hierarchy is shown.

Agent
| ___UserAgentO
| ---ReasonerAgent
| ___PlannerAgent0
| ___WebAgents
| ___Travel
|___Fly: WebAgent-Iberia,WebAgent-Amadeus-Flight
| ___Train: WebAgent-Renfe,WebAgent-RailEurope
| ___Bus
| ___Hotel: WebAgent-Amadeus-Hotel
|___Car
|___ControlAgents
| ___ManagerAgentQ
| ___CoachAgent0

Fig. 5. Agents Hierarchy. It describes all the available agents in MAPWEB and their
information gathering skills.

79

8 David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

3. Finally the PlannerAgent uses the previous information to build a set of
queries that will sent to the selected WebAgents. If a planning operator is
repeated in different abstract solutions, it is only considered once, to avoid
repeating queries. For instance, in the solutions for 1-Transfer problems the
operator (<travel-by-airplane userl plane0 airport0 airportl>) would
be translated as shown in Table 3:

Table 3. Queries partially instantiated to the appropriate WebAgents.

Query send to the WebAgents WebAgent
(travel-by-airplane userl plane0? Turin Toledo) Iberia, Amadeus-Flights
(travel-by-train userl train0? Turin Toledo) Renfe, RailEurope

(travel-by-airplane userl plane0? Turin Alicante) Iberia, Amadeus-Flights
(travel-by-airplane userl plane0? Turin Barcelona) Iberia, Amadeus-Flights
(travel-by-airplane userl plane0? Turin Paris) Iberia, Amadeus-Flights
(travel-by-train userl train0? Turin Madrid) Renfe, RailEurope

Those queries (and all the additional information given by the UserAgent)
are sent to several WebAgents that know about airplane travel, so that variable
plane07 is instantiated as well.

3.3 Filling the Abstract Solutions

The information queries are sent to the selected WebAgents with the specific
data (departure and arrival times, travel cost, etc...) and the query that the
PlannerAgent needs. With this information the WebAgents automatically build
the specific WEB query that will be sent to the WEB information sources the
agent is specialized in. For every query, each WebAgent will return to the Plan-
nerAgent a list of records by filling a template whose structure is shared by
all the agents (there are different templates depending on the kind of informa-
tion required). In Table 4 some of the retrieved flight-records and train-records
provided by different WebAgents are shown for the Leg 1 in the example.

Finally, those records are received by the PlannerAgent that will use them
to complete the abstract solutions. If the WebAgents return no records for a
step of the abstract solution, that particular solution is rejected. However, it is
important to remark that if it is known in advance that there are no WEB sources
to complete a particular step (for instance, <MOVE-BY-LOCAL-TRANSPORT taxi
...>), then the user is told that s/he has to carry out that step, even though no
specific information about that step is attached. The set of completed solutions
are finally sent to the UserAgent that requested the information.

4 Experimental Evaluation

The aim of this section is to carry out several experiments with MAPWEB to
evaluate its performance. First, the example-trip we have used to illustrate the

Flexible Integration of Planning and Information Gathering 9
Table 4. Retrieved records by the WebAgents.

Inf-FLIGHTS |recordl record2 record3 Inf-TRAINS [recordl record2 record3
‘WebA gent Iberia Amadeus|Amadeus||WebAgent Renfe Renfe Renfe
air-company Iberia Iberia Portugalial|train-company |RENFE RENFE RENFE
http-address w3.iberia.es|null null http-address [w3.renfe.es|w3.renfe.es|w3.renfe.es
flight-id IB8797 IB8819 NI711 train-id 07054 07056 07058
ticket-fare 70641 null null ticket-fare 780 780 780
currency ESP ESP ESP currency ESP ESP ESP
flight-duration |3h45min 2h00min |2h10min ||departure-city [MAD MAD MAD
airp-depart-city| TRN TRN TRN departure-date|11-09-01 11-09-01 [11-09-01
departure-date [11-09-01 11-09-01 |11-09-01 departure-time|(6:30 8:30 10:14
airp-arrival-city | MAD MAD MAD arrival-city TOL TOL TOL
return-date null null null arrival-date 11-09-01 11-09-01 11-09-01
class Tourist null null arrival-time 7:53 9:47 11:30
n° passengers |1 1 1 class Tourist Tourist Tourist
round-trip one-way one-way |one-way

previous sections will be tested.
be evaluated to analyze the average behaviour of the system.
Table 5 summarizes the example-trip (Turin to Toledo and back). To solve
this problem, a team of nine agents was used. It includes all the agents dis-
played in the agents-hierarchy of Figure 5. In particular, airplane, train, and
hotel WebAgents have been used. The next parameters have been measured:

Second, a set of problems given by the user will

— Validated abstract solutions/abstract solutions ratio (val.sols/abs.sols). This
value measures how many abstract solutions provided through the planner
were validated by the information provided by the information gathering

agents.

— Number of instantiated solutions. It shows all the possible solutions to the
user problem. The solutions are computed using the gathered records. The
PlannerAgent uses the k validated abstract solutions that contain [; abstract
operators. If there are b;; retrieved records for the j-th operator of the i-th
solution, then the number of possible instantiated solutions is:

kL

Number of solutions = Z H bi;

i=1 j=

1

— Number of WEB Queries. This represent all the queries made by the Web-
Agents to retrieve the specific information.
— Number of gathered records (duplicated records are removed).
— Time. It includes planning time and WEB gathering time. It is elapsed time
(i.e. the time spent by the WebAgents acting in parallel is not accumulated).

Everyone of the previous parameters is measured for both 0 and 1 transfers
(0-T and 1-T). In this example, there are no solutions for the 0 transfers because
it is impossible to complete the fourth leg of the trip (there is no way to go from
Toledo to Turin directly). On the other hand, there are thousands of possible
combinations when 1 transfer is allowed. It is important to remark that even
though when 1 transfer is used, it takes several thousand seconds to find the
solutions, only 1 second per leg is spent for actual planning.

81

82

10 David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

Table 5. MAPWEB request for the example-trip, with 0 and 1 transfers.

Leg Stage Val. sols Number of Number of Number of Time
per abs. sols solutions queries records (seconds)
0-T 1-T [0-T 1-T [0-T 1-T [0-T 1-T 0-T 1-T

1 Turin — Madrid (0.5 0.667 | 2 1829 | 4 43 |20 135 |[112.465 962.938
2 3 nights stay 1 1 6 6 1 1 20 20 |62.384 62.384

3 Madrid — Toledo|0.5 0.333 |12 797 | 4 43 (22 92 |75.030 1692.839
4 Toledo — Turin | 0 0.333 | 0 432 | 4 43 0 67 |76.236 3874.948

We have also tested a set of 38 problems with different configurations of
MAPWEB. The problems include 15 trips within Spain, 15 within Europe, and
8 Intercontinental ones. Each problem has been tried with 0 and 1 transfers.
The results are shown in Table 6. This experiment shows in practice the flexi-
bility of MAPWEB when it is necessary to add new information sources. The
configurations that have been used are as follows:

— NO: only one WebAgent specialized in retrieving information from a parti-
cular Airplane Company (Iberia Airlines®) was considered.

— N1: different WebAgents specialized in gathering information of the same
kind (flight information) were used: WebAgent-Iberia, WebAgent-Avianca,
WebAgent-Amadeus-Flights, WebAgent-4Airlines-Flights. The two last ones
are meta-searchers.

— N2: only two WebAgents specialized in gathering information of the same
type (train information) were used: WebAgent-Renfe, WebAgent-RailEurope.

— N&: integrates all the previous WebAgents, that is, agents for retrieving both
flight and train information (N8=N1+N2).

Table 6. Summary of the results for 38 user problems, with 0 and 1 transfers (0-T
and 1-T).

Config. Number of Solved Number of Time
solutions problems queries (seconds)
0-T 1-T o-T 1-T [0-T 1-T 0-T 1-T
NO 7.1 999.3 [65.7% 74.3%| 1 26.9 65.6 1485.7
o = 6.7 1480.5 o =10.2 1319.2
N1 10.9 1338.1|94.2% 97.1%| 4 91.2 162.4 2243.6
o =8.01725.8 o = 200.5 1321.8
N2 3.7 3.7 [25.7% 40.0%| 2 51.4 70.1 1314.4
c=T79 79 o =23.0 1124.3
N3 12.5 1340.2(94.3% 97.1%| 6 143.9 165.3 2666.6
o =8.81724.4 o = 199.6 1298.8

In Table 6, we observe the following;:

— With respect to N0, as it could be expected, many more solutions are found
when 1 transfer legs are allowed (999.3 vs. 7.1). It can also be observed that

3 www.iberia.com/iberia_es/home.jsp

Flexible Integration of Planning and Information Gathering 11

MAPWEB cannot find a solution for some problems, although the number
of problems solved increases for the 1-T option (74.3% vs. 65.7%). However,
the number of queries and the time required to fulfill them also increases
quickly. It is also noticeable that standard deviations are rather large. This
is because user problems can be very different; some of them can be solved
quickly because there are few retrieved records, whereas other problems can
have many possible solutions.

— N1 enlarges N0 by including more airplane companies. MAPWEB does not
find many more solutions per problem, because most of the user problems
are within Europe, where Iberia (the only agent in N() offers many flights.
However, many more problems are solved (94.2% vs. 65.7% with 0 transfers,
and 97.1% vs. 65.7% for 1 transfer). Although the number of queries is
multiplied by 4 in N1, the time required to fulfill them has been only doubled
(162.4 vs. 65.6 for 0-T and 2243.6 vs. 1485.7 for 1-T). Time is doubled
because even though the four WebAgents work in parallel, all the retrieved
records must be analyzed by a single PlannerAgent.

— N2 displays the results when only train travels are allowed. Only a few prob-
lems can be solved: 25.7% with 0-T and 40.0% with 1-T, and very few solu-
tions per problem are found (3.7). This is clearly due to the smaller number
of possibilities of fullfilling travels using only trains vs. using airplanes.

— N3 integrates both airplane and train companies. Compared to NI, almost
the same number of user problems are solved (94.3% vs. 94.2% and 97.1%
vs. 97.1%), although some more solutions per problem are found (12.5 vs.
10.9 and 1340.2 vs. 1338.1).

5 Conclusions

The WEB is a dynamic medium: more and more companies make their infor-
mation available in the web everyday. WEB information gathering systems need
to be flexible to adapt to these rapid changes. In this paper we have described
MAPWEB, a multiagent framework that combines classical planning techniques
and WEB information retrieval agents. MAPWEB decouples planning from in-
formation gathering, by splitting a planning problem into two parts: solving an
abstract problem and validating and completing the abstract solutions by means
of information gathering. Flexible information gathering is achieved by means
of planning. In order to add a new information source to the system, only the
planning domain has to be modified, besides adding the related WEB agent.

In this paper MAPWEB has been applied to the e-tourism domain, but we
believe it could be also used in other domains where planning can be separated
from WEB information gathering. For instance, currently many companies are
thinking on moving to the WEB and most organization process models will
be implemented in such a way that they use information stored in the WEB
(either information internal to the organization or external). These processes
can be automatically generated on-the-fly by planners, and they will need the
information stored in the Web to decide on the steps to be performed. For

83

84

12 David Camacho, Daniel Borrajo, José M. Molina, and Ricardo Aler

instance, one might define what information to publish (and how) in the WEB
depending on the competence prices. This publishing process could be generated
automatically by a planner.

In the future, several new skills will be developed for different agents in
MAPWEB. These skills will try to improve the performance of the global sys-
tem in two ways: by increasing the number and quality of solutions found by
the agents, and by minimizing the time and computational resources used by
MAPWEB to solve problems.

Acknowledgements

The research reported here was carried out as part of the research project funded
by CICYT TAP-99-0535-C02.

References

1. Ambite, J.L., Knoblock, C.A.: Planning by rewriting: Efficiently generating high-
quality plans. In proceedings of the Fourteenth National Conference on Artificial
Intelligence (1997).

2. Camacho, D., Molina, J.M., Borrajo, D.: A Multiagent Approach for Electronic
Travel Planning. Proceedings of the Second International Bi-Conference Workshop
on Agent-Oriented Information Systems (AOIS-2000). AAAIL July (2000). Austin,
TX (USA).

3. Camacho, D., Molina, J.M., Borrajo, D., Aler, R.: MAPWEB: Cooperation between
Planning Agents and Web Agents. Information&Security: An International Journal.
Special issue on Multi-agent Technologies. Volume 7 (2001).

4. Finin, T., Fritzson, R., Mackay, D., McEntire, R.: KQML as an Agent Communica-
tion Language. In Proceedings of the Third International Conference on Information
and Knowledge Management (CIKM94), pages 456-463. New York: Association of
Computing Machinery (1994).

5. Hiillen, J., Bergmann, R., Weberskirch, F: WebPlan - Dynamic planning for domain-
specific search in the Internet. In J. Koéhler (Hrsg.) 13. Workshop “Planen und
Konfigurieren”. (PuK-99) (1999).

6. Lambrecht, E., Kambhampati, S.: Planning for Information Gathering: A tutorial
Survey. ASU CSE Techincal Report 96-017. May (1997).

7. Knoblock, C.A., Minton, S., Ambite, J.L., Ashish, N.: Modeling Web Sources for
Information Integration. Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence, 1998.

8. Knoblock, C.A., Minton, S., Ambite, J.L., Muslea, M., Oh, J., Frank, M.: Mixed-
Initiative, Multi-source Information Assistants. The Tenth International World
Wide Web Conference (WWW10). ACM Press. May 1-5. (2001).

9. Veloso, M., Carbonell, J., Perez, A. Borrajo, D., Fink, E., Blythe, J.: Integrating
planning and learning: The Prodigy architecture. Journal of Experimental and The-
oretical AI. Volume 7 (1995) 81-120.

