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Abstract. Autonomous robots, such as robot office couriers, need @ortu-
tines that support flexible task execution and effectiveoagblanning. This pa-
per describes KRMLEARN, a system that learns structured symbolic robot ac-
tion plans for navigation tasks. Given a navigation taskRML EARN learns to
structure continuous navigation behavior and represéetteairned structure as
compact and transparent plans. The structured plans amebtby starting with
monolithical default plans that are optimized for averagdgmance and adding
subplans to improve the navigation performance for thergigsk. Compactness

is achieved by incorporating only subplans that achieveifsignt performance
gains. The resulting plans support action planning and ppistic task execu-
tion. XFRMLEARN is implemented and extensively evaluated on an autonomous
mobile robot.

1 Introduction

Robots operating in human working environments and soldiyrgamically changing
sets of complex tasks are challenging testbeds for autonsmubot control. The dy-
namic nature of the environments and the nondeterminiffécts of actions requires
robots to exhibit concurrent, percept-driven behaviorelaably cope with unforeseen
events. Most physical control processes are continuouature and difficult to repre-
sent in discrete symbolic structures.

In order to apply high-level plan-based control techniquasots need adequate and
realistic representations of their control processesdhable their planning routines to
foresee problems and forestall them. In this paper we ta&kadivigation behavior of
autonomous mobile robots as our prototypical example.

Different approaches have been proposed to specify thgaidon behavior of such
robots. A number of researchers consider navigation assiarioe of Markov deci-
sion problemsNiDPs) [KCK96]. They model the navigation behavior as a finitdesta
automaton in which navigation actions cause stochastie st@nsitions. The robot is
rewarded for reaching its destination quickly and relialgolution for such problems
is apolicy, a mapping from discretized robot poses into fine-graineifyasion actions.

MDPs form an attractive framework for navigation because ttsgyauuniform mech-
anism for action selection and a parsimonious problem @ngo@he navigation poli-
cies computed byDPs aim at robustness and optimizing the average performamee.
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of the main problems in the applicationabp planning techniques is to keep the state
space small enough so that theps are still solvable.

Another approach is the specification of environment- asll-tpecific navigation
plans, such astructured reactive navigation planssRNpPs) [Bee99].SRNFs specify a
default navigation behavior and employ additional conenirrpercept-driven subplans
that overwrite the default behavior while they are activiee @efault navigation behav-
ior can be generated by amP navigation system. The (de-)activation conditions of
the subplans structure the continuous navigation behavitask-specific way.

SRNPs are valuable resources for opportunistic task executidneffective action
planning because they provide high-level controllers vgitibplans such as traverse
a particular narrow passage or an open area. More spegifisalNrs (1) can gener-
ate qualitative events from continuous behavior, such &srieg a narrow passage;
(2) support online adaptation of the navigation behavisivédmore carefully while
traversing a particular narrow passage), and (3) allow éongact and realistic sym-
bolic predictions of continuous, sensor-driven behavibe specification of good task
and environment-specif&rRNFs, however, requires tailoring their structure and param-
eterizations to the specifics of the environment.

We propose to bridge the gap between both approaches byrigaRrNFs, sym-
bolic plans, from executingiDpP navigation policies. Our thesis is that a robot can
autonomously learn compact and well-structusedirs by usinguDpP navigation poli-
cies as default plans and repeatedly inserting subplanshiasRNFs that significantly
improve the navigation performance. This idea works bezthespolicies computed by
themDP path planner are already fairly general and optimized ferage performance.
If the behavior produced by the default plans were uniforgdgd, making navigation
plans more sophisticated would be of no use. The rationdleteequiring subplans
to achieve significant improvements is to keep the strucifitee plan simple.

2 An Overview on XFRMLEARN

We have implemented PRMLEARN a realization of this learning model and applied
it to learningsRNPRs for an autonomous mobile robot that is to perform office imwur
service. XX RMLEARN is embedded into a high-level robot control system cadkedc-
tured reactive controller§srcs) [Bee99].sRCs are are controllers that can revise their
intended course of action based on foresight and planniagesiution timesrcs em-
ploy and reason about plans that specify and synchrareurrent percept-driven
behavior. Concurrent plans are represented in a trangpamdrmodular form so that
automatic planning techniques can make inferences abent #md revise them.

XFRMLEARN is applied to the RINO navigation system [BCF00], which has
shown impressive results in several longterm experim@uasceptually, this robot nav-
igation system works as follows. A navigation problem is\gf@rmed into a Markov
decision problem to be solved by a path planner using a viduation algorithm. The
solution is a policy that maps every possible location iheaptimal heading to reach
the target. This policy is then given to a reactive colliseamoidance module that exe-
cutes the policy taking the actual sensor readings intolatd8CF"00].



The RHINO navigation system can be parameterized in different ways perame-
ter PATH is a sequence of intermediate points which are to be visitélad specified or-
der.coLLI-MODE determines how cautiously the robot should drive and how athyr
it is allowed to change direction.HRNO’s navigation behavior can be improved be-
cause RIINO’s path planner solves an idealized problem that does netttakdesired
velocity, the dynamics of the robot, the sensor crosstalit the expected clutteredness
fully into account. The reactive collision avoidance comenot takes these aspects into
account but makes only local decisions.

We propose an “analyze, revise, and test” cycle as a conmipudhtnodel for learn-
ing SRNPS. XFRML EARN starts with a default plan that transforms a navigation jemb
into anMDP problem and passes tivpP problem to RiINO’s navigation system. After
RHINO’s path planner has determined the navigation policy thégadion system acti-
vates the collision avoidance module for the execution efrésulting policy. XRMm-
LEARN records the resulting navigation behavior and looks fatslkres of behavior
that could be possibly improved.ERMLEARN then tries to explain the improvable
behavior stretches using causal knowledge and its knowlatigut the environment.
These explanations are then used to index promising plasisevmethods that intro-
duce and modify subplans. The revisions are then tested éniesof experiments to
decide whether they are likely to improve the navigationawatr. Successful subplans
are incorporated into the symbolic plan.

3 Structured Reactive Navigation Plans

Let us now take a more detailed look at the representatierafs.

navigation plan  (desk-1,desk-2)
with subplans

TRAVERSE-NARROW-PASSAGH(635,1274,(635,1076)
parameterizations  colli-mode<«+ slow
path constraints (635,1274,(635,1076
justification narrow-passage-bug-3

TRAVERSE-NARROW-PASSAGK...)

TRAVERSE-FREE-SPACK...)

DEFAULT-GO-TO ( desk-2)

ThesrNPabove contains three subplans: one for leaving the lefteftine for en-
tering the right one, and one for speeding up the traversddeohallway. The subplan
for leaving the left office is shown in more detail. The patmsinaints are added to
the plan for causing the robot to traverse the narrow passdyegonally with maxi-
mal clearance. The parameterizations of the navigatiaesyspecify that the robot is
asked to drive slowly in the narrow passage and to only use Eensors for obstacle
avoidance to avoid the hallucination of obstacles due tasorosstalk.

SRNPs are callesgstructuredbecause the subplans explicitly represent task-relevant

structure in continuous navigation behavior. They areedaleactive because “per-
ceived” qualitative events, such as entering or leaving raomapassage, trigger the
activation and termination of subplans.
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4 XFRMLEARN in Detail

A key problem in learning structured navigation plans is traicture the navigation
behavior well. Because the robot must start the subplansyamthronize them, it must
be capable of “perceiving” the situations in which subplans to be activated and
deactivated. Besides being perceiveable, the situatiomsid be relevant for adapting
navigation behavior. Among others, we use the concepaobwnesdor detecting the
situations in which the navigation behavior is to be adapBaded on the concept of
narrowness the robot can differentiate situations suchesgsdpace, traversing narrow
passages, entering narrow passages, and leaving narreageas
Diagnosis of Conspicous SubtracesJpon carrying
out a navigation task, RNO produces a behavior
trace like the one shown in Figure 1. The robot’s posi-
tion is depicted by a circle where the size of the circle
is proportional to the robot’s translational speed. Be-
havior feature subtraces such as low and high trans-
lational speed, turning in place, and frequent stop-
ping often hint at which behavior stretches can be
improved. To infer how the improvements might be
| e | mmm  achieved, XRMLEARN first tries to explain a behav-
Fig. 1: Visualization of a behavior ior feature subtrace by finding environment feature
trace. The center of the circles desubtraces, such as “traversing a narrow passage” or
note the robot’s position and the"passing an obstacle” that overlap with it. We use the
size of the circle the current speeddredicate My CAUSE(F1,F2) to specify that the en-
of the robot. vironment featureel may cause the behavior feature
F2 like narrow passages causing low translational ve-
locity. If there is sufficient overlap between a behaviortdea subtracd and an en-
vironment feature subtracethen the behavior is considered to béehavior flaw
The diagnosis step is realized through a simple diagnagiicthat, depending on the
instantiation of May CAUSE(?F1,7%2) can diagnose different kinds of flaws:
D-1 Low translational velocity is caused by the traversal ofoarpassages.
D-2 Stopping is caused by the traversal of narrow passage.
D-3 Low translational velocity is caused by passing an obstadelose.
D-4 Stopping caused by passing an obstacle too close.
D-5 High target velocity caused by traversing free space.

The “revise” step uses programming knowledge about how to revise navigation
plans and how to parameterize the subsymbolic navigatiodutes that is encoded
in the form of plan transformation rules. In their conditiparts transformation rules
check their applicability and the promise of success. Tleders are used to estimate
the expected utility of rule applicationsFPRML EARN selects the rule with a probability
proportional to the expected utility and applies it to tharpl

For the purpose of this paperFRMLEARN provides the following revisions:

R-1 If the behavior flaw is attributed to the traversal of a narpagsage then insert a
subplan to traverse the passage orthogonally and with nzdxiearance.

R-2 Switch off the sonar sensors while traversing narrow passédhe robot repeat-
edly stops during the traversal.




R-3 Insert an additional path constraint to pass a closeby dlestath more clearance.

R-4 Increase the target velocity for the traversal of free spabere the measured
velocity almost reaches the current target velocity.

R-5 Insert an additional path constraint to avoid abrupt chamgéhe robot’s heading.

Because XRMLEARN'’s transformation rules are heuristic, their applicapidind
the performance gain that can be expected from their apigicés environment and
task-specific. Therefore PRMLEARN learns the environment and task specific ex-
pected utility of rules based on experience.

The “test” step. Because plan transformation rules check their applidstaitid pa-
rameterization with respect to idealized models of the remrent, the robot, the per-
ceptual apparatus, and operation of the subsymbolic néeigsystem, XRMLEARN
cannot guarantee any improvements of the existing plarreftie, XFRML EARN tests
the resulting candidate plans against the original plangpgatedly running the orig-
inal and the revised plan and measuring the time performiantte local region that
is affected by the plan transformation. The new candidae @ accepted, if based on
the experiments there is a 95% confidence that the new pldorper better than the
original one.

5 Experimental Results

To empirically evaluate XRMLEARN we have performed two long term experiments
in which XFRMLEARN has improved the performance of thelRo navigation system
for given navigation tasks by up to 44 percent within 6 to 7rsou

Fig. 2. Behavior trace of the default plan (a). Low T-Vel subtrad®s ltearnedsRNP(C).

Figure 2(a) shows the navigation task (going from the degkéneft room to the
one in the right office) and a typical behavior trace genératethembP navigation
system. Figure 2(b) visualizes the plan that was learned BN EARN. It contains
three subplans. One for traversing the left doorway, onéhferight one, and one for
the traversal of the hallway. The ones for traversing thengags are RAVERSENAR-
ROWPASSAGE subplans, which comprise path constraints (the blackes)as well as
behavior adaptations (depicted by the region). The subiglactivated when the re-
gion is entered and deactivated when it is left. A typicaldabr trace of the learned
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SRNPis shown in Figure 2(c). We can see that the behavior is muak tnramogeneous
and that the robot travels faster. This visual impressiaoigirmed by statistical tests.
The t-test for the learnesRNPbeing at least 24 seconds (21%) faster returns a signifi-
cance of 0.956. A bootstrap test returns the probability. 856 that the variance of the
performance has been reduced.

In the second learning session the average time neededrformpég a navigation
task has been reduced by about 95.57 seconds (44%). Theftitdise revised plan
being at least 39 seconds (18%) faster returns a significa@®52. A bootstrap test
returns the probabilty of 0.857 that the variance of thegranfince has been reduced.

6 Conclusions

We have described BRML EARN, a system that learr&RNPs, symbolic behavior spec-
ifications that (a) improve the navigation behavior of aroaotmous mobile robot gen-
erated by executingiDP navigation policies, (b) make the navigation behavior more
predictable, and (c) are structured and transparent stitiaievel controllers can ex-
ploit them for demanding applications such as office dejiver

XFRMLEARN is capable of learning compact and modw&nps that mirror the
relevant temporal and spatial structures in the continmawgyation behavior because
it starts with default plans that produce flexible behaviatimized for average perfor-
mance, identifies subtasks, stretches of behavior thatdedkthey could be improved,
and adds subtask specific subplans only if the subplans qanova the navigation be-
havior significantly.

The learning method builds a synthesis among various sdbfa#l Al: computing
optimal actions in stochastic domains, symbolic actiompiag, learning and skill ac-
quisition, and the integration of symbolic and subsymbapproaches to autonomous
robot control. Our approach also takes a particular viewherirttegration of symbolic
and subsymbolic control processes, in particwiaPs. In our view symbolic represen-
tations are resources that allow for more economical réagoifhe representational
power of symbolic approaches can enable robot controltetsetter deal with com-
plex and changing environmants and achieve changing s@igeoécting jobs. This is
achieved by making more information explicit and repreisgrbehavior specifications
symbolically, transparently, and modularly. In our apmtogPO)MDPs are viewed as a
way to ground symbolic representations.
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