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Abstract. Autonomous robots, such as robot office couriers, need control rou-
tines that support flexible task execution and effective action planning. This pa-
per describes XFRMLEARN, a system that learns structured symbolic robot ac-
tion plans for navigation tasks. Given a navigation task, XFRMLEARN learns to
structure continuous navigation behavior and represents the learned structure as
compact and transparent plans. The structured plans are obtained by starting with
monolithical default plans that are optimized for average performance and adding
subplans to improve the navigation performance for the given task. Compactness
is achieved by incorporating only subplans that achieve significant performance
gains. The resulting plans support action planning and opportunistic task execu-
tion. XFRMLEARN is implemented and extensively evaluated on an autonomous
mobile robot.

1 Introduction

Robots operating in human working environments and solvingdynamically changing
sets of complex tasks are challenging testbeds for autonomous robot control. The dy-
namic nature of the environments and the nondeterministic effects of actions requires
robots to exhibit concurrent, percept-driven behavior to reliably cope with unforeseen
events. Most physical control processes are continuous in nature and difficult to repre-
sent in discrete symbolic structures.

In order to apply high-level plan-based control techniques, robots need adequate and
realistic representations of their control processes thatenable their planning routines to
foresee problems and forestall them. In this paper we take the navigation behavior of
autonomous mobile robots as our prototypical example.

Different approaches have been proposed to specify the navigation behavior of such
robots. A number of researchers consider navigation as an instance of Markov deci-
sion problems (MDPs) [KCK96]. They model the navigation behavior as a finite state
automaton in which navigation actions cause stochastic state transitions. The robot is
rewarded for reaching its destination quickly and reliably. A solution for such problems
is apolicy, a mapping from discretized robot poses into fine-grained navigation actions.

MDPs form an attractive framework for navigation because they use a uniform mech-
anism for action selection and a parsimonious problem encoding. The navigation poli-
cies computed byMDPs aim at robustness and optimizing the average performance.One? This research is partially funded by the Deutsche Forschungsgemeinschaft.
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of the main problems in the application ofMDP planning techniques is to keep the state
space small enough so that theMDPs are still solvable.

Another approach is the specification of environment- and task-specific navigation
plans, such asstructured reactive navigation plans (SRNPs) [Bee99].SRNPs specify a
default navigation behavior and employ additional concurrent, percept-driven subplans
that overwrite the default behavior while they are active. The default navigation behav-
ior can be generated by anMDP navigation system. The (de-)activation conditions of
the subplans structure the continuous navigation behaviorin a task-specific way.

SRNPs are valuable resources for opportunistic task execution and effective action
planning because they provide high-level controllers withsubplans such as traverse
a particular narrow passage or an open area. More specifically, SRNPs (1) can gener-
ate qualitative events from continuous behavior, such as entering a narrow passage;
(2) support online adaptation of the navigation behavior (drive more carefully while
traversing a particular narrow passage), and (3) allow for compact and realistic sym-
bolic predictions of continuous, sensor-driven behavior.The specification of good task
and environment-specificSRNPs, however, requires tailoring their structure and param-
eterizations to the specifics of the environment.

We propose to bridge the gap between both approaches by learning SRNPs, sym-
bolic plans, from executingMDP navigation policies. Our thesis is that a robot can
autonomously learn compact and well-structuredSRNPs by usingMDP navigation poli-
cies as default plans and repeatedly inserting subplans into theSRNPs that significantly
improve the navigation performance. This idea works because the policies computed by
theMDP path planner are already fairly general and optimized for average performance.
If the behavior produced by the default plans were uniformlygood, making navigation
plans more sophisticated would be of no use. The rationale behind requiring subplans
to achieve significant improvements is to keep the structureof the plan simple.

2 An Overview on XFRM L EARN

We have implemented XFRMLEARN a realization of this learning model and applied
it to learningSRNPs for an autonomous mobile robot that is to perform office courier
service. XFRMLEARN is embedded into a high-level robot control system calledstruc-
tured reactive controllers(SRCs) [Bee99].SRCs are are controllers that can revise their
intended course of action based on foresight and planning atexecution time.SRCs em-
ploy and reason about plans that specify and synchronizeconcurrent percept-driven
behavior. Concurrent plans are represented in a transparent and modular form so that
automatic planning techniques can make inferences about them and revise them.

XFRMLEARN is applied to the RHINO navigation system [BCF+00], which has
shown impressive results in several longterm experiments.Conceptually, this robot nav-
igation system works as follows. A navigation problem is transformed into a Markov
decision problem to be solved by a path planner using a value iteration algorithm. The
solution is a policy that maps every possible location into the optimal heading to reach
the target. This policy is then given to a reactive collisionavoidance module that exe-
cutes the policy taking the actual sensor readings into account [BCF+00].
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The RHINO navigation system can be parameterized in different ways. The parame-
ter PATH is a sequence of intermediate points which are to be visited in the specified or-
der.COLLI-MODE determines how cautiously the robot should drive and how abruptly
it is allowed to change direction. RHINO’s navigation behavior can be improved be-
cause RHINO’s path planner solves an idealized problem that does not take the desired
velocity, the dynamics of the robot, the sensor crosstalk, and the expected clutteredness
fully into account. The reactive collision avoidance component takes these aspects into
account but makes only local decisions.

We propose an “analyze, revise, and test” cycle as a computational model for learn-
ing SRNPs. XFRMLEARN starts with a default plan that transforms a navigation problem
into anMDP problem and passes theMDP problem to RHINO’s navigation system. After
RHINO’s path planner has determined the navigation policy the navigation system acti-
vates the collision avoidance module for the execution of the resulting policy. XFRM-
LEARN records the resulting navigation behavior and looks for stretches of behavior
that could be possibly improved. XFRMLEARN then tries to explain the improvable
behavior stretches using causal knowledge and its knowledge about the environment.
These explanations are then used to index promising plan revision methods that intro-
duce and modify subplans. The revisions are then tested in a series of experiments to
decide whether they are likely to improve the navigation behavior. Successful subplans
are incorporated into the symbolic plan.

3 Structured Reactive Navigation Plans

Let us now take a more detailed look at the representation ofSRNPs.

navigation plan (desk-1,desk-2)
with subplans

TRAVERSE-NARROW-PASSAGE(h635,1274i,h635,1076i)
parameterizations colli-mode slow
path constraints h635,1274i,h635,1076i
justification narrow-passage-bug-3

TRAVERSE-NARROW-PASSAGE(...)
TRAVERSE-FREE-SPACE(...)

DEFAULT-GO-TO ( desk-2 )

TheSRNPabove contains three subplans: one for leaving the left office, one for en-
tering the right one, and one for speeding up the traversal ofthe hallway. The subplan
for leaving the left office is shown in more detail. The path constraints are added to
the plan for causing the robot to traverse the narrow passageorthogonally with maxi-
mal clearance. The parameterizations of the navigation system specify that the robot is
asked to drive slowly in the narrow passage and to only use laser sensors for obstacle
avoidance to avoid the hallucination of obstacles due to sonar crosstalk.

SRNPs are calledstructuredbecause the subplans explicitly represent task-relevant
structure in continuous navigation behavior. They are called reactivebecause “per-
ceived” qualitative events, such as entering or leaving a narrow passage, trigger the
activation and termination of subplans.
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4 XFRM L EARN in Detail

A key problem in learning structured navigation plans is to structure the navigation
behavior well. Because the robot must start the subplans andsynchronize them, it must
be capable of “perceiving” the situations in which subplansare to be activated and
deactivated. Besides being perceiveable, the situations should be relevant for adapting
navigation behavior. Among others, we use the concept ofnarrownessfor detecting the
situations in which the navigation behavior is to be adapted. Based on the concept of
narrowness the robot can differentiate situations such as free space, traversing narrow
passages, entering narrow passages, and leaving narrow passages.

Fig. 1: Visualization of a behavior
trace. The center of the circles de-
note the robot’s position and the
size of the circle the current speed
of the robot.

Diagnosis of Conspicous Subtraces.Upon carrying
out a navigation task, RHINO produces a behavior
trace like the one shown in Figure 1. The robot’s posi-
tion is depicted by a circle where the size of the circle
is proportional to the robot’s translational speed. Be-
havior feature subtraces such as low and high trans-
lational speed, turning in place, and frequent stop-
ping often hint at which behavior stretches can be
improved. To infer how the improvements might be
achieved, XFRMLEARN first tries to explain a behav-
ior feature subtrace by finding environment feature
subtraces, such as “traversing a narrow passage” or
“passing an obstacle” that overlap with it. We use the
predicate MAY CAUSE(F1,F2) to specify that the en-
vironment featureF1 may cause the behavior feature
F2 like narrow passages causing low translational ve-

locity. If there is sufficient overlap between a behavior feature subtraceb and an en-
vironment feature subtracee then the behavior is considered to be abehavior flaw.
The diagnosis step is realized through a simple diagnostic rule that, depending on the
instantiation of MAY CAUSE(?F1,?F2) can diagnose different kinds of flaws:
D-1 Low translational velocity is caused by the traversal of narrow passages.
D-2 Stopping is caused by the traversal of narrow passage.
D-3 Low translational velocity is caused by passing an obstacletoo close.
D-4 Stopping caused by passing an obstacle too close.
D-5 High target velocity caused by traversing free space.

The “revise” step uses programming knowledge about how to revise navigation
plans and how to parameterize the subsymbolic navigation modules that is encoded
in the form of plan transformation rules. In their conditionparts transformation rules
check their applicability and the promise of success. Thesefactors are used to estimate
the expected utility of rule applications. XFRMLEARN selects the rule with a probability
proportional to the expected utility and applies it to the plan.

For the purpose of this paper, XFRMLEARN provides the following revisions:
R-1 If the behavior flaw is attributed to the traversal of a narrowpassage then insert a

subplan to traverse the passage orthogonally and with maximal clearance.
R-2 Switch off the sonar sensors while traversing narrow passages if the robot repeat-

edly stops during the traversal.

370



R-3 Insert an additional path constraint to pass a closeby obstacle with more clearance.
R-4 Increase the target velocity for the traversal of free spacewhere the measured

velocity almost reaches the current target velocity.
R-5 Insert an additional path constraint to avoid abrupt changes in the robot’s heading.

Because XFRMLEARN’s transformation rules are heuristic, their applicability and
the performance gain that can be expected from their application is environment and
task-specific. Therefore XFRMLEARN learns the environment and task specific ex-
pected utility of rules based on experience.

The “test” step. Because plan transformation rules check their applicability and pa-
rameterization with respect to idealized models of the environment, the robot, the per-
ceptual apparatus, and operation of the subsymbolic navigation system, XFRMLEARN

cannot guarantee any improvements of the existing plan. Therefore, XFRMLEARN tests
the resulting candidate plans against the original plan by repeatedly running the orig-
inal and the revised plan and measuring the time performancein the local region that
is affected by the plan transformation. The new candidate plan is accepted, if based on
the experiments there is a 95% confidence that the new plan performs better than the
original one.

5 Experimental Results

To empirically evaluate XFRMLEARN we have performed two long term experiments
in which XFRMLEARN has improved the performance of the RHINO navigation system
for given navigation tasks by up to 44 percent within 6 to 7 hours.
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Fig. 2.Behavior trace of the default plan (a). Low T-Vel subtraces (b). LearnedSRNP(c).

Figure 2(a) shows the navigation task (going from the desk inthe left room to the
one in the right office) and a typical behavior trace generated by theMDP navigation
system. Figure 2(b) visualizes the plan that was learned by XFRMLEARN. It contains
three subplans. One for traversing the left doorway, one forthe right one, and one for
the traversal of the hallway. The ones for traversing the doorways are TRAVERSENAR-
ROWPASSAGE subplans, which comprise path constraints (the black circles) as well as
behavior adaptations (depicted by the region). The subplanis activated when the re-
gion is entered and deactivated when it is left. A typical behavior trace of the learned
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SRNPis shown in Figure 2(c). We can see that the behavior is much more homogeneous
and that the robot travels faster. This visual impression isconfirmed by statistical tests.
The t-test for the learnedSRNPbeing at least 24 seconds (21%) faster returns a signifi-
cance of 0.956. A bootstrap test returns the probability of 0.956 that the variance of the
performance has been reduced.

In the second learning session the average time needed for performing a navigation
task has been reduced by about 95.57 seconds (44%). The t-test for the revised plan
being at least 39 seconds (18%) faster returns a significanceof 0.952. A bootstrap test
returns the probabilty of 0.857 that the variance of the performance has been reduced.

6 Conclusions

We have described XFRMLEARN, a system that learnsSRNPs, symbolic behavior spec-
ifications that (a) improve the navigation behavior of an autonomous mobile robot gen-
erated by executingMDP navigation policies, (b) make the navigation behavior more
predictable, and (c) are structured and transparent so thathigh-level controllers can ex-
ploit them for demanding applications such as office delivery.

XFRMLEARN is capable of learning compact and modularSRNPs that mirror the
relevant temporal and spatial structures in the continuousnavigation behavior because
it starts with default plans that produce flexible behavior optimized for average perfor-
mance, identifies subtasks, stretches of behavior that lookas if they could be improved,
and adds subtask specific subplans only if the subplans can improve the navigation be-
havior significantly.

The learning method builds a synthesis among various subfields of AI: computing
optimal actions in stochastic domains, symbolic action planning, learning and skill ac-
quisition, and the integration of symbolic and subsymbolicapproaches to autonomous
robot control. Our approach also takes a particular view on the integration of symbolic
and subsymbolic control processes, in particularMDPs. In our view symbolic represen-
tations are resources that allow for more economical reasoning. The representational
power of symbolic approaches can enable robot controllers to better deal with com-
plex and changing environmants and achieve changing sets ofinteracting jobs. This is
achieved by making more information explicit and representing behavior specifications
symbolically, transparently, and modularly. In our approach, (PO)MDPs are viewed as a
way to ground symbolic representations.
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