Reinforcement Learning for Weakly-Coupled MDPs and
an Application to Planetary Rover Control

Daniel S. Bernstein and Shlomo Zilberstein

Department of Computer Science, University of Massaclsiset
Amherst, Massachusetts 01003
{bern, shlonp}@s. unass. edu

Abstract. Weakly-coupled Markov decision processes can be decordpoge
subprocesses that interact only through a small set ofeettk states. We study
a hierarchical reinforcement learning algorithm desigt®dake advantage of
this particular type of decomposability. To test our altfori, we use a decision-
making problem faced by autonomous planetary rovers. lygtoblem, a Mars
rover must decide which activities to perform and when teerse between sci-
ence sites in order to make the best use of its limited ressuia our exper-
iments, the hierarchical algorithm performs better thatfe&ning in the early
stages of learning, but unlike Q-learning it converges tolmptimal policy. This
suggests that it may be advantageous to use the hieraratgoaithm when train-
ing time is limited.

1 Introduction

The Markov decision processes (MDP) framework is widelydusemodel problems
in decision-theoretic planning and reinforcement leagriéj. Recently there has been
increased interest in delimiting classes of MDPs that aterally decomposable and
developing special-purpose techniques for these clages fthis paper, we focus on
reinforcement learning for weakly-coupled MDPs. A weaktpled MDP is an MDP
that has a natural decomposition into a set of subproceghestransition from one
subprocess to another requires entry into one of a smalf betiteneck states. Because
the subprocesses are only connected through a small seite$,sthey are “almost”
independent. The common intuition is that weakly-couplddd should require less
computational effort to solve than arbitrary MDPs.

The algorithm that we investigate is a reinforcement leggniersion of a previously
studied planning algorithm for weakly-coupled MDPs [2].eTplanning algorithm is
model based, whereas our algorithm requires only infolwndtiom experience trajec-
tories and knowledge about which states are the bottlertatgss This can be beneficial
for problems where only a simulator or actual experienceagadlable. Our algorithm
fits into the category of hierarchical reinforcement leagn{see, e.g., [7]) because it
learns simultaneously at the state level and at the subgsdeeel. We note that other
researchers have proposed methods for solving weaklyled DPs [3-5], but very
little work has been done in a reinforcement learning cantex

For experimentation we use a problem from autonomous @aneiver control that
can be modeled as a weakly-coupled MDP. In our decision-nggddenario, a rover on

373



374

Mars must explore a number of sites over the course of a dépulistopping to estab-
lish communication with Earth. Using only a list of sitesidrmation about its resource
levels, and information about the goals of the mission, thesrr must decide which
activities to perform and when to move from one site to thet.neinited resources
and nondeterministic action effects make the problem noatrIn the main body of
the paper, we describe in detail how this problem can be nedded a weakly-coupled
MDP, with each site being a separate subprocess.

We compare the hierarchical algorithm with Q-learning, exedsee that the hierar-
chical algorithm performs better initially but fails to cmrge to the optimal policy. A
third algorithm which is given the optimal values for thetterieck states at the start ac-
tually learns more slowly than both of the aforementiongdathms. We give possible
explanations for the observed behavior and suggestioriatioe work.

2 MDPs and Reinforcement Learning

A Markov decision process (MDP) models an agent acting in a stochastic environment
with the aim of maximizing its expected long-term rewardeTipe of MDP we con-
sider contains a finite sét of states, withsy being the start state. For each state S,
A, is a finite set of actions available to the agdnts the table of transition probabil-
ities, whereP(s'|s, a) is the probability of a transition to staté given that the agent
performed actiorn in states. R is the reward function, wherg(s, a) is the reward
received by the agent given that it chose actian states.

A policy w is a mapping from states to actions. Solving an MDP amouriiisding a
policy that maximizes the expected long-term reward. |a ffaiper, we use the infinite-
horizon discounted optimality criterion. Formally, theeagshould maximize

E

t=0

ZVtR(StJ(St))] ;

wherey € [0, 1] is the discount factor. In order to modagisodic tasks, we can include
an absorbing state from which the agent can only receive areifiate reward of zero;
a transition to the absorbing state corresponds to the ead episode.

Algorithms for MDPs often solve foralue functions. For a policyr, the state value
function,V™(s), gives the expected total reward starting from staé;d executingr.
The state-action value functio@” (s, a), gives the expected total reward starting from
states, executing actiom, and executing from then on.

When an explicit model is available, MDPs can be solved ustagdard dynamic
programming techniques such as policy iteration or vakmaiton. When only a simu-
lator or real experience are available, reinforcementiegrmethods are a reasonable
choice. With these techniques, experience trajectoreessed to learn a value function
for a good policy. Actions taken on a trajectory are usuailyegly with respect to the
current value function, buxploratory actions must also be taken in order to discover
better policies. One widely-used reinforcement learnilygp@thm is Q-learning [8],
which updates the state-action value function after eamfsttion froms to s’ under



actiona with the following rule:
Qs,0) < Q(s,0) + & [R(s,a) + ymaxQ(s',a') = Q(s,a)],

wherea is called the learning rate.

3 Reinforcement Learning for Weakly-Coupled MDPs

Consider an MDP with a state s€tthat is partitioned into disjoint subsefs, . .., Sy,.
Theout-space of a subsefS;, denotedD(S;), is defined to be the set of states nofin
that are reachable in one step fréin The set of stateB = O(S1) U ---UO(Sy,) that
belong to the out-space of at least one subset comprise tlod Isettleneck states. If
the set of bottleneck states is relatively small, we callMizP weakly-coupled.

In [2], the authors describe an algorithm for weakly-codpMDPs that can be
described as a type of policy iteration. Initially, values the bottleneck states are set
arbitrarily. The low-level policy improvement phase inves$ solving each subproblem,
treating the bottleneck state values as terminal rewattshigh-level policy evaluation
phase consists of reevaluating the bottleneck states ésetholicies. Repeating these
phases guarantees convergence to the optimal policy inta finmber of iterations.

The rules for backpropagating value information in ouri@icement learning algo-
rithm are derived from the two phases mentioned above. Twefiie of our approach
are that it doesn’t require an explicit model and that lesgréan proceed simultane-
ously at the high level and at the low level.

We maintain two different value functions: a low-level statction value function
Q defined over all state-action pairs and a high-level staigevlunctionV}, defined
over only bottleneck states. The low-level part of the le@egns described as follows.
Upon a transition to a non-bottleneck state, the standaleb@ving backup is applied.
However, when a bottleneck statec B is encountered, the following backup rule is
used:

Q(S’a) — Q(Sa a’) + g [R(Sva) + ’Yvh(sl) - Q(Sva)]’

whereq; is a learning rate. For the purposes of learning, the battlkstate is treated
as a terminal state, and its value is the terminal rewardh#igel backups occur only
upon a transition to a bottleneck state. The backup rule is:

Vh(s) — Vh(s) + ah[R + ’Yth(sl) — Vh(s)],

wherek denotes the number of time steps elapsed between the twertsatk statesk
is the cumulative discounted reward obtained over thistaméq;, is a learning rate.

It is possible to alternate between phases of low-level agh-level backups or
to perform the backups simultaneously. Whether either@ggr converges to an op-
timal policy is an open problem. We chose the latter for oypeginents because our
preliminary work showed it be more promising.

375



376

4 Autonomous Planetary Rover Control

4.1 The Model

In this section we describe a simple version of the rovergi@cimaking problem and
how it fits within the weakly-coupled MDP framework. In oures@rio, a rover is to
operate autonomously for a period of time. It has an ordeegdence of sites along
with priority information and estimated difficulty of obtang data, and it must make
decisions about which activities to perform and when to mibgen one site to the
next. The goal is to maximize the amount of useful work th&s gene during the time
period.

The action set consists of taking a picture, performing &spmeter experiment,
and traversing to the next site in the sequence. Spectromgperiments take more
time and are more unpredictable than pictures, but theyl yietter data. The time to
traverse between sites is a noisy function of the distantedam the sites. The state
features are the time remaining in the day, the current siteber (from which priority
and estimated difficulty are implicitly determined), themher of pictures taken at the
current site, and whether or not satisfactory spectrontztier has been obtained at the
current site. FormallyS = T x I x P x E, whereT = {0 min,5 min,..., 300 min}
is the set of time valued; = {1, 2, 3,4, 5} is the set of sitesP = {0, 1, 2} is the set
of values for pictures taken; arfd = {0, 1} is the set of values for the quality of the
spectrometer data. The start stategs= (300, 1, 0,0). The sequence of sites used for
our experiments is shown in Table 1.

Table 1. The sequence of sites for the rover to investigate

Site | Priority | Estimated difficulty | Distance to next site
1 8 medium 3m
2 5 hard 5m
3 3 easy 7m
4 2 easy 3m
5 9 hard N/A

A nonzero reward can only be obtained upon departure frote@sd is a function
of the site’s priority and the data obtained at the site. Bk ts episodic with = 1. An
episode ends when the time component reaches zero or thefiraskes investigating
the last site. The aim is to find a policy that maximizes theeexgd total reward across
all sites investigated during an episode. Because of ldrtitae and nondeterministic
action effects, the optimal action is not always obvious.

In order to see how this problem fits into the weakly-coupleBMframework,
consider the set of states resulting from a traversal betwsites. In all of these states,
the picture and spectrometer components of the state aetoegero. The seB =
T x I x {0} x {0} is taken to be the set of bottleneck states, and it is oves#tithat
we define the high-level value function. Note that the batlek states comprise only
300 of the problem’s 1,800 states.



4.2 Experiments

In our experiments, we tested Q-learning against the hikieal algorithm on the prob-
lem mentioned in the previous section. In addition, we tkatealgorithm that we call
the omniscient hierarchical learning algorithm. This algorithm is the saas the hier-
archical algorithm, except that the values for the bottdrstates are fixed to optimal
from the start, and only low-level backups are performedfing the bottleneck val-
ues, the problem is completely decomposed from the starto@fse, this cannot be
done in practice, but it is interesting for the purpose of parnson.

For the experiments, all values were initialized to zeral we used-greedy ex-
ploration withe = 0.1 [6]. For the results shown, all of the learning rates wereaset
0.1 (we obtained qualitatively similar results with leargrates of 0.01, 0.05, and 0.2).
Figure 1 shows the total reward per episode plotted agdiestiimber of episodes of
learning. The points on the curves represent averages evieds 1000 episodes.

‘ —— Q-learning
j ? ---------- Hierarchical learning

Total reward
=

+++++ Omn. Hierarchical learning

0 50 100 150 200 250 300 350 400 450 500

Episodes (x 1000)

Fig. 1.Learning curves for Q-learning, hierarchical learning amniscient hierarchical learning

A somewhat counterintuitive result is that the omniscieietrdrchical algorithm
performs worse than both the original hierarchical algponitand Q-learning during
the early stages. One factor contributing to this is thaaliation of the state-action
values to zero. During the early episodes of learning, theevaf the “leave” action
grows more quickly than the values for the other actions bse# is the only one that
leads directly to a highly-valued bottleneck state. Thiesdabent frequently leaves a
site without having gathered any data. This result dematestrthat decomposability
doesn’t always guarantee a more efficient solution.

The second result to note is that the hierarchical algorjtlenfiorms better than Q-
learning initially, but then fails to converge to the optimpalicy. It is intuitively plausi-
ble that the hierarchical algorithm should go faster, sihgaplicitly forms an abstract
process involving bottleneck states and propagates vaflosmation over multiple time
steps. It also makes sense that the algorithm doesn’t cpgegice we consider that the

high-level backups areff policy. This means that bottleneck states are evaluated for the

policy that is being executed, and this policy always inesidon-greedy exploratory

377



378

actions. Algorithms such as Q-learning, on the other hazatnl about the policy that
is greedy with respect to the value function regardless a€lvpolicy is actually being
executed.

5 Conclusion

We studied a hierarchical reinforcement learning algarifor weakly-coupled MDPs,
using a problem in planetary rover control as a testbed. @sults indicate that the
decomposability of these problems can lead to greater exfigi in learning, but the
conditions under which this will happen are not yet well uistieod. Perhaps exper-
imentation with different low-level and high-level leangi rates could shed some in-
sight. Also, experimental results from other weakly-caapMDPs besides the rover
problem would be valuable. Finally, a more detailed thécaéinvestigation may yield
an algorithm similar to ours that is provably convergent.

On the application side, we plan to develop a more realisticc@mplex simulator
of the rover decision-making problem. In this simulatog tiover will choose among
multiple sites to traverse to. It will also have to managediia storage and battery
capacity and perform activities during constrained tinterivals. The state space of the
model will most likely be too large to explicitly store a valdior each state. We will
instead have to use some form of function approximation.

Acknowledgements

The authors thank Rich Washington, John Bresina, BalardR@ndran, and Ted Perkins for
helpful conversations. This work was supported in part ey NSF under grants IRI-9624992
and 11S-9907331, and by NASA under grants NAG-2-1394 and NAGA63. Daniel Bernstein
was supported by an NSF Graduate Research Fellowship andS& MSRP Fellowship. Any
opinions, findings, and conclusions or recommendationsessgd in this material are those of
the authors and do not reflect the views of the NSF or NASA.

References

1. Bouitilier, C., Dean, T. & Hanks, S. (1999). Decision-tret planning: Structural assump-
tions and computational leverage. Journal of Artificiaélfigence Research, 1, 1-93.

2. Dean, T. & Lin, S.-H. (1995). Decomposition techniquesdianning in stochastic domains.
In IJCAI-95.

3. Foreister, J.-P. & Varaiya, P. (1978). Multilayer cohtsblarge Markov chains. IEEE Trans-
actions on Automatic Control, 23(2), 298—304.

4. Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T. &lier, C. (1998). Hierarchical
solution of Markov decision processes using macro-actiongAl-98.

5. Parr, R. (1998). Flexible decomposition algorithms farakly coupled Markov decision
problems. In UAI-98.

6. Sutton, R. S. & Barto, A. G. (1998). Reinforcement Leagnifin Introduction. Cambridge,
MA: MIT Press.

7. Sutton, R. S., Precup, D. & Singh, S. (2000). Between MDORs$emi-MDPs: Learning,
planning, and representing knowledge at multiple tempscales. Artificial Intelligence,
112, 181-211.

8. Watkins, C. (1989). Learning from Delayed Rewards. Ph&si)y Cambridge University,
Cambridge, England.



