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Abstract. Planning under partial observability in nondeterministicdomains is a
very significant and challenging problem, which requires dealing with uncertainty
together with and-or search. In this paper, we propose a new algorithm for tack-
ling this problem, able to generate conditional plans that are guaranteed to achieve
the goal despite of the uncertainty in the initial conditionand the uncertain effects
of actions. The proposed algorithm combines heuristic search in the and-or space
of beliefs with symbolicBDD-based techniques, and is fully amenable to the use
of selection functions. The experimental evaluation showsthat heuristic-symbolic
search may behave much better than state-of-the-art searchalgorithms, based on
a depth-first search (DFS) style, on several domains.

1 Introduction
In this paper, we tackle the problem of conditional planningunder partial observability,
where only part of the information concerning the domain status is available at run time.
In its generality, this problem is extremely challenging. Compared to the limit case of
full observability, it requires dealing with uncertainty about the state in which the ac-
tions will be executed. Compared to the limit case of null observability, also known as
conformant planning, it requires the ability to search for,and construct, plans repre-
senting conditional courses of actions. Several approaches to this problem have been
previously proposed, e.g.[WAS98], based on extensions of GraphPlan, and[BG00],
based on Partially Observable Markov Decision Processes (POMDP).

Our work builds on the approach proposed in[BCRT01], where planning is seen
as and-or search of the (possibly cyclic) graph induced by the domain, andBDD-based
techniques borrowed from symbolic model checking provide efficient search primitives.
We propose a new algorithm for planning under partial observability, able to generate
conditional acyclic plans that are guaranteed to achieve the goal despite of the uncer-
tainty in the initial condition and in the effects of actions. The main feature of the
algorithm is the heuristic style of the search, that is amenable to the use of selection
functions, and is fully compatible with the use of a symbolic, BDD-based representa-
tion. We call this approachheuristic-symbolicsearch. The proposed approach differs
from (and improves) the depth-first search proposed in[BCRT01] in several respects.
First, depending on the selection function, it can implement different styles of search,
including DFS. Furthermore, the use of selection functions allows to overcome poten-
tially bad initial choices, and can therefore result in moreefficient computations and
higher quality plans. Finally, it opens up the possibility of using preprocessing tech-
niques for determining domain/problem-dependent heuristics. The heuristic-symbolic
algorithm was implemented in theMBP planner[BCP+01], and an extensive experi-
mental evaluation was carried out. The results show that, even considering a simple
domain-independent heuristic, for several classes of problems the heuristic-symbolic
algorithm significantly improves the performance and constructs better plans with re-
spect to DFS.
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The paper is organized as follows. In Section 2 we describe partially observable
planning domains and conditional planning. In Section 3 we present the planning al-
gorithm. In Section 4 we give an overview of the experimentalevaluation, draw some
conclusions and discuss some future work.

2 Domains, Plans, and Planning Problems
A partially observable planning domain is a tuplehP ;S;A;R;O;Xi.P is a finite set of
propositions.S � Pow(P) is the set of states.A is a finite set of actions.R � S�A�S
is the transition relation, describing the effects of (possibly nondeterministic) action ex-
ecution. We say that an actiona is applicable in a states iff there exists at least one
states0 such thatR(s; a; s0). O is a set of boolean observation variables, whose values
can be observed during plan execution.X : O ! Pow(S � f>;?g) is the observation
relation. Intuitively,X associates each possible value of each observation variable to
the set of states where observing the variable returns such value. (We consider obser-
vation variables to be always defined, and independent from actions performed prior to
observing. The full framework (see[BCRT01]) and the actualMBP implementation are
free from these constraints. The current presentation is simplified for reasons of space.)

We consider conditional plans, branching on the value of observable variables. A
plan for a domainD is either the empty plan�, an actiona 2 A, the concatenation�1;�2 of two plans�1 and�2, or the conditional plano ? �1 : �2 (read “if o then�1 else�2”), with o 2 O. The execution of a plan� must take into account, at each
step, that the executor can be unable to distinguish betweena set of possible states
for the current situation. We call such a set of indistinguishable states a “belief state”.
An actiona is applicable to a belief stateBs iff a is applicable in all states ofBs.
Intuitively, the execution of a conditional plan� starting from a belief stateBs results
into a set of states recursively defined over the structure of� by either (a) the application
of the transition relation, if an action is performed, or (b)the union of the executions
on every branch resulting from the possible observation values for a variableo, if the
plan branches ono. We say that a plan is applicable onBs if no non-applicable actions
are met during its execution onBs. A planning problem is a 3-tuplehD; I;Gi whose
components are a planning domainD, a set of initial statesI and a set of goal statesG.
A solution consists of a plan� which is applicable overI, and whose execution onI
results in a belief state equal toG or contained into it.

Consider the example of a simple robot navigation domainD0, a 2x2 room with
an extra wall (Figure 1). The propositions of the domain areNW, NE, SW, andSE, i.e.
the four positions in the room. Exactly one of them holds in each of the four states
in S. The robot can move in the four directions, unless the actionis not applicable
due to a wall standing in the direction of motion. At each timetick, the information
of walls proximity in each direction is available to the robot (observation variables
WallN, WallS, WallW andWallE). In the figure, the execution of the plan�0 =
GoEast ; WallN ? (GoSouth ; GoWest ) : GoWest, starting from the uncertain
initial conditionNW or SW, is outlined by solid lines. The plan�0 is a solution for the
problemP0 = fD0, fNW, SWg, fSWg g.
3 Planning under Partial Observability
When planning under partial observability, the search space can be seen as an and-or
graph, recursively constructed from the initial belief state, expanding each encountered
belief state by every possible combination of applicable actions and observations. The
graph is possibly cyclic; in order to rule out cyclic behaviors, however, the exploration

380



Bs 1 Bs 2 Bs 3

Bs 4

Bs 6

Bs 5

Bs 3 Bs 6

G

O

A

L

G

O

A

L

I

I

T

N

SW SE

NW NE

Bs 1 Bs 1

L
O
O
P

B
A
C
K

L
O
O
P

B
A
C
K

Bs 4

L
O
O
P

B
A
C
K

Bs 4

Bs 4

L
O
O
P

B
A
C
K

GoWestGoSouth

GoWest

GoEast WallN?

N1

GoWest

N2

N4

N5

N7

N8

N9

N10

WallW?

N3 N6

GoWest

N11

GoEast

N11

GoNorth

GoSouth

GoEast

N12

GoNorth

Fig. 1. A simple robot navigation domain

can be limited to its acyclic prefix. Figure 1 depicts the finite prefix of the search space
for the problemP0 described above. Each node in the prefix is associated to a path,
describing how the node has been reached, and to the corresponding belief state.

The prefix is constructed by expanding each node in all possible ways, each repre-
sented by an outgoing arc. Single-outcome arcs correspond to applicable actions (action
execution is deterministic in belief space). For instance,N4 expands into N7 and N8.
Multiple outcome arcs correspond to observations. For instance, node N2 results in
nodes N4 and N5, corresponding to the observation ofWallN. The application of an
observation is what gives the “and” component in the search space: we have a solution
for (the belief state associated with) N2 if we have a solution for both N4 and N5 (whose
associated belief states are obtained by conjoining the beliefs associated byX to the ob-
served values ofWallN with the belief state associated to N2). Some non-informative
observations are not reported in the graph.

The expansion of a noden is halted when (a)n is associated with a belief state
contained in the goal, or (b)n is a loop back, i.e. it has an ancestor node with the same
belief state. For instance, node N6 loops back onto node N1, while node N11 loops
back onto node N4. Node N9 and N10 are associated with the goalbelief state.

The planning algorithm for conditional planning under partial observability is de-
scribed in Figure 2. It takes in input the initial belief state and the goal belief state,
while the domain representation is assumed to be globally available to the subroutines.
The algorithm incrementally constructs the finite acyclic prefix described above. The
algorithm relies on an extended data structure, stored in thegraph variable, which rep-
resents the prefix being constructed. Each node in the structure is associated with a
belief state and a path. In addition to son-ancestor links, the graph has links between
the nodes in the equivalence classes induced by equality on associated belief states, and
presents an explicit representation of the frontier of nodes to be expanded. A success
pool contains the solved nodes for the graph.

At line 1, the algorithm initializes the graph: the root nodecorresponds to the initial
belief state, and the success pool contains the goal. Then (lines 2-24) the iteration pro-

381



HEURSYM CONDPLAN (I,G)
1 graph := MK INITIAL GRAPH(I,G);
2 while (GRAPHROOTMARK(graph) 62 fSuess; Failureg)
3 node := EXTRACTNODEFROMFRONTIER(graph);
4 if (SUCCESSPOOLY IELDSSUCCESS(node, graph))
5 MARKNODEASSUCCESS(node);
6 NODESETPLAN (node,RETRIEVEPLAN (node,graph));
7 PROPAGATESUCCESSONTREE(node,graph);
8 PROPAGATESUCCESSONEQCLASS(node,graph);
9 else
10 orexp := EXPANDNODEWITHACTIONS(node);
11 andexp := EXPANDNODEWITHOBSERVATIONS(node);
12 EXTENDGRAPHOR(orexp,node, graph);
13 EXTENDGRAPHAND(andexp,node, graph);
14 if (SONSY IELDSUCCESS(node))
15 MARKNODEASSUCCESS(node);
16 NODESETPLAN (node,BUILD PLAN (node));
17 PROPAGATESUCCESSONTREE(node, graph);
18 PROPAGATESUCCESSONEQCLASS(node,graph);
19 else if (SONSY IELDFAILURE(node))
20 MARKNODEASFAILURE(node,graph);
21 NODEBUILD FAILUREREASON(node, graph);
22 PROPAGATEFAILUREONTREE(node,graph);
23 PROPAGATEFAILUREONEQCLASS(node, graph);
24 end while
25 if (GRAPHROOTMARK(graph) = Suess)
26 return GRAPHROOTPLAN (graph);
27 else
28 return Failure;

Fig. 2. The planning algorithm

ceeds by selecting a node and expanding it, until a solution is found or the absence of a
solution is detected. At loop exit, either a plan or a failureis returned (lines 25-28).

With the first step in the loop, at line 3, a node is extracted from the frontier in
order to be expanded. The EXTRACTNODEFROMFRONTIER primitive embodies the
selection criterion and is responsible for the style (and the effectiveness) of the search.
Then, at line 4, we check whether the belief state associatedto the selectednode is
entailed by some previously solved belief state in the success pool. If so, the formerly
detected plan is reused fornode, which is marked as success. Moreover, the success
is recursively propagated both to the ancestors ofnode (line 7) and to the nodes in
its equivalence class (line 8). The rules for success propagation directly derive from
the and-or graph semantics. Recursive success propagationtakes also care of removing
descendents of success nodes from the frontier (as their expansion would be useless).

If the success ofnode cannot be derived by the success pool, then the expansion ofnode is attempted, computing the nodes resulting from possible actions (line 10) and
observations (line 11). The graph extension steps, at lines12-13, construct the nodes
associated to the expansion, and add them to the graph, also doing the bookkeeping
operations needed to update the frontier and the links between nodes. In particular,
for each node, the associated status is computed. For instance, if a newly constructed
node has a belief state that is already associated with a plan, then the node is marked
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as success. Newly constructed nodes are also checked for loops, i.e. if they have an
ancestor node with the same belief state then they are markedas failure.

If it is possible to state the success ofnode based on the status of the newly intro-
duced sons (primitive SONSY IELDSUCCESSat line 14), then the same operations at
line 5-8 for success propagation are executed. Similarly, at lines 19-23, if it is possible
to state the failure ofnode based on the status of the newly introduced sons, failure is
propagated throughout the and-or graph. Failure can happen, for instance, due to loop
detection. The failure of the node is stored in such a way thatit can be reused in the
following search attempts. Notice however that, differently from success, a failure de-
pends on the node path. For instance, in a subsequent search attempt it could be possible
to reach a belief state with a non-cyclic path. Therefore, each belief state is associated
with a set of belief states representing the failure reason.Intuitively, the failure reason
contains the sets of belief states that caused a loop in all the search attempts originating
from the belief state marked with failure.

The algorithm is integrated inMBP [BCP+01], a general planner for nondetermin-
istic domains which allows for conditional planning under full observability, also con-
sidering temporally extended goals, and for conformant planning.MBP is based on the
use of symbolic model checking techniques[McM93]. In particular, it relies on Binary
Decision Diagrams, structures that allow for a compact representation of sets of states
and an efficient expansion of the search space (see[CR00] for an introduction to the
use ofBDDs in planning).

4 Results and Conclusions
We carried out an extensive experimental analysis of the heuristic-symbolic algorithm
presented in previous section, comparing it with the DFSapproach of[BCRT01], shown
to outperform other conditional planners such asSGPandGPT. For lack of space, we
only provide a high-level description of the considered domains and results. The details
can be found in[BCR01]. We considered the standard benchmark problems for PO
planning used in[BCRT01]: MAZE, Empty Room (ER), RING. In the MAZE, a mov-
ing robot must reach a fixed position in a maze, starting from anywhere and being able
to observe the walls around its current position. Basically, this problem reduces to gath-
ering knowledge about the robot position. Unless the maze issignificantly symmetric,
almost at each move of the robot, observing contributes to the purpose. Furthermore,
the problem is highly constrained: observing is forced in many situations by the lack
of applicable actions prior to that. In the ER, the same problem is tackled considering,
rather than a maze, a wide empty room; the robot starts from anywhere in the room. In
this formulation, most moves of the robot will lead to “enabling” some useful sensing.
In the RING, the aim is to have all windows of a ring of connected rooms locked by a
moving robot. Each window must be closed, if open, before being locked (if unlocked).
Here, the key issue is that of locality: before moving around, the robot should better
solve the local problem of locking the local window. Otherwise, plans may become ex-
tremely lengthy. Thus, observing and moving must be interleaved “in a sensible way”.
Furthermore, we considered some variations to the ER. In theVER problem, the robot
initially is in one of two positions near the center of the room. This forces the robot to
execute long sequences of actions before being able to gather some useful information
from sensing the walls. In the ERS, a portion of the empty roomis a “sink”, i.e. once
entered there, the robot cannot exit it.

The performance of the heuristic-symbolic algorithm heavily depends on the se-
lection function, that controls which portions of the search space are explored. The
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problem of finding an effective, problem dependent selection function for controlling
and-or search appears to be in general very hard. In all our experiments, we considered
a simple structural selection function, that gives high scores to nodes whose equivalence
class contains many open nodes and few failed ones. In spite of this choice, the results
are quite promising. In the RING, ER, VER, ERS problems the timing of the search,
and the length of the plan (defined as its maximum depth) are much better than in the
original DFSsearch. The MAZE problem evidences a reasonable loss of efficiency. This
is due to the fact that the problem is very constrained, and drives the DFS search ac-
cordingly. In this case, the overhead of maintaining a graphstructure and having explicit
propagation routines explains the result.

The conclusion that can be drawn is that giving up the DFS-style search is in general
an advantage, leading in many cases to better results even inabsence of highly tuned
scoring mechanisms, and opens up the possibility for further improvements. Future
research will be directed to the definition of preprocessingtechniques and more effec-
tive heuristic functions, with the goal to obtain “smarter”behaviors from the heuristic-
symbolic algorithm. Another direction of future research is the extension of the partially
observable approach presented in this paper to find strong cyclic solutions, and to deal
with goals expressed in a temporal logic.
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