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Abstract. Planning under partial observability in nondeterminigtiznains is a
very significant and challenging problem, which requireslishg with uncertainty
together with and-or search. In this paper, we propose a fgawitam for tack-

ling this problem, able to generate conditional plans theataaranteed to achieve
the goal despite of the uncertainty in the initial conditéord the uncertain effects

of actions. The proposed algorithm combines heuristicceiarthe and-or space

of beliefs with symbolisbD-based techniques, and is fully amenable to the use
of selection functions. The experimental evaluation shinasheuristic-symbolic
search may behave much better than state-of-the-art salg@tithms, based on

a depth-first search (%) style, on several domains.

1 Introduction

In this paper, we tackle the problem of conditional planninger partial observability,
where only part of the information concerning the domaitustés available at run time.
In its generality, this problem is extremely challengingngpared to the limit case of
full observability, it requires dealing with uncertaintipaut the state in which the ac-
tions will be executed. Compared to the limit case of nullestiability, also known as
conformant planning, it requires the ability to search #oxd construct, plans repre-
senting conditional courses of actions. Several appraaththis problem have been
previously proposed, e.§WAS98, based on extensions of GraphPlan, §B&0d,
based on Partially Observable Markov Decision Processe§(pP).

Our work builds on the approach proposed BCRTO1], where planning is seen
as and-or search of the (possibly cyclic) graph induced bydttmain, an@gbD-based
technigues borrowed from symbolic model checking provitleient search primitives.
We propose a new algorithm for planning under partial okegtity, able to generate
conditional acyclic plans that are guaranteed to achiezeytial despite of the uncer-
tainty in the initial condition and in the effects of actionkhe main feature of the
algorithm is the heuristic style of the search, that is arbento the use of selection
functions, and is fully compatible with the use of a symbotiob-based representa-
tion. We call this approacheuristic-symbolicsearch. The proposed approach differs
from (and improves) the depth-first search proposdd@RT0] in several respects.
First, depending on the selection function, it can implenuffierent styles of search,
including DFs. Furthermore, the use of selection functions allows to cwere poten-
tially bad initial choices, and can therefore result in mefficient computations and
higher quality plans. Finally, it opens up the possibilifyusing preprocessing tech-
nigues for determining domain/problem-dependent hécsisThe heuristic-symbolic
algorithm was implemented in thesp planner[BCPt01], and an extensive experi-
mental evaluation was carried out. The results show tha&h eonsidering a simple
domain-independent heuristic, for several classes oflgnab the heuristic-symbolic
algorithm significantly improves the performance and catss better plans with re-
spectto [Fs.
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The paper is organized as follows. In Section 2 we descrilogafig observable
planning domains and conditional planning. In Section 3 wes@nt the planning al-
gorithm. In Section 4 we give an overview of the experimeataluation, draw some
conclusions and discuss some future work.

2 Domains, Plans, and Planning Problems

A partially observable planning domainis atugfe, S, A, R, O, X'). P is afinite set of
propositionsS C Pow(P) is the set of statesd is a finite set of actiondz C SxAxS
is the transition relation, describing the effects of (jllysnondeterministic) action ex-
ecution. We say that an actianis applicable in a state iff there exists at least one
states’ such thatR (s, a, s"). O is a set of boolean observation variables, whose values
can be observed during plan executigh: O — Pow(S x {T, L}) is the observation
relation. Intuitively, X' associates each possible value of each observation \at@bl
the set of states where observing the variable returns salcle \(\WWe consider obser-
vation variables to be always defined, and independent fctiores performed prior to
observing. The full framework (sd8CRTO01]) and the actualBp implementation are
free from these constraints. The current presentatiomiplgied for reasons of space.)

We consider conditional plans, branching on the value otplable variables. A
plan for a domairD is either the empty plas, an actiona € A, the concatenation
my; o Of two plansm; and s, or the conditional plam 7 7, : m (read “if o then
m elsemy”), with o € O. The execution of a plan must take into account, at each
step, that the executor can be unable to distinguish betwesst of possible states
for the current situation. We call such a set of indistinbalsle states a “belief state”.
An actiona is applicable to a belief statBs iff a is applicable in all states aBs.
Intuitively, the execution of a conditional planstarting from a belief stat®s results
into a set of states recursively defined over the structurebgfeither (a) the application
of the transition relation, if an action is performed, or th¢ union of the executions
on every branch resulting from the possible observationesfor a variable, if the
plan branches on. We say that a plan is applicable &3 if no non-applicable actions
are met during its execution aBs. A planning problem is a 3-tupléD, Z, G) whose
components are a planning domé@ina set of initial stateg and a set of goal stat€s
A solution consists of a plam which is applicable ovef, and whose execution dh
results in a belief state equal foor contained into it.

Consider the example of a simple robot navigation donfajna 2x2 room with
an extra wall (Figure 1). The propositions of the domainM¢ NE, SW andSE, i.e.
the four positions in the room. Exactly one of them holds ioheaf the four states
in S. The robot can move in the four directions, unless the adsamot applicable
due to a wall standing in the direction of motion. At each titio&, the information
of walls proximity in each direction is available to the rol{observation variables
Val I N, Vil | S, VIl | WandWal | E). In the figure, the execution of the plag =
CoEast ; Wl | N? (GoSout h ; GoWest ) : GoWest , starting from the uncertain
initial conditionNWor SW is outlined by solid lines. The plary is a solution for the

problemP, = {Dy, {NW SW, {SW }.

3 Planning under Partial Observability

When planning under partial observability, the search sgan be seen as an and-or
graph, recursively constructed from the initial belieftst&xpanding each encountered
belief state by every possible combination of applicabteoas and observations. The
graph is possibly cyclic; in order to rule out cyclic behagichowever, the exploration
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Fig. 1. A simple robot navigation domain

can be limited to its acyclic prefix. Figure 1 depicts the &rptefix of the search space

for the problemP, described above. Each node in the prefix is associated toha pat

describing how the node has been reached, and to the condiegdelief state.

The prefix is constructed by expanding each node in all pesgiays, each repre-
sented by an outgoing arc. Single-outcome arcs correspapticable actions (action
execution is deterministic in belief space). For instamtg expands into N7 and N8.
Multiple outcome arcs correspond to observations. Foraimtst, node N2 results in
nodes N4 and N5, corresponding to the observationédfl N. The application of an
observation is what gives the “and” component in the segrelbes we have a solution
for (the belief state associated with) N2 if we have a sotutoy both N4 and N5 (whose
associated belief states are obtained by conjoining thefbelssociated by’ to the ob-
served values ofal | N with the belief state associated to N2). Some non-inforweati
observations are not reported in the graph.

The expansion of a node is halted when (a). is associated with a belief state

contained in the goal, or (b) is a loop back, i.e. it has an ancestor node with the same

belief state. For instance, node N6 loops back onto node Milewode N11 loops
back onto node N4. Node N9 and N10 are associated with thebgtiaf state.

The planning algorithm for conditional planning under robservability is de-
scribed in Figure 2. It takes in input the initial belief stand the goal belief state,
while the domain representation is assumed to be globadlijadole to the subroutines.
The algorithm incrementally constructs the finite acycliefix described above. The
algorithm relies on an extended data structure, storeceiprttaph variable, which rep-
resents the prefix being constructed. Each node in the gt associated with a
belief state and a path. In addition to son-ancestor lirtkes graph has links between
the nodes in the equivalence classes induced by equalitysmtiated belief states, and
presents an explicit representation of the frontier of sadebe expanded. A success
pool contains the solved nodes for the graph.

At line 1, the algorithm initializes the graph: the root naseresponds to the initial
belief state, and the success pool contains the goal. Tines @-24) the iteration pro-
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HEURSYM CONDPLAN(I, G)

1 graph = MKINITIAL GRAPH(I, G);

2 while (GRAPHROOTMARK (graph) € {Success, Failure})

3 node := EXTRACTNODEFROMFRONTIER(graph);

4 if (SuCCES®POOLY IELDSSUCCESSnode, graph))

5 MARKNODEA SSUCCESSnode);

6 NODESETPLAN (node,RETRIEVEPLAN (node, graph));
7 PROPAGATESUCCESSONTREE(node,graph);

8 PROPAGATESUCCESSONEQCLASS(node,graph);

9 else

10 orexp := EXPANDNODEWITHACTIONS(node);

11 andexp := EXPANDNODEWITHOBSERVATIONS node);
12 EXTENDGRAPHOR(orexp, node, graph);

13 EXTENDGRAPHAND(andexp, node, graph);

14 if (SONSYIELDSUCCESKnode))

15 MARKNODEASSUCCESYnode);

16 NODESETPLAN (node,BUILD PLAN (node));

17 PROPAGATESUCCESONTREE(node, graph);

18 PROPAGATESUCCESONEQCLASS(node, graph);
19 elseif (SONSY IELDFAILURE (node))

20 MARKNODEASFAILURE (node, graph);

21 NODEBUILD FAILUREREASON(node, graph);

22 PROPAGATEFAILUREONTREE(node, graph);

23 PROPAGATEFAILUREONEQCLASS(node, graph);
24 end while

25 if (GRAPHROOTMARK(graph) = Success)

26 return GRAPHROOTPLAN (graph);

27 dse

28 return Failure,

Fig. 2. The planning algorithm

ceeds by selecting a node and expanding it, until a soluiéound or the absence of a
solution is detected. At loop exit, either a plan or a failisreeturned (lines 25-28).

With the first step in the loop, at line 3, a node is extracteanfithe frontier in
order to be expanded. ThexXERACTNODEFROMFRONTIER primitive embodies the
selection criterion and is responsible for the style (amdetffiectiveness) of the search.
Then, at line 4, we check whether the belief state assoctatéite selectedvode is
entailed by some previously solved belief state in the ssgpeol. If so, the formerly
detected plan is reused fande, which is marked as success. Moreover, the success
is recursively propagated both to the ancestoraafe (line 7) and to the nodes in
its equivalence class (line 8). The rules for success prtpaygdirectly derive from
the and-or graph semantics. Recursive success propatgkesalso care of removing
descendents of success nodes from the frontier (as theansign would be useless).

If the success ofiode cannot be derived by the success pool, then the expansion of
node is attempted, computing the nodes resulting from possittierss (line 10) and
observations (line 11). The graph extension steps, at i2e$3, construct the nodes
associated to the expansion, and add them to the graph, @ilsg the bookkeeping
operations needed to update the frontier and the links lestwedes. In particular,
for each node, the associated status is computed. For aestéirm newly constructed
node has a belief state that is already associated with a thlan the node is marked



as success. Newly constructed nodes are also checked fus, Ibe. if they have an
ancestor node with the same belief state then they are maskiadure.

If it is possible to state the successrafde based on the status of the newly intro-
duced sons (primitive &NSY IELDSUCCESSat line 14), then the same operations at
line 5-8 for success propagation are executed. Similarlines 19-23, if it is possible

to state the failure ofiode based on the status of the newly introduced sons, failure is

propagated throughout the and-or graph. Failure can happeimstance, due to loop

detection. The failure of the node is stored in such a wayithan be reused in the
following search attempts. Notice however that, diffelefrom success, a failure de-
pends on the node path. For instance, in a subsequent sétaraptt could be possible

to reach a belief state with a non-cyclic path. Thereforehdzelief state is associated
with a set of belief states representing the failure realsdnitively, the failure reason

contains the sets of belief states that caused a loop ineafi¢lrch attempts originating
from the belief state marked with failure.

The algorithm is integrated imBP [BCPt01], a general planner for nondetermin-
istic domains which allows for conditional planning undell bbservability, also con-
sidering temporally extended goals, and for conformamiteg. MBP is based on the
use of symbolic model checking techniqus&M93]. In particular, it relies on Binary
Decision Diagrams, structures that allow for a compactesgntation of sets of states
and an efficient expansion of the search space [G8®0 for an introduction to the
use ofsDDs in planning).

4 Resultsand Conclusions

We carried out an extensive experimental analysis of theigtesymbolic algorithm
presented in previous section, comparing it with tiresBpproach ofBCRTO1], shown
to outperform other conditional planners suchsas andGPT. For lack of space, we
only provide a high-level description of the considered dors and results. The details

can be found ifBCROJ. We considered the standard benchmark problems for PO

planning used iNBCRT01: MAZE, Empty Room (ER), RING. In the MAZE, a mov-
ing robot must reach a fixed position in a maze, starting fragwdere and being able
to observe the walls around its current position. Basictiig problem reduces to gath-
ering knowledge about the robot position. Unless the maggisficantly symmetric,
almost at each move of the robot, observing contributesatirpose. Furthermore,
the problem is highly constrained: observing is forced imynsituations by the lack
of applicable actions prior to that. In the ER, the same pnobik tackled considering,
rather than a maze, a wide empty room; the robot starts froqwlagre in the room. In
this formulation, most moves of the robot will lead to “enall’ some useful sensing.
In the RING, the aim is to have all windows of a ring of connélateoms locked by a
moving robot. Each window must be closed, if open, beforadpkicked (if unlocked).
Here, the key issue is that of locality: before moving arquhé robot should better
solve the local problem of locking the local window. Othesejiplans may become ex-
tremely lengthy. Thus, observing and moving must be indedd “in a sensible way”.
Furthermore, we considered some variations to the ER. INER problem, the robot
initially is in one of two positions near the center of the madr his forces the robot to
execute long sequences of actions before being able torgathee useful information
from sensing the walls. In the ERS, a portion of the empty ri®a“sink”, i.e. once
entered there, the robot cannot exit it.

The performance of the heuristic-symbolic algorithm hlyasiepends on the se-
lection function, that controls which portions of the sémspace are explored. The
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problem of finding an effective, problem dependent selactimction for controlling
and-or search appears to be in general very hard. In all uergrents, we considered
a simple structural selection function, that gives highres®o nodes whose equivalence
class contains many open nodes and few failed ones. In dptiésahoice, the results
are quite promising. In the RING, ER, VER, ERS problems thertg of the search,
and the length of the plan (defined as its maximum depth) ahrbatter than in the
original DFssearch. The MAZE problem evidences a reasonable loss déeiffic This

is due to the fact that the problem is very constrained, aingslithe DFs search ac-
cordingly. In this case, the overhead of maintaining a gsaplcture and having explicit
propagation routines explains the result.

The conclusion that can be drawn is that giving up tirsBtyle search is in general
an advantage, leading in many cases to better results exasénce of highly tuned
scoring mechanisms, and opens up the possibility for faritin@rovements. Future
research will be directed to the definition of preprocessétiniques and more effec-
tive heuristic functions, with the goal to obtain “smarteehaviors from the heuristic-
symbolic algorithm. Another direction of future researsthie extension of the partially
observable approach presented in this paper to find strasiig splutions, and to deal
with goals expressed in a temporal logic.
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