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.ukAbstra
t. Re
ently automati
 extra
tion of heuristi
 estimates has been shown to be extremelyfruitful when applied to 
lassi
al planning domains. We present a simple extension to the heuristi
extra
tion pro
ess from the well-known HSP system that allows us to apply it to reward maximisationproblems. This extension involves 
omputing an estimate of the maximal reward obtainable from agiven state by ignoring delete lists. We also des
ribe how to improve the a

ura
y of this estimateusing any available mutual ex
lusion information. In this way we seek to apply re
ent advan
es in
lassi
al planning to a broader range of problems.Keywords: Domain Independent Planning, Reward Based Planning, Heuristi
 Sear
hPlanners.1 Introdu
tionIn this paper we investigate reward maximisation as an alternative to plan length forthe optimisation 
riteria in STRIPS style problems. In reward maximisation problems weattempt to maximise the total reward obtained from the states visited and a
tions takenduring plan exe
ution, where the reward is an aribitary real-valued fun
tion over statesand a
tions. In parti
ular we fo
us on reward problems where the planners obje
tives arespe
i�ed through the rewards allo
ated to di�erent world states rather than as an expli
itgoal whi
h must be a
hieved.Inspired by the su

ess of heuristi
 sear
h in eÆ
iently solving goal-based STRIPSproblems (Ba
00; BG99; HN01) we suggest that similar methods may be used in rewardmaximisation problems. To investigate this idea we present a modi�
ation of the heuristi
used in HSP whi
h is appli
able in the reward maximisation 
ase.This paper is organised as follows. Se
tion 2 presents a mathemati
al model of STRIPSproblems and its reward based extensions. Se
tion 3 gives the derivation of our new heuristi
and an outline of the algorithm used to 
al
ulate it. The �nal se
tions dis
uss future work(Se
 4), 
ompare related work (Se
 5) and present 
on
lusions (Se
 6).2 Reward Based PlanningFollowing (BG99) we represent a 
onventional STRIPS (FN71) domain as a tuple D =hA;Oi, where A is a set of atoms and O is a set of operators. The operators op 2 O andatoms a 2 A are all assumed ground (all variables repla
ed by 
onstants). Ea
h operator
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2has pre
ondition, add and delete lists whi
h we denote as Pre(op), Add(op) and Del(op)respe
tively, given by sets of atoms from A.Su
h a domain 
an be seen as representing a state spa
e where:1. the states s 2 S are �nite sets of atoms from A2. the state transition fun
tion f(s; op) whi
h maps from states to states is given by:s0 = f(s; op) = �s [ Add(op) nDel(op) if Pre(op) � sunde�ned otherwise. (1)3. the result of applying a sequen
e of operators is de�ned re
ursively assn = f(s0; hop1; ::; opni) = f(f(s0; hop1; :::; opn�1i); opn) (2)In reward based planning the domain des
ription is augmented to give P = hA;O; I; Riwhere I � A represents the initial situation and R is the reward fun
tion whi
h maps fromsituations to real valued rewards. R 
onsists of two 
omponents, a state based 
omponent,R : s 7! IR, and an operator based 
omponent, R : op 7! IR. The solution to a rewardbased planning problem is a sequen
e of operators P = hop1; :::; opni that maximises thetotal reward re
eived from the states visited and operators applied during plan exe
ution.One parti
ular problem with reward based planning not found in goal based planningis the possibility of 
y
li
 solutions with in�nite reward. Su
h in�nities are diÆ
ult to workwith so it is usual to modify the optimisation 
riteria to remove them; for example, bydis
ounting future rewards (Put94), optimising with respe
t to reward rate, or optimisingwith respe
t to a �nite planning horizon. A �nite horizon is used in this work though themethod 
ould be applied in the other 
ases .3 Heuristi
s for Reward Based Planning ProblemsHeuristi
 sear
h planners use a heuristi
 fun
tion h(s) to guide solution sear
h in statespa
e. To develop an e�e
tive heuristi
 we use the same tri
k that proved so e�e
tive inSTRIPS planning (BG99; HN01), i.e. we solve a relaxed problem ignoring operator deletelists and use this solution as a heuristi
 estimate in the original problem. Unfortunatelysolving even the relaxed problem 
an be shown to be NP-hard (BG99) so an approximatesolution must be used.In STRIPS problems one of the most su

essful approximations is that used in the HSPsystem developed by Bonet and Gen�er (BG99). This de
omposes the problem of �ndingthe shortest path to the goal state into one of �nding the shortest path to ea
h individualatom from whi
h an estimate of the goal distan
e is re
onstru
ted. This de
omposition andre
onstru
tion is performed be
ause the number of atoms, jAj is generally mu
h smallerthan the number of states, i.e. subsets of atoms, jSj, (whi
h is exponential in the numberof atoms, jSj � j2jAjj). Hen
e performing 
omputations in atom spa
e 
an be signi�
antly
heaper in time and spa
e than the equivalent 
omputations in state spa
e.For reward based problems we propose to use a modifed version of the same approxi-mation te
hnique of de
omposing and res
onstru
ting state values from atom values. Webegin by de�ning the value, V (s; t), of state s as the maximal reward obtainable in getting
386



3from the initial state I to this state in t steps. This value 
ould be 
al
ulated dire
tly instate spa
e using the forward Bellman Equation:V (s; t) = R(s) + maxop2O �R(op) + V (f�1(s; op); t� 1)� (3)where V (s; t) is the value of the state s at time step t, R(s) and R(op) are the rewardsfor being in state s and performing operation op respe
tively, f�1(s; op) is the inverse statetransition operator whi
h returns the state s0 from whi
h appli
ation of operator op resultsin the new state s, and V (I; 0) = 0.The problem de�ned by (3) is equivalent to �nding a maximal weight path through aweighted dire
ted graph. The nodes represent states, edges the operators, and the edge andnode weights the operator and state rewards respe
tively. A number of eÆ
ient algorithmswhi
h are polynomial in jSj 
an be used to solve this problem. Unfortunately as mentionedabove, jSj is generally exponential in the number of atoms making even these algorithms
ostly. Hen
e we approximate (3) by re-formulating the problem to apply over the smallerspa
e of atoms. This gives the equations (4) and (5).V (p; t) = maxp2Pre(r)R(r; t) + maxp2E�(op) (R(op) + V (fPre(op)g; t� 1)) (4)V (p; 0) = �0 if p 2 Iunde�ned otherwise (5)where V (Pre(op); t) is the reward for for being in atom set fp : p 2 Pre(op)g at timestep t, and Pre(r) is the set of atoms whi
h de�ne reward state r. R(r; t) is the rewardobtained from being in reward state r at time t and is equal to the value of the rewardstate R(r) if all the atoms in r are valid at time t and unde�ned otherwise.Equation (4) de�nes the estimated value of an atom at time step t is the sum of theimmediate reward re
eived due to the 
urrent state, R(r; t), and the propagated totalreward of the maximum reward path to this atom from the initial state. Equation (5) setsthe initial value of the atoms.The a

ura
y of the fun
tion, V (fBg; t), used to estimate value of an atom set, B, fromthe values of its 
onsistituent atoms, p � B, is 
riti
al to the a

ura
y of the heuristi
 andhen
e performan
e of the planner. In (BG99) Bonnet and Gen�er suggest using either thesum or maximum of the atom values. Using the sum pessimisti
ally assumes that ea
hatom is totally independent, hen
e the shortest path to the set be
omes the sum of thebest paths to ea
h atom in the set. Using the maximum optimisti
ally assumes that theatoms are totally dependent su
h that any path whi
h a
hieves one atom will also a
hieveall other atoms whi
h 
an be rea
hed with shorter paths. Hen
e the shortest path to anatom set be
omes the length of the shortest path to the last atom a
hieved.In the reward maximisation 
ase things be
ome a little more 
omplex. If independen
eis assumed then the atom set 
an only be valid when t is greater than the sum of the initialvalues for ea
h atom in the set. If total dependen
e is assumed then the value of the setbe
omes the value of the highest reward path whi
h 
ould a
hieve the set, i.e. the last atoma
hieved initially and after that the highest reward path longer than the sets initially validlength. In this 
ase, whi
h is used in this paper, we obtain Equation (6).
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4 V (B; t) =( maxa2B;l�len(a)�tV (a; t) if 8a 2 B, V (a; t) is de�nedunde�ned otherwise (6)where B is the set of atoms, len(a) is the number of operations required to obtain atoma's value V (a; t) and l is the number of operations required to �rst make B valid.Solving the equations (4,6,5) also 
orresponds to �nding the maximum weight path in agraph, the 
onne
tivity graph (HN01). In this graph atoms are nodes and operators/rewardsare high order edges whi
h only be
ome available after a 
ertain subset of the nodes (theirpre
onditions) are valid.Computation of the atom values 
an be done in polynomial time using a GraphPlan likeforward propagation pro
edure based upon the Conne
tivity Graph. Brie
y, the algorithmpro
eeds in a time step by time step manner propagating tokens from atoms to operatorsand rewards. The operators/rewards are then identi�ed as available for propagating rewardand atom validity to their e�e
ts when all their pre-
onditions are valid. The set of validatoms is then used to 
ompute the updated value for all the atoms using equations (4,6,5).Using the value fun
tion 
omputed in this way, the heuristi
 value of the state s in theoriginal problem is de�ned as the maximal value of a valid atom in the �nal layer of therelaxed graph, Eqn (7). h(s; t) def= maxp2P t V (p; t) (7)where t is the maximum time step to whi
h the relaxed solution has been 
omputed andP t is the set of atoms valid, i.e. with de�ned values, at time t.3.1 Improving the Estimate Using Mutual Ex
lusion InformationOne problem with the heuristi
 estimates produ
ed by the above pro
edure is that it takesno a

ount of the negative intera
tions between atoms. This is 
aused by ignoring theoperators delete lists allowing extra paths to states or atoms being possible in the relaxedproblem whi
h do not exist in the original problem, making states be
ome valid earlier orwith higher reward. This is the same problem of ignored negative intera
tions examinedin (NNK00; NK00) and 
an be addressed in a similar way using any available mutualex
lusion information.Mutual ex
lusions, 
alled mutexs from now on, are used extensively in the Graphplanalgorithm (BF97) and represent pairs of atoms that 
annot o

ur together at some depthin any plan. In the heuristi
 value 
omputation this information 
an be used to 
lose o�some of the extra paths by preventing or delay operators/rewards from be
oming validuntil their pre-
onditions are all non mutex. For negligible 
ost this information 
an beused in the value 
omputation algorithm by annotating ea
h operator/reward by the �rstplan depth at whi
h it is appli
able, i.e. all its pre-
onditions are non mutex. Then theoperators/reward are restri
ted to only be available after this depth. The te
hnique 
an beused both for stati
 mutexs whi
h hold for all states and plan lengths and dynami
 mutexswhi
h hold only up to a 
ertain plan length.The 
ost of 
omputing the additional mutexs 
an be 
ontrolled by only 
al
ulating thestati
 mutex's on
e at the start of problem solving, for example by running GraphPlans
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5full graph 
onstru
tion algorithm to level-o� from the initial state. Any mutex's whi
hhold at level-o� this point are stati
. Additional dynami
 mutex's and then be 
omputedto any required degree of a

ura
y only when ne
essary.4 Further WorkA prototype reward based planner has been implemented using the above heuristi
 evalu-ation fun
tion both with and without the mutal ex
lusion enhan
hements. Initial resultsappear to validate the system with the heuristi
 values showing good 
orrelation to thetrue value of a state. We are 
urrently in the pro
ess of developing an A* sear
h engine afull test suite for the planner. We then intend to perform 
omparisons with other plannersin both 
onventional STRIPS and reward based domains.5 Related WorkThere are obviously ri
h 
onne
tions between this work and existing work on Graph-plan (BF97) and the heuristi
 state spa
e sear
h planners (BG99; HN01) upon whi
h it isbased. The idea of using mutual ex
lusion information to a

ount for negative intera
tionsand hen
e improve the quality of the heuristi
 estimates is similar to that used in (NNK00)to improve the heuristi
 estimates in regression sear
h.This work is also 
losely related to work on adding probabilisti
 (BL98) and de
isiontheoreti
 (PC00) abilities to the Graphplan algorithm. These systems rely on propagatingadditional probability information through the planning graph in mu
h the same way thatrewards are propagated in this work. This work also has signi�
ant 
onne
tions to work onde
ision theoreti
 planning, where reward based formulations are also used. Traditionallythese systems have used dynami
 programming over a graphi
al representation of statespa
e to �nd optimal solutions (Put94). As dis
ussed above in Se
 2 and in (BDH99)this works well for reasonable state spa
e sizes but tends to be
ome infeasible for verylarge state spa
es. Use of heuristi
 sear
h to address su
h large problems has re
ently beenproposed by Bonet and Ge�ner (BG00).6 Con
lusionsA method for extending the te
hniques of heuristi
 planning, as used in the well knownHSP system, to the more expressive language of reward based planning was presented.The development of a domain independent heuristi
 for reward maximisation problemsforms the 
rux of our work. This heuristi
 is based upon 
omputing an estimate for themaximal reward obtainable in a relaxed problem where delete lists are ignored. We haveshown how our heuristi
 fun
tion was developed to 
ope with reward a

umulation andgoalless planning problems. We have also demonstrated how this heuristi
 estimate 
anbe improved by using any available mutual ex
lusion information to take some a

ount ofnegative intera
tions.
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