
Randomization and Restarts in Proof Planning

Andreas Meier1 Carla P. Gomes2 Erica Melis11 Fachbereich Informatik
Universität des Saarlandes

66041 Saarbrücken, Germanyfameierjmelisg@ags.uni-sb.de 2 Computer Science Department
Cornell University

Ithaca, NY 14853, USA
gomes@cs.cornell.edu

1 Introduction

Proof planning considers mathematical theorem proving as aplanning problem. It has
enabled the derivation of mathematical theorems that lay outside the scope of traditional
logic-based theorem proving systems. One of its strengths comes from heuristic math-
ematical knowledge that restricts the search space and thereby facilitates the proving
process for problems whose proofs belong in the restricted search space. But this may
exclude solutions or restrict the kinds of proofs that can befound for a given problem.

We take a different perspective and investigate problem classes for which little or no
heuristic control knowledge is available and test the usageof randomization and restart
techniques. Our approach to control in those mathematical domains is based on inves-
tigations on so-calledheavy-tailed distributions([4, 3, 2]). Because of the non-standard
nature of heavy-tailed cost distributions the controlled introduction of randomization
into the search procedure and quick restarts of the randomized procedure can eliminate
heavy-tailed behavior and can take advantage of short runs.To apply these techniques
to the complicated domains of proof planning, the first task was to find problem classes
for which proof planning exhibits an unpredictable run timebehavior, i.e., with heavy-
tailed cost distributions. Secondly, the experiments provided the basis for determining
suitablecutoff values, i.e., the time interval after which a running proof attemptis inter-
rupted and a new attempt is started. Finally, we designed a new control strategy which
dramatically boosts the performance of our proof planner for a class of problems for
which proof planning exhibits heavy-tailed cost behavior.

2 Proof Planning

A proof planning problem is defined by aninitial statespecified by the proof assump-
tions, theopen goalgiven by the theorem to be proved, and a set ofoperators[1]. A
mathematical proof corresponds to a plan that leads from theinitial state to the goal
state.

For a very basic example of an operator in proof planning consider the=Subst
operator. Its purpose is to replace occurrences of terms with respect to given equations.=Subst is applicable during the planning process if a current goal is a termt[a℄ that
contains an occurrence of a terma and there is an assumption that is an equation witha as one side and another termb as the other side. The application of=Subst reduces
then goalt[a℄ to the new goalt[b℄ which is the same term ast[a℄ but the occurrence ofa is replaced by an occurrence ofb.

403



The proof planning approach developed in this paper is implemented in the
MEGA

system [8, 7].
MEGA employs backward chaining as its main planning strategy. That
is, the planner continuously tries to reduce open goals by applying an operator that has
an appropriate effect, which in turn might result in one or more new open goals and so
on. Initially, the only open goal is the theorem. During thisplanning process there are
several choice points such as which goal should be tackled orwhich operator should be
applied in the next step.

3 The Domain of Residue Classes

In this section, we describe the domain of residue classes over the integers. A detailed
description of the whole domain can be found in [6].

The Residue Class DomainA residue class setRSn over the integers is the set of
all congruence classes modulo an integern, i.e., ZZn, or an arbitrary subset ofZZn.
Concretely, we can deal with sets of the formZZ3;ZZ5;ZZ3nf�13g; : : : where�13 denotes
the congruence class1 modulo3. Binary operationsÆ on a residue class set are either�+; ��; �� which are the addition, subtraction, and multiplication onresidue classes or
functions composed from these connectives, e.g.(�x���y) �+(�y �+�x). For given residue class
set and binary operation we can examine their basic algebraic properties (is the setRSn
closed with respect to the binary operationÆ, is it associative, does it have a unit element
etc.) and classify them in terms of groups, monoids, etc. Moreover, we are interested
in classifying structures into equivalence classes of isomorphic structures. During this
classification process we have to prove proof obligations stating that two structures(RS1n1 ; Æ1) and(RS2n2 ; Æ2) are isomorphic or not. Thereby, two structures(RS1n1 ; Æ1)
and (RS2n2 ; Æ2) are isomorphic if there exists a total functionh : RSn1 ! RSn2
such thath is injective, surjective, and is a homomorphism with respect to Æ1 andÆ2.
A function h is a homomorphism, ifh(x Æ1 y) = h(x) Æ2 h(y) holds for allx; y 2RSn1 . A non-isomorphism problemis formalized as:iso(RS1n1 ; Æ1; RS2n2 ; Æ2), whereiso abbreviatesisomorphi
.
Two Proof StrategiesWe developed several proof techniques to tackle these non-isomor-
phism problems in
MEGA. We will focus here on two of those techniques (1) proof
by case analysis and (2) proof by contradiction.

(1) The case analysis strategy is a basic but reliable approach to prove a property
of a residue class structure. Its essence is a proof by cases.It exhaustively checks all
instances of a conjecture. Since residue class sets are finite, only finitely many instances
have to be considered. For non-isomorphism problems the top-most case split is to
check for each possible function from the one residue class set into the other one that it
is either not injective, not surjective, or not a homomorphism.

(2) An alternative proof strategy creates a proof by contradiction. It assumes that
there exists a functionh:RS1n1 ! RS2n2 which is an isomorphism and thus, in partic-
ular, an injective homomorphism. It derives the contradiction by proving that there are
two elements
1; 
2 2 RS1n1 with 
1 6= 
2 but h(
1) = h(
2) which contradicts the
assumption of injectivity ofh. Note, that the proof is with respect to all possible ho-
momorphismsh and we do not have to give a particular mapping. In the remainder of

404



the paper we call the described proof technique to tackle non-isomorphism proofs the
NotInjNotIso technique.

We briefly explain theNotInjNotIso strategy for the example that(ZZ5; �x���y) is
not isomorphic to(ZZ5; �x�+�y). The strategy first constructs the situation for the indirect
argument. From the hypothesis that the two structures are isomorphic follow the two
assumptions that there exists a functionh that is injective and a homomorphism. By the
first assumption a contradiction can be concluded when we areable to show thath is
not injective.

The planner continues by applying a method to the second assumption, that intro-
duces the homomorphism equationh(x��y) = h(x) �+h(y) instantiated for every ele-
ment of the domain as new assumptions. In the above example 25equations likeh(�05) = h(�05) �+h(�15) for x = �05; y = �15 (a)h(�05) = h(�05) �+h(�05) for x = �05; y = �05 (b)
are introduced. From this set of instantiated homomorphismequations theNotIn-
jNotIso strategy tries to derive thath is not injective. To prove this, it has to find
two witnesses
1 and
2 such that
1 6= 
2 andh(
1) = h(
2). In our example�05 and�15 are chosen for
1 and
2, respectively, which leads toh(�05) = h(�15). This goal is
transformed into the equationh(�05) �+h(�05) �+h(�05) �+h(�05) �+h(�05) �+h(�15) = h(�15) by
successively applying equations from the equation system with the operator=Subst.
First, equation (a) is applied to the left hand side of the equation which results inh(�05) �+h(�15) = h(�15). Then equation (b) is applied four times to occurrences ofh(�05) on the left hand side. The final goal is closed by an application of the opera-
tor Solve�Equation which calls the Computer Algebra System MAPLE to evaluate
the equation. The final equation holds since5��h(�05) equals�05 modulo5. The choice
of the next instantiated homomorphism equation to be applied is guided by a heuristic
described in [5].

4 Experimental Results

The experiments were conducted with160 non-isomorphism problems for the residue
class setZZ5. We decided for the residue class setZZ5 because its cardinality is small
enough to obtain solution statistics in a reasonable time. Problems from this class are:
1.:iso(ZZ5; x��y;ZZ5; x�+y),
2.:iso(ZZ5; x��y;ZZ5; (x��y) �+(x��y)).
The overall experimental effort was around one month of cpu time on a 32 node com-
pute cluster. A detailed description of all experiments canbe found in [5].

4.1 Randomization and Heavy-Tailed Behavior

First let us consider theNotInjNotIso strategy because this strategy leads to the
most interesting proof planning behavior in the residue class domain.The application
of theNotInjNotIso strategy to all problems of the testbed solved 108 of the 160
instances (67:5%) (2 hour time limit per proof attempt). The runs revealed a surpris-
ingly high variance in the performance of this strategy on the different problems of the
testbed. On some of the problems it succeeded very fast and produced short proof plans
consisting only of a few applications of=Subst, whereas on other problems the plan-
ning process took much longer and resulted in proof plans with many applications of=Subst. Furthermore, for over 30% of the instances no proof was found in 2 hours.

405



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000 7000
C

um
m

ul
at

iv
e 

fr
ac

tio
n 

of
 s

uc
ce

ss
fu

l r
un

s
Run time

Fig. 1. Run time distribution over testbed without randomization.

Table 1 displays the performance extrema for this deterministic proof by contradic-
tion strategy on the testbed as well as the mean values over all successful runs. The
values in brackets give the deviation from the mean. Fig. 1 shows the underlying dis-
tribution of the run time for these experiments. In fact, thedistribution exhibitsheavy-
tailed behavior [2] which is manifested in the long tail of the distribution stretching
for several orders of magnitude. Gomeset al. have shown that one can take advantage
of the large variations in run time of such heavy-tailed distributions by introducing an
element of randomness into the search process, combined with a restart strategy.

Costs Mean Min. Max.
Proof length55 45 (18.2%) 83 (50.9%)
Run Time 483 8(98%) 7145(1380%)

Table 1. Statistics for successful runs (108 out of 160) on testbed using deterministic strategy.

A key criterion for the success of such a randomization and restart approach is a
large variance in different randomized runs with the same instance. To explore this
issue, we considered multiple runs on a single instance by introducing a stochastic el-
ement into the planning process. Typically, the heuristic for choosing the next instanti-
ated homomorphism equation to be applied ranks several equations equally good. When
faced with such equally ranked equations, the planner applies them in a random order.
This randomized version of theNotInjNotIso technique was run225 times for the
problem instance of the testbed::iso(ZZ5; (�x�+�y) �+�25;ZZ5; (�25��(�x�+�y)) �+�25)
(in the remainder of this section we refer to this problem as the standard problem).
Interestingly, the run time distribution of the randomizedproof search by contradiction
on the single instance also exhibits heavy-tailed behaviorsimilar to Fig. 1 (see [5] for
a detailed analysis). This indicates an inherent variance in the search process of the
strategy.

Given this result, we can now use a restart strategy to improve the proof search
performance. Fig. 1 shows that the ascend of the cumulative cost distribution function
is very steep at the beginning but becomes very flat beyond approximately300 seconds.
This steep ascend at the beginning indicates that there is a large fraction of short and
successful runs whereas the flat ascend after300 seconds provides evidence that the
probability of finding a proof plan decreases considerably.Hence, it is advantageous

406



0.001

0.01

0.1

1

1 10 100 1000 10000

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 u

ns
uc

ce
ss

fu
l r

un
s

Run Time (seconds)

cutoff 100 secs.
no cutoff

Fig. 2. Log-Log plots of run time distribution over testbed with andwithout randomization.

to perform a sequence of restarts on a single instance (with apredefined cutoff) until
reaching a successful run or the total time limit, instead ofperforming a single long run.

Based on an analysis of the underlying distributions of the experiments for the full
testbed and for the standard problem we considered several cutoff values, using a binary
search strategy. The cutoff value of 100 provided the best results. The planner found
proof plans for156 of the160 problems (97.5%) in an average time of 473.4 seconds.
For the four remaining unsolved problems MAPLE does not provide any substitution
hint and, thus, the proof by contradiction strategy becomesquite ineffective.

Fig. 2 plots the run time distribution of the resulting restart strategy with cutoff 100
(log-log scale) on the problems of the testbed. The restart data is given by the curve that
drops rapidly. The figure also shows the run time distribution of the deterministic strat-
egy. The sharp drop of the run time distribution of the restart strategy clearly indicates
that this strategy does not exhibit heavy tailed behavior.

In previous applications of randomization and restarts in combinatorial domains run
time has been the key issue [2]. In the case of proof planning,an additional important
issue is the length of the proof discovered by the system: shorter proofs are generally
more elegant than long proofs. An interesting aspect of the application of randomization
and restart strategies that is novel in our context is the fact that it leads to a variety of
proof lengths for the same problem instance. For instance, for our standard problem
instance, we found a range of proofs from proofs consisting of 47 to 78 nodes. Such a
degree of variance is unusual for proofs generated by proof planning.

Having a set of proof planning operators and a flexible control that includes random-
ization the planner can generate a variety of proofs. This greatly enhances the ability
of the system to find proofs and increase the overall robustness of the theorem proving
system.

4.2 Case Analysis Strategy

This strategy explores all possible mappings between the structures. Since the goal is
to prove a non-isomorphism, the prover needs to establish that no mapping is an iso-
morphism. Obviously, this strategy is computationally very expensive and, as our ex-
periments show, it is practically infeasible for structures of cardinality larger than four.
There still is the question as to whether randomization may be of use in this context.

407



Table 2 shows that there is still some variation in run time and proof length (100 ran-
domized runs on a single problem instance fromZZ3) due to different search pruning
effects, but the variations are small compared to those encountered for the proof by
contradiction strategy. Further analysis (see [5]) shows that the underlying distribution
is not heavy-tailed and therefore a restart strategy would not boost the performance
significantly.

Costs Mean Min. Max.
Proof Length598 540 (9:7%) 684 (14:4%)
Run Time 2456 1110 (54:8%) 4442 (80:9%)

Table 2. Randomized version of the case analysis strategy.

5 Conclusions

The analysis of the cost distributions of proof planning attempts for a class of theorems
and on the detection ofheavy-tailedbehavior gave rise to an application of random-
ization and restarts techniques. The experimental part of the investigations includes a
study of two different planning strategies and the determination of cut-off values for the
restart. As a conclusion, we have introduced new kind of control knowledge into the
proof planning process, a much larger fraction of problem instances became solvable
(from 67.5% to 97.5%), and a variety of proofs can be generated for a problem. The ap-
plication of randomization and restart techniques makes the search process more robust
even when the size of the search spaces involved grows super-exponentially. We de-
scribed in this paper experiments with non-isomorphism problems of the residue class
setZZ5. We obtained analogous results on non-isomorphism problems of the residue
class setsZZ2, ZZ3, ZZ4 andZZ6 (see [5]).

Proof planning can benefit from these investigations in general because they pro-
vide a stochastic approach to semi-automatically designing control knowledge and be-
cause this kind of control knowledge can augment the mathematically motivated control
knowledge previously used in proof planning.

References

1. A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E. Lusk and R. Overbeek,
editors, PROCEEDINGSof CADE–9, volume 310 ofLNCS. Springer, Germany, 1988.

2. C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems.Journal of Automated Reasonong, 24:67–100, 2000.

3. C. Gomes, B. Selman, and H. Kautz. Boosting combinatorialsearch through randomization.
In Proceedings of AAAI-98, pages 431–437, 1998.

4. C. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization in backtrack search:
Exploiting heavy-tailed profiles for solving hard scheduling problems. InProceedings of
AIPS’98, pages 208–213, 1998.

5. A. Meier. Randomization and heavy-tailed behavior in proof planning. SEKI-Report SR-00-
03 (SFB), Universität des Saarlandes, Saarbrücken, Germany, 2000.

6. A. Meier, M. Pollet, and V. Sorge. Exploring the domain of residue classes. SEKI-Report
SR-00-04 (SFB), Universität des Saarlandes, Saarbrücken, Germany, 2000.

7. E. Melis and A. Meier. Proof planning with multiple strategies. InProc. of the First Interna-
tional Conference on Computational Logic (CL2000), pages 644–659, 2000.

8. E. Melis and J. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 1999.

408


