Randomization and Restartsin Proof Planning

Andreas Meie CarlaP. Gomés Erica Melig

! Fachbereich Informatik 2 Computer Science Department
Universitat des Saarlandes Cornell University
66041 Saarbriicken, Germany Ithaca, NY 14853, USA

{anei er |nel i s}@gs. uni -sb. de gomes@s. cornel | . edu

1 Introduction

Proof planning considers mathematical theorem proving@araning problem. It has
enabled the derivation of mathematical theorems that lésideithe scope of traditional
logic-based theorem proving systems. One of its strengtites from heuristic math-
ematical knowledge that restricts the search space andpéacilitates the proving
process for problems whose proofs belong in the restricadch space. But this may
exclude solutions or restrict the kinds of proofs that cafoed for a given problem.

We take a different perspective and investigate problessefor which little or no
heuristic control knowledge is available and test the usdgandomization and restart
techniques. Our approach to control in those mathematarakihs is based on inves-
tigations on so-calletleavy-tailed distribution§4, 3, 2]). Because of the non-standard
nature of heavy-tailed cost distributions the controlletidduction of randomization
into the search procedure and quick restarts of the randwhpizocedure can eliminate
heavy-tailed behavior and can take advantage of short Mangpply these techniques
to the complicated domains of proof planning, the first tagk o find problem classes
for which proof planning exhibits an unpredictable run tibehavior, i.e., with heavy-
tailed cost distributions. Secondly, the experiments jgled the basis for determining
suitablecutoff valuesi.e., the time interval after which a running proof attensghter-
rupted and a new attempt is started. Finally, we designedvecoatrol strategy which
dramatically boosts the performance of our proof planneafclass of problems for
which proof planning exhibits heavy-tailed cost behavior.

2 Proof Planning

A proof planning problem is defined by amitial state specified by the proof assump-
tions, theopen goalgiven by the theorem to be proved, and a sebpérator§l]. A
mathematical proof corresponds to a plan that leads froninitial state to the goal
state.

For a very basic example of an operator in proof planning idenghe =Subst
operator. Its purpose is to replace occurrences of ternisredipect to given equations.
=Subst is applicable during the planning process if a current gea termt[a] that
contains an occurrence of a terand there is an assumption that is an equation with
a as one side and another tebras the other side. The application-efubst reduces
then goalk[a] to the new goat[b] which is the same term af:] but the occurrence of
a is replaced by an occurrencelof

403

404

The proof planning approach developed in this paper is implged in the?MEGA
system [8, 7]1f2MEGA employs backward chaining as its main planning strategst Th
is, the planner continuously tries to reduce open goals pblyam an operator that has
an appropriate effect, which in turn might result in one orenoew open goals and so
on. Initially, the only open goal is the theorem. During thianning process there are
several choice points such as which goal should be tackledhiwh operator should be
applied in the next step.

3 The Domain of Residue Classes

In this section, we describe the domain of residue classesstbe integers. A detailed
description of the whole domain can be found in [6].

The Residue Class DomaiA residue class seRS,, over the integers is the set of
all congruence classes modulo an integei.e., ZZ,,, or an arbitrary subset &Z,,.
Concretely, we can deal with sets of the folfy, Zs, Z3\ {15}, . .. wherel; denotes
the congruence clagsmodulo3. Binary operations on a residue class set are either
+, —, % which are the addition, subtraction, and multiplicationresidue classes or
functions composed from these connectives,(@#&y)+(7+Z). For given residue class
set and binary operation we can examine their basic algepraperties (is the sét.S,,
closed with respect to the binary operatigiis it associative, does it have a unit element
etc.) and classify them in terms of groups, monoids, etc.edeer, we are interested
in classifying structures into equivalence classes of @gic structures. During this
classification process we have to prove proof obligatioairg that two structures
(RS}, ,01) and(RS3,, o) are isomorphic or not. Thereby, two structu@ss;, , o)
and (RS3,, o) are isomorphic if there exists a total functién: RS,, — RS,,
such thath is injective, surjective, and is a homomorphism with respee; andos,.
A function h is a homomorphism, ih(z o; y) = h(x) o5 h(y) holds for allz,y €
RS, . A non-isomorphism probleis formalized as-iso(RS}, , 01, RSz, ,02), where

. . . no)?
iso abbreviategsomorphic.

Two Proof Strategie®Ve developed several proof techniques to tackle theseswnér-
phism problems im2MeGA. We will focus here on two of those techniques (1) proof
by case analysis and (2) proof by contradiction.

(1) The case analysis strategy is a basic but reliable apprimaprove a property
of a residue class structure. Its essence is a proof by dasedaustively checks all
instances of a conjecture. Since residue class sets agg finly finitely many instances
have to be considered. For non-isomorphism problems thentwgt case split is to
check for each possible function from the one residue cletsst® the other one that it
is either not injective, not surjective, or not a homomospini

(2) An alternative proof strategy creates a proof by cornttaxh. It assumes that
there exists a functioh: RS}, — RS2, which is an isomorphism and thus, in partic-
ular, an injective homomorphism. It derives the contradicby proving that there are
two elements:;, ¢y € RS}“ with ¢; # ¢2 but h(c;) = h(ce) which contradicts the
assumption of injectivity ofi. Note, that the proof is with respect to all possible ho-
momorphisms: and we do not have to give a particular mapping. In the rensgiofi

the paper we call the described proof technique to tackleismmorphism proofs the
Not I nj Not | so technique.

We briefly explain théNot | nj Not | so strategy for the example théifZs, zxy) is
not isomorphic tqZs, Z+§). The strategy first constructs the situation for the indirec
argument. From the hypothesis that the two structures amedgphic follow the two
assumptions that there exists a functtotiat is injective and a homomorphism. By the
first assumption a contradiction can be concluded when walaseto show thak is
not injective.

The planner continues by applying a method to the seconargin, that intro-
duces the homomorphism equatibfe*y) = h(z)+h(y) instantiated for every ele-
ment of the domain as new assumptions. In the above examgguziions like

h(05) = h(65);h(15) forz = 05,11/ = 15 (a)

h(05) = h(65);h(65) forz = 65,11/ = 65 (b)
are introduced. From this set of instantiated homomorplagomations theéNot | n-

j Not | so strategy tries to derive thdt is not injective. To prove this, it has to find
two witnesses; andc, such thate; # ¢ andh(cy) = h(cz). In our examplé; and
15 are chosen for; andc,, respectively, which leads #(05) = h(15). This goal is
transformed into the equatidr{05)+h(05)+h(05)+h(05)+h(05)+h(15) = h(15) by
successively applying equations from the equation systémthe operatoe=Subst.
First, equation (a) is applied to the left hand side of theagign which results in
h(05)+h(15) = h(15). Then equation (b) is applied four times to occurrences of
h(05) on the left hand side. The final goal is closed by an applioatibthe opera-
tor Solve— Equation which calls the Computer Algebra SystemakLE to evaluate
the equation. The final equation holds sirigé (05) equals0s modulo5. The choice
of the next instantiated homomorphism equation to be apdiguided by a heuristic
described in [5].

4 Experimental Results

The experiments were conducted witb0 non-isomorphism problems for the residue
class se#Z;. We decided for the residue class &% because its cardinality is small
enough to obtain solution statistics in a reasonable timebhlBms from this class are:
1. —iso(Zs, xxy, s, x+y),

2.~iso(Zs,x—y, Zs, (x—y)+(x—y)).

The overall experimental effort was around one month of ape bn a 32 node com-
pute cluster. A detailed description of all experimentsisafiound in [5].

4.1 Randomization and Heavy-Tailed Behavior

First let us consider thdlot | nj Not | so strategy because this strategy leads to the
most interesting proof planning behavior in the residussidomain.The application
of theNot I nj Not | so strategy to all problems of the testbed solved 108 of the 160
instances@7.5%) (2 hour time limit per proof attempt). The runs revealed gss-
ingly high variance in the performance of this strategy andtiferent problems of the
testbed. On some of the problems it succeeded very fast add@ed short proof plans
consisting only of a few applications efSubst, whereas on other problems the plan-
ning process took much longer and resulted in proof planis miany applications of
=Subst. Furthermore, for over 30% of the instances no proof wasdanr2 hours.

405

406

e
by

o
)
T
I

o

o
T
I

e
>
L

e
w
L

o
N
T
I

o
e

Cummulative fraction of successful runs

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000
Run time

o

Fig. 1. Run time distribution over testbed without randomization.

Table 1 displays the performance extrema for this detestidrproof by contradic-
tion strategy on the testbed as well as the mean values dveuadessful runs. The
values in brackets give the deviation from the mean. Fig.dlwshthe underlying dis-
tribution of the run time for these experiments. In fact, digtribution exhibitsheavy-
tailed behavior [2] which is manifested in the long tail of the disfition stretching
for several orders of magnitude. Gorretsal. have shown that one can take advantage
of the large variations in run time of such heavy-tailedritistions by introducing an
element of randomness into the search process, combine@wétstart strategy.

Costs [Mean Min. Max.
Proof IengtTSB 45 (18.2%) 83 (50.9%)
Run Time (483 8(98%) 7145(1380%)
Table 1. Statistics for successful runs (108 out of 160) on testbedyudeterministic strategy.

A key criterion for the success of such a randomization asthreapproach is a
large variance in different randomized runs with the sanstaimce. To explore this
issue, we considered multiple runs on a single instancetbydacing a stochastic el-
ement into the planning process. Typically, the heurigtiachoosing the next instanti-
ated homomorphism equation to be applied ranks severatiege&qually good. When
faced with such equally ranked equations, the plannerepfiiiem in a random order.
This randomized version of tHdot | nj Not | so technique was ruf25 times for the
problem instance of the testbed:

—is0(Zs, (T+7)+25, Zs, (25%(T+7))+25)
(in the remainder of this section we refer to this problemhasstandard problem
Interestingly, the run time distribution of the randomizedof search by contradiction
on the single instance also exhibits heavy-tailed behaoilar to Fig. 1 (see [5] for
a detailed analysis). This indicates an inherent variandhé search process of the
Strategy.

Given this result, we can now use a restart strategy to ingptbeg proof search
performance. Fig. 1 shows that the ascend of the cumulatisedistribution function
is very steep at the beginning but becomes very flat beyonmajppately300 seconds.
This steep ascend at the beginning indicates that thereaiga fraction of short and
successful runs whereas the flat ascend &fiérseconds provides evidence that the
probability of finding a proof plan decreases considerahdbnce, it is advantageous

01

essful runs

Cumulative fraction of unsucc

0.001 L L L
1 10 100 1000 10000

Run Time (seconds)

Fig. 2. Log-Log plots of run time distribution over testbed with amithout randomization.

to perform a sequence of restarts on a single instance (witledefined cutoff) until
reaching a successful run or the total time limit, insteagayforming a single long run.
Based on an analysis of the underlying distributions of ttpeeeiments for the full
testbed and for the standard problem we considered sewtodl ealues, using a binary
search strategy. The cutoff value of 100 provided the bestlt® The planner found

proof plans forl 56 of the 160 problems (97.5%) in an average time of 473.4 seconds.

For the four remaining unsolved problemsabLE does not provide any substitution
hint and, thus, the proof by contradiction strategy becoqguite ineffective.

Fig. 2 plots the run time distribution of the resulting ressirategy with cutoff 100
(log-log scale) on the problems of the testbed. The restdatid given by the curve that
drops rapidly. The figure also shows the run time distributibthe deterministic strat-
egy. The sharp drop of the run time distribution of the restxategy clearly indicates
that this strategy does not exhibit heavy tailed behavior.

In previous applications of randomization and restart®miginatorial domains run
time has been the key issue [2]. In the case of proof plan@ingdditional important
issue is the length of the proof discovered by the systemtehproofs are generally
more elegant than long proofs. An interesting aspect ofpipdication of randomization
and restart strategies that is novel in our context is thetfet it leads to a variety of
proof lengths for the same problem instance. For instarareguir standard problem
instance, we found a range of proofs from proofs consistingjrdo 78 nodes. Such a
degree of variance is unusual for proofs generated by pilaohing.

Having a set of proof planning operators and a flexible cattied includes random-
ization the planner can generate a variety of proofs. Theatly enhances the ability
of the system to find proofs and increase the overall robastoktthe theorem proving
system.

4.2 CaseAnalysis Strategy

This strategy explores all possible mappings between thetates. Since the goal is
to prove a non-isomorphism, the prover needs to establethnith mapping is an iso-
morphism. Obviously, this strategy is computationallyyvexpensive and, as our ex-
periments show, it is practically infeasible for structiod cardinality larger than four.
There still is the question as to whether randomization nagfuse in this context.

407

408

Table 2 shows that there is still some variation in run timé proof length (100 ran-
domized runs on a single problem instance frégty) due to different search pruning
effects, but the variations are small compared to thosewsnieced for the proof by
contradiction strategy. Further analysis (see [5]) shdwas the underlying distribution
is not heavy-tailed and therefore a restart strategy wouotdboost the performance
significantly.

Costs |Mean Min. Max.
Proof Length598 540 (9.7%) 684 (14.4%)
Run Time T2456 1110 (54.8%) 4442 (80.9%)
Table 2. Randomized version of the case analysis strategy.

5 Conclusions

The analysis of the cost distributions of proof planningepts for a class of theorems
and on the detection dfeavy-tailedbehavior gave rise to an application of random-
ization and restarts techniques. The experimental patiefrivestigations includes a
study of two different planning strategies and the deteatiim of cut-off values for the
restart. As a conclusion, we have introduced new kind ofrobkihowledge into the
proof planning process, a much larger fraction of problestances became solvable
(from 67.5% to 97.5%), and a variety of proofs can be gendffatea problem. The ap-
plication of randomization and restart techniques makesdéarch process more robust
even when the size of the search spaces involved grows swpenentially. We de-
scribed in this paper experiments with non-isomorphisnbiemos of the residue class
setZZ;. We obtained analogous results on non-isomorphism prabtdnthe residue
class set@Z.,, 73, 7ZZ, andZZg (see [5]).

Proof planning can benefit from these investigations in gaEr®ecause they pro-
vide a stochastic approach to semi-automatically desggoimtrol knowledge and be-
cause this kind of control knowledge can augment the mattieatig motivated control
knowledge previously used in proof planning.

References

1. A. Bundy. The Use of Explicit Plans to Guide Inductive Heodn E. Lusk and R. Overbeek,
editors, ROCEEDINGSof CADE—9 volume 310 oLNCS Springer, Germany, 1988.

2. C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailehpmena in satisfiability and
constraint satisfaction problemdournal of Automated Reasonqrits:67—100, 2000.

3. C. Gomes, B. Selman, and H. Kautz. Boosting combinatsdafch through randomization.
In Proceedings of AAAI-9®ages 431437, 1998.

4. C. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randatian in backtrack search:
Exploiting heavy-tailed profiles for solving hard schedgliproblems. InProceedings of
AIPS'98 pages 208-213, 1998.

5. A. Meier. Randomization and heavy-tailed behavior imoprdanning. SEKI-Report SR-00-
03 (SFB), Universitat des Saarlandes, Saarbriicken, &grr2000.

6. A. Meier, M. Pollet, and V. Sorge. Exploring the domain e§idue classes. SEKI-Report
SR-00-04 (SFB), Universitat des Saarlandes, Saarbnji¢kermany, 2000.

7. E. Melis and A. Meier. Proof planning with multiple strgies. InProc. of the First Interna-
tional Conference on Computational Logic (CL2008ages 644—659, 2000.

8. E. Melis and J. Siekmann. Knowledge-based proof planmmtficial Intelligence 1999.

