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Abstract
DiscoPLAN is an efficient system for discovering state
invariants in planning domains with conditional effects.
Among the types of invariants found are implicative
constraints relating a fluent predication to a fluent or
static predication (with allowance for static supplemen-
tary conditions), single-valuedness constraints, exclu-
siveness constraints, and several others. The algorithms
used are polynomial-time for any fixed bound on the
number of literals in an invariant. Some combinations
of constraints are found by simultaneous induction, and
the methods can be iterated by expanding operators us-
ing previously found invariants. The invariants found
by DIscoPLAN have been shown to enable large per-
formance gains in SAT planners, and they can also be
helpful in planning domain development and debugging.

Introduction

State invariants (or state constraints) in planning are
properties of objects or relationships among objects that
hold in all states reachable from the initial state. For
example, a familiar invariant in a blocks world is the
property that that if one block is on another, the latter
is not clear. In our terminology, this is an implicative
constraint. Another example is that a block can be on
at most one other block; this is a single-valuedness con-
straint (sv-constraint).

A point that has become widely recognized in the
planning community (and that we amplify in what fol-
lows) is that knowledge of state invariants is important
for efficient planning. However, such knowledge can-
not in general be assumed to be available a priori in a
given planning domain. Rather, planning domains are
generally considered fully specified once a set of opera-
tors with well-defined preconditions and effects has been
supplied, along with an initial state. This is defensible
since state invariants are implicit in the specification
of the operators and initial state; i.e., under a STRIPS
assumption the only properties and relationships that
change when an operator is applied are those spelled
out in the effects of the operator. So a separate speci-
fication of what remains unchanged when operators are
applied would be logically redundant. However, it is
far from obvious from inspection of a given set of plan-
ning operators and an initial state what the invariants
of the domain are. The goal of our research has been to
formulate automatic, efficient methods for inferring the
most important such invariants, and to implement these
methods in our DISCOPLAN system.

*The on-line DISCOPLAN system can be accessed at
http://prometeo.ing.unibs.it/discoplan. DISCOPLAN is
written in Common Lisp.

The importance of state invariants for efficient plan-
ning is that they can be used to radically restrict the
search space. This is so for any approach to planning
that involves explicit or implicit exploration of incom-
pletely specified possible states of the world, as is the
case for deductive planning, regression planning, bidi-
rectional planning, and planning by incremental con-
straint satisfaction (in particular, SAT-based planning).

In our work we have focused on SAT-based planners.
These implicitly search a space of state sequences, con-
strained by disjunctions of ground literals. Their per-
formance depends critically on the invariants added (as
ground instances) to the mix of disjunctions, and intu-
itively this is because state invariants constrain the al-
ternative states that are possible at each time step under
consideration. Some results showing the dramatic im-
provements in the performance of SAT-based planners
like SATPLAN [8] and MEDIC [2] obtainable through
the use of automatically inferred invariants are included
in [5].

DiscOPLAN finds a variety of different types of con-
straints, including static (type) constraints (most im-
portantly, supertype /subtype and exclusion relations
among static monadic predicates — ones unaffected by
any operator), and predicate domain constraints (sets
of possible argument tuples corresponding to each pred-
icate in the domain, after 0, 1, ..., ¢t actions have oc-
curred). But the majority of its algorithms are devoted
to the discovery of state invariants, using a hypothesize-
and-test paradigm. All the algorithms instantiating this
paradigm are applicable to sets of operators conform-
ing with UcpoP or pPDDL syntax [11, 7], allowing for
when-clauses (conditional effects) but not disjunctive or
universally quantified conditions. We will be referring
to the unconditional part of an operator as its primary
when-clause. The allowance for conditional effects is a
major distinction of DISCOPLAN from related systems.

Very briefly, the hypothesize-and-test paradigm con-
sists of hypothesizing invariants T' of some particular
syntactic type, such as implicative constraints (IMPLIES
¢ 1) where ¢ and ¢ are literals that may contain uni-
versal variables, augmenting these hypotheses with po-
tential supplementary static conditions, and then test-
ing them against all when-clauses of all operators and
against the given initial conditions. In the testing phase,
minimal sets ¥ of supplementary conditions are found,
up to sets of some limited size (e.g., 2 or 3) that suf-
fice to ensure that ¥ = I holds in all states reachable
from the initial state. The hypothetical invariants I’
of a particular type are chosen by inspecting the pre-
conditions and effects of particular operators, to find
conditions that appear to become or remain true when
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certain kinds of effects occur. The idea is to choose the
constituents of I' in such a way that a proof by induc-
tion of the invariance of I' will be at least locally enabled.
In this way large numbers of syntactically possible in-
variants are eliminated from consideration. The testing
phase can be viewed as an automated inductive proof
attempt (with addition of supplementary conditions as
needed to allow the proof to succeed). An important
point is that I' may actually consist of multiple hypothe-
ses that can be proved to be invariants by simultaneous
induction. Typically, such multiple hypotheses consist
of an implicative hypothesis (IMPLIES ¢ ) along with
sv-hypotheses corresponding to argument positions in ¢
and 1 occupied by universal variables occurring in only
one of ¢, v. The point is important since the invari-
ance of the individual formulas in such cases cannot be
proved in isolation. Our various hypothesize-and-test
algorithms have been proved to yield correct invariants,
and run in polynomial time for fixed bound on the num-
ber of supplementary conditions ¥ added to I'.

In a little more detail, the hypothesize-and-test algo-
rithms conform with the following structure (iterating
over all possible candidate constraints I' found in the
first step).

1. Hypothesize a constraint I' based on co-occurrences
of literals in a when-clause w of an operator and in
the corresponding primary when-clause wy (if differ-
ent). For example, effects ¢ and ¢ might lead to an
implicative hypothesis (IMPLIES ¢ ), and possibly
sv-hypotheses about the predicates involved.

2. Add a set of candidate supplementary conditions
{01, ...,0n}, consisting of the static preconditions of w
and w; and if w # wy, the negations of static precon-
ditions of other when-clauses (except ones that unify
with static preconditions of w or w; or their nega-
tions).

3. Test hypothesis I relative to each when-clause of each
operator, using the relevant werification conditions;
for each apparent violation of I' find the correspond-
ing possible “excuses” for the violation. An excuse is a
set of provisos {071, ..., 05, }, chosen from the candidate
supplementary conditions, that weaken the hypothe-
sis sufficiently to maintain its truth. If a violation
has no excuses, abandon the hypothesis I', otherwise
record the set of possible excuses of the violation on
a global list.

4. Find all minimal subsets (up to a given size, e.g., 3) of
{o1,...,0,} that “cover” all apparent violations of T;
a subset of {o1,...,0,} covers an apparent violation
of I' if it contains all elements of at least one “excuse”
for that violation;

5. Check hypothesis (T o}...,07,) (i-e., the original hy-
pothesis together with added provisos) for each of the
minimal subsets {o{,...,00,} of {01, ...,0,} found in
the previous step for truth in the initial conditions of
the problem being solved; return the variant hypothe-

ses that pass this test as the verified hypotheses.

The wverification conditions referred to in step 3 de-
pend on the form of I'; and are designed to ensure that
if T' together with specified supplementary conditions
holds in a given state, it also holds in every possible
successor state. For example, in the case of a simple im-
plicative constraint (IMPLIES ¢ ¢)) together with a set of
static supplementary conditions, the verification condi-
tions say (roughly) that any operator effect matching ¢
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(define (operator Put)
:parameters (?x ?y ?7z)
:precondition (and (on ?x ?z) (clear 7x)
(neq ?x Table) (neq ?y 7z) (neq 7x ?y))
:effect (and (when (eq 7y Table)
(and (on 7x 7y) (clear ?z) (not (on ?x ?7z))))
(when (and (neq ?y Table) (clear ?y))
(and (on 7x 7y) (clear ?z) (not (on ?x ?7z))
(not (clear 7y))))) )

Figure 1: A Formalization of the blocks world.

must be accompanied by an effect or persistent precon-
dition matching v, or else the preconditions must entail
the falsity of a supplementary condition; and similarly
for the contrapositive, (IMPLIES —) —¢). (The condi-
tions are actually slightly more complicated because of
the allowance for conditional effects.)

Types of DISCOPLAN Invariants

The input of DISCOPLAN is a domain description con-
sisting of the specification of an initial state and a set
of extended STRIPS operators which may involve condi-
tional effects, negated preconditions, constants, typed
and untyped parameters (Figure 1 gives a very sim-
ple formalization of the blocks world containing some of
these fetures). In the following we describe the types of
invariants that are discovered by the current version of
DiscoPLAN (for a more detailed description the reader
is referred to [5, 6]).

Predicate Domain Constraints. Predicate domain
constraints are sets of possible argument tuples corre-
sponding to each predicate in the domain after 0, 1, ...,
t actions have occurred. These constraints are computed
using a simplified version of the planning graph for the
given problem [1].

Static Predicates and Static Constraints. Static
constraints are invariants involving type-predicates, i.e.,
static monadic predicates that occur positively in the
initial state — ones unaffected by any operator. Static
constraints consist of a (possibly empty) set of objects
for each type-predicate and a list of supertype, subtype,
and incompatible relationships between type-predicates.

Simple Implicative Constraints. Simple Implica-
tive Constraints are constraints of form ((¢ =
Y) o01...0t), where ¢, ¢, and oy, ...,0; are function-
free literals, i.e., negated or unnegated atomic formulas
whose arguments are constants or variables. Such con-
straints are to be interpreted as saying “In every state,
for all values of the variables, if ¢ then v, provided that
o1, .-, and o3”. We assume that the variables occurring
in ¢ include all those occurring in ¢ and in the supple-
mentary conditions o1, ...,0;. The predicate in ¢ is a
fluent predicate, while ¥ may be fluent or static. How-
ever, if ¢ contains variables that do not occur in ¢, then
1 is required to be “upward monotonic”, in the sense
that no instances of it can become false (—) does not
unify with effect of any operator; this is certainly true
if 1) is static). Finally, we require o1, ..., 0% to be static.
The following is an example of this type of constraint
in the blocks world stating that the table cannot be on
any block: Vz,y ON(z,y) = NEQ(z, TABLE).

Single-valuedness Constraints. An sv-constraint
states that the value of a certain predicate argument
is unique for any given values of the remaining argu-
ments. An example of an sv-constraint is the following
blocks-world constraint stating that any object can be
ON at most one other object:



Vz,y,z.(ON(z,y) A ON(z,z)) =y = z.

Implicative Constraints -+ Single-Valuedness
Constraints. These invariants are formed by an im-
plicative constraint and a set of sv-constraints that are
simultaneously discovered by DiscoprLAaN. We distin-
guish two cases which require different verification con-
ditions: the case of subsumed variables and the case of
non-subsumed variables. The blocks-world constraint

((IMPLIES (ON ?+X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE))
is an example of a combined implicative and sv-
constraint for the first case. In general, the implica-
tive constraints we are considering here have as their
antecedent a positive literal that contains at least one
“starred” variable not occurring in the consequent, and
zero or more “unstarred” variables occurring in the con-
sequent. The stars indicate that for all values of the
unstarred variables, the antecedent holds for at most
one tuple of values of the starred variables.

In the second case we have implications in which both
antecedent and consequent contain variables not con-
tained in the other. All such variables are “starred”,
while the shared variables are unstarred. An example is
the following constraint from the Logistics domain:

((IMPLIES (AT ?X ?7*Y) (NOT (IN?X?%Z))) (OBJECT ?X)).

This is an ezclusive state constraint, i.e., it states that
no object can simultaneously be AT something and IN
something (and in addition an object can be AT no more
that one thing, and IN no more than one thing).

Antisymmetry Constraints. Antisymmetry con-
straints are particular implicative constraints of the form
((IMPLIES (P t1 t2) (NOT (P t2 t1))) 01 02...00),
where t; and ts can be constants or universally quan-
tified variables, and o4, ...,0, are supplementary condi-
tions whose variables are a subset of {t;,t2}. An exam-
ple of an antisymmetry constraint in the blocks world is
Vz,y. ON(z,y) = = ON(y,z),
i.e., if one object is on another, then the second is not
on the first.

OR and XOR Constraints. OR and XOR-
constraints are state constraints of the form

(([X]oR ¢ ) o1 09...04),
where ¢ and 1 are positive fluent literals, such that
non-shared variables are existentially quantified, while
shared variables are universally quantified, and where
the variables in o1, 02, ..., 0, can only be variables
shared by ¢ and ¢. An example of an XOR~constraint
in the logistics domain is

((XOR (AT?X?Y) (IN?X?Z)) (OBJECT ?7X)),
stating that in any reachable state, any object is either
at some place or in something.

Strict Single-Valuedness and n-Valuedness Con-
straints. This type of invariant is a generalization of
sv-constraints. A nw-constraint states that a certain
predicate can be bound to at most n arguments for any
given values of the remaining arguments. A strict nv-
constraint states that a certain predicate is bound to
exactly n arguments for any given values of the remain-
ing arguments. An example of a strict nv-constraint
with n = 1 in the blocks world is the invariant stating
that any block is on exactly one thing (either another
block or the table).

Using “Expanded Operators” to Infer Further
Constraints. DISCOPLAN’s package includes routines
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Figure 2: General scheme of DISCOPLAN’s input/output

for expanding an operator with a set of given invariants.
The operator expansion consists of enriching the opera-
tor description with additional preconditions and effects
that are entailed by the given invariants. By using ex-
panded operators DISCOPLAN may infer new invariants,
which can be used to expand the operators again. This
can be iterated until no new constraints are inferred.

Constraints with Exceptions. Some hypotheses
are rejected by DISCOPLAN only because they are not
verified against the initial state. For example, consider
the blocks world formalization of Figure 1, where we
have just one operator in which the parameters are not
typed. If we have the simple initial state ((ONATABLE)
(0N CA) (CLEARC) (ONBTABLE) (CLEARB)), DISCOPLAN
discovers (0N ?X ?*Y), which then becomes a hypothesis
with a strict sv-constraint ((ON?X7Y!1) in DISCOPLAN
format). But (ON?X?7Y!1) is not confirmed because the
test against the initial state fails. This is because the
object TABLE is on nothing in the initial state. In order
to deal with these exceptions, we have recently weakened
the test against the initial state, so that a hypothesis can
be verified by restricting the domain of certain variables.
In our example (ON?X?Y!1) can be satisfied in the ini-
tial state, provided that ?X is not instantiated to TABLE.
Hence, D1ISCOPLAN weakens the hypothesis by excluding
TABLE from the domain of ?X, and derives ((ON7?X7?Y!1)
(NOT (MEMBER ?X (TABLE)))).

These exceptions are computed during the test
against the initial state by keeping track of unifiers that
assign anomalous tuples of values to the unconstrained
variables, i.e., tuples for which strict single-valuedness
is violated (e.g., TABLE/?X in the previous example), and
weakening the constraint by excluding these values from
the domains of the relevant variables.

This analysis of the initial state is also used to derive
additional supplementary conditions rescuing hypothe-
ses that were rejected because a required simultaneous
sv-constraint was not satisfied in the initial state (while
all the other required verification conditions were satis-
fied). For example, if in the logistics domain the initial
state of a problem contains the facts (AT ORANGES MIAMI),
(AT DRANGES ORLANDO) and (OBJECT ORANGES), then the in-
variants

((IMPLIES (AT ?X 7*Y) (NOT (IN ?X 7*Z))) (OBJECT 7X))
cannot be inferred. However, DISCOPLAN infers
((IMPLIES (AT 7X7#Y) (NOT (IN?X7%Z))) (OBJECT ?X)

(NOT (MEMBER 7X (ORANGES)))).!

!The complete output for these examples can be

seen by running DISCOPLAN on-line at the web site
http://prometeo.ing.unibs.it/discoplan.
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Interacting with DISCOPLAN on-line

The general input/output scheme of DISCOPLAN is de-
picted in Figure 2. The input domain and problem de-
scriptions can be specified using the syntax of either
UcPpoP or PDDL. Since the core functions of DISCOPLAN
assume UCPOP descriptions, when the input is specified
using PDDL, it is automatically translated into a UcPoP
set of operators.

The output of DISCOPLAN can be given as input to
either a planner that can exploit this information, or
to a domain developer, as an aid to domain specifica-
tion and debugging. The syntax of the output can be
either FOL or the compact format using implicit quan-
tification and “starred” variables as in the previous sec-
tions. The compactness of the starred-variable format
is due to the fact that it allows an implicative or ex-
clusive constraint to be augmented with simultaneously
dicovered sv-constraints merely by starring some vari-
ables, rather than adding explicit FOL formulas. The
FOL description of the state constraints is obtained by
a postprocessing step translating the constraints com-
puted in DISCOPLAN format into FOL.

DISCOPLAN on-line is a version of the system that can
be remotely run through any web browser. In particu-
lar, from the “test and demo” page of the web site of
DiscoPLAN the user can run DISCOPLAN either on a set
of predefined domains and problems, or on any other
domain and problem that is supplied by the user from
her/his local machine (see Figure 3). Before running
the system, the user can set some parameters, such as
the style of the output, the maximum number of supple-
mentary conditions an invariant can have, the automatic
computation of the operator parameter domains using
techniques described in [4], etc. Finally, the user can
inspect the domain and problem selected.

Related Work and Conclusions

We have sketched how many natural types of state in-
variants in planning domains with conditional effects
can be efficiently inferred, and have described the im-
plemention of our techniques in the DISCOPLAN system.
The invariants inferred include predicate domain con-
straints, relations among static type predicates, implica-
tive constraints, strict and non-strict sv-constraints,
combinations of implicative and sv-constraints (where
these cannot be inferred in isolation), and OR and XOR
constraints. All invariants are found by algorithms that
are polynomial-time for any fixed bound on the num-
ber of literals in an invariant, and the algorithms can be
iterated to find additional invariants after expanding op-
erators using previously found invariants. The outputs
can be presented as FOL formulas or in a concise format
with implicit universal quantification and “starred” vari-
ables indicating single-valuedness. The automatically
derived invariants have been shown to radically boost
the performance of SAT planners, and are also poten-
tially useful for other planning styles, and as a help in
domain analysis and debugging.

Other approaches for the automatic inference of state
invariants have been proposed including [10, 9, 3, 13,
14, 12], but to the best of our knowledge the only other
implemented system that is available is Fox and Long’s
TiM. A major difference between the DISCOPLAN and
these approaches is that DISCOPLAN can process do-
mains specified using a more expressive planning lan-
guage. In particular, TiM does not handle opera-
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Figure 3: Test and Demo page of DISCOPLAN on-line

tors with conditional effects and negated preconditions.
Moreover, DISCOPLAN infers some types of constraints
that are not inferred by Tim, such as antisymmetry
constraints, XOR-constraints and some implicative con-
straints involding variable binding constraints or pred-
icates without parameters.? On the other hand, some
of TiM’s “state membership invariants” and “unique-
ness invariants” are not inferred by the currently imple-
mented version of DISCOPLAN.

It remains unclear how important the “omissions” in
each system, relative to the other, are for planning and
domain analysis purposes. In any case a reasonable
strategy at this time, for builders of planning systems
that can benefit from state invariants, would be to com-
bine the invariants found by TIM and DISCOPLAN.

We have developed some further algorithms for in-
ferring invariants, beyond those implemented in Drs-
COPLAN. The most general of these is an algorithm for
inferring n-ary disjunctions of fluent literals, together
with sv-constraints and static supplementary conditions,
for n not limited to 2 (as at present). This algorithm is
a candidate for future implementation.
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2Examples of these constraints are: ((IMPLIES
(ON?X7Y) (NEQ7X?7Y))) in the blocks works, and ((IMPLIES
(HASBANANAS) (HASKNIFE)) in the Monkey domain.



