
DISCOPLAN: an EÆient On-line System for Computing PlanningDomain Invariants�Alfonso Gerevini1 Lenhart Shubert21 Dipartimento di Elettronia per l'Automazione, Universit�a di BresiaVia Branze 38, 25123 Bresia, Italy. E-mail: gerevini�ing.unibs.it2 Department of Computer Siene, University of RohesterRohester, NY 14627-0226. E-mail: shubert�s.rohester.eduAbstratDisoplan is an eÆient system for disovering stateinvariants in planning domains with onditional e�ets.Among the types of invariants found are impliativeonstraints relating a uent prediation to a uent orstati prediation (with allowane for stati supplemen-tary onditions), single-valuedness onstraints, exlu-siveness onstraints, and several others. The algorithmsused are polynomial-time for any �xed bound on thenumber of literals in an invariant. Some ombinationsof onstraints are found by simultaneous indution, andthe methods an be iterated by expanding operators us-ing previously found invariants. The invariants foundby Disoplan have been shown to enable large per-formane gains in SAT planners, and they an also behelpful in planning domain development and debugging.IntrodutionState invariants (or state onstraints) in planning areproperties of objets or relationships among objets thathold in all states reahable from the initial state. Forexample, a familiar invariant in a bloks world is theproperty that that if one blok is on another, the latteris not lear. In our terminology, this is an impliativeonstraint. Another example is that a blok an be onat most one other blok; this is a single-valuedness on-straint (sv-onstraint).A point that has beome widely reognized in theplanning ommunity (and that we amplify in what fol-lows) is that knowledge of state invariants is importantfor eÆient planning. However, suh knowledge an-not in general be assumed to be available a priori in agiven planning domain. Rather, planning domains aregenerally onsidered fully spei�ed one a set of opera-tors with well-de�ned preonditions and e�ets has beensupplied, along with an initial state. This is defensiblesine state invariants are impliit in the spei�ationof the operators and initial state; i.e., under a Stripsassumption the only properties and relationships thathange when an operator is applied are those spelledout in the e�ets of the operator. So a separate spei-�ation of what remains unhanged when operators areapplied would be logially redundant. However, it isfar from obvious from inspetion of a given set of plan-ning operators and an initial state what the invariantsof the domain are. The goal of our researh has been toformulate automati, eÆient methods for inferring themost important suh invariants, and to implement thesemethods in our Disoplan system.�The on-line Disoplan system an be aessed athttp://prometeo.ing.unibs.it/disoplan. Disoplan iswritten in Common Lisp.

The importane of state invariants for eÆient plan-ning is that they an be used to radially restrit thesearh spae. This is so for any approah to planningthat involves expliit or impliit exploration of inom-pletely spei�ed possible states of the world, as is thease for dedutive planning, regression planning, bidi-retional planning, and planning by inremental on-straint satisfation (in partiular, SAT-based planning).In our work we have foused on SAT-based planners.These impliitly searh a spae of state sequenes, on-strained by disjuntions of ground literals. Their per-formane depends ritially on the invariants added (asground instanes) to the mix of disjuntions, and intu-itively this is beause state invariants onstrain the al-ternative states that are possible at eah time step underonsideration. Some results showing the dramati im-provements in the performane of SAT-based plannerslike SATPLAN [8℄ and MEDIC [2℄ obtainable throughthe use of automatially inferred invariants are inludedin [5℄.Disoplan �nds a variety of di�erent types of on-straints, inluding stati (type) onstraints (most im-portantly, supertype / subtype and exlusion relationsamong stati monadi prediates { ones una�eted byany operator), and prediate domain onstraints (setsof possible argument tuples orresponding to eah pred-iate in the domain, after 0, 1, ..., t ations have o-urred). But the majority of its algorithms are devotedto the disovery of state invariants, using a hypothesize-and-test paradigm. All the algorithms instantiating thisparadigm are appliable to sets of operators onform-ing with Upop or pddl syntax [11, 7℄, allowing forwhen-lauses (onditional e�ets) but not disjuntive oruniversally quanti�ed onditions. We will be referringto the unonditional part of an operator as its primarywhen-lause. The allowane for onditional e�ets is amajor distintion of Disoplan from related systems.Very briey, the hypothesize-and-test paradigm on-sists of hypothesizing invariants � of some partiularsyntati type, suh as impliative onstraints (IMPLIES�  ) where � and  are literals that may ontain uni-versal variables, augmenting these hypotheses with po-tential supplementary stati onditions, and then test-ing them against all when-lauses of all operators andagainst the given initial onditions. In the testing phase,minimal sets � of supplementary onditions are found,up to sets of some limited size (e.g., 2 or 3) that suf-�e to ensure that � ) � holds in all states reahablefrom the initial state. The hypothetial invariants �of a partiular type are hosen by inspeting the pre-onditions and e�ets of partiular operators, to �ndonditions that appear to beome or remain true when
433



ertain kinds of e�ets our. The idea is to hoose theonstituents of � in suh a way that a proof by indu-tion of the invariane of � will be at least loally enabled.In this way large numbers of syntatially possible in-variants are eliminated from onsideration. The testingphase an be viewed as an automated indutive proofattempt (with addition of supplementary onditions asneeded to allow the proof to sueed). An importantpoint is that � may atually onsist of multiple hypothe-ses that an be proved to be invariants by simultaneousindution. Typially, suh multiple hypotheses onsistof an impliative hypothesis (IMPLIES �  ) along withsv-hypotheses orresponding to argument positions in �and  oupied by universal variables ourring in onlyone of �,  . The point is important sine the invari-ane of the individual formulas in suh ases annot beproved in isolation. Our various hypothesize-and-testalgorithms have been proved to yield orret invariants,and run in polynomial time for �xed bound on the num-ber of supplementary onditions � added to �.In a little more detail, the hypothesize-and-test algo-rithms onform with the following struture (iteratingover all possible andidate onstraints � found in the�rst step).1. Hypothesize a onstraint � based on o-ourrenesof literals in a when-lause w of an operator and inthe orresponding primary when-lause w1 (if di�er-ent). For example, e�ets � and  might lead to animpliative hypothesis (IMPLIES �  ), and possiblysv-hypotheses about the prediates involved.2. Add a set of andidate supplementary onditionsf�1; :::; �ng, onsisting of the stati preonditions of wand w1 and if w 6= w1, the negations of stati preon-ditions of other when-lauses (exept ones that unifywith stati preonditions of w or w1 or their nega-tions).3. Test hypothesis � relative to eah when-lause of eahoperator, using the relevant veri�ation onditions;for eah apparent violation of � �nd the orrespond-ing possible \exuses" for the violation. An exuse is aset of provisos f�01; :::; �0mg, hosen from the andidatesupplementary onditions, that weaken the hypothe-sis suÆiently to maintain its truth. If a violationhas no exuses, abandon the hypothesis �, otherwisereord the set of possible exuses of the violation ona global list.4. Find all minimal subsets (up to a given size, e.g., 3) off�1; :::; �ng that \over" all apparent violations of �;a subset of f�1; :::; �ng overs an apparent violationof � if it ontains all elements of at least one \exuse"for that violation;5. Chek hypothesis (� �01:::; �0m) (i.e., the original hy-pothesis together with added provisos) for eah of theminimal subsets f�01; :::; �0mg of f�1; :::; �ng found inthe previous step for truth in the initial onditions ofthe problem being solved; return the variant hypothe-ses that pass this test as the veri�ed hypotheses.The veri�ation onditions referred to in step 3 de-pend on the form of �, and are designed to ensure thatif � together with spei�ed supplementary onditionsholds in a given state, it also holds in every possiblesuessor state. For example, in the ase of a simple im-pliative onstraint (IMPLIES �  ) together with a set ofstati supplementary onditions, the veri�ation ondi-tions say (roughly) that any operator e�et mathing �

(de�ne (operator Put):parameters (?x ?y ?z):preondition (and (on ?x ?z) (lear ?x)(neq ?x Table) (neq ?y ?z) (neq ?x ?y)):e�et (and (when (eq ?y Table)(and (on ?x ?y) (lear ?z) (not (on ?x ?z))))(when (and (neq ?y Table) (lear ?y))(and (on ?x ?y) (lear ?z) (not (on ?x ?z))(not (lear ?y))))) )Figure 1: A Formalization of the bloks world.must be aompanied by an e�et or persistent preon-dition mathing  , or else the preonditions must entailthe falsity of a supplementary ondition; and similarlyfor the ontrapositive, (IMPLIES : :�). (The ondi-tions are atually slightly more ompliated beause ofthe allowane for onditional e�ets.)Types of DISCOPLAN InvariantsThe input of Disoplan is a domain desription on-sisting of the spei�ation of an initial state and a setof extended Strips operators whih may involve ondi-tional e�ets, negated preonditions, onstants, typedand untyped parameters (Figure 1 gives a very sim-ple formalization of the bloks world ontaining some ofthese fetures). In the following we desribe the types ofinvariants that are disovered by the urrent version ofDisoplan (for a more detailed desription the readeris referred to [5, 6℄).Prediate Domain Constraints. Prediate domainonstraints are sets of possible argument tuples orre-sponding to eah prediate in the domain after 0, 1, ...,t ations have ourred. These onstraints are omputedusing a simpli�ed version of the planning graph for thegiven problem [1℄.Stati Prediates and Stati Constraints. Stationstraints are invariants involving type-prediates, i.e.,stati monadi prediates that our positively in theinitial state { ones una�eted by any operator. Stationstraints onsist of a (possibly empty) set of objetsfor eah type-prediate and a list of supertype, subtype,and inompatible relationships between type-prediates.Simple Impliative Constraints. Simple Implia-tive Constraints are onstraints of form ((� ) ) �1:::�k); where �,  , and �1; :::; �k are funtion-free literals, i.e., negated or unnegated atomi formulaswhose arguments are onstants or variables. Suh on-straints are to be interpreted as saying \In every state,for all values of the variables, if � then  , provided that�1; ..., and �k". We assume that the variables ourringin � inlude all those ourring in  and in the supple-mentary onditions �1; :::; �k . The prediate in � is auent prediate, while  may be uent or stati. How-ever, if � ontains variables that do not our in  , then is required to be \upward monotoni", in the sensethat no instanes of it an beome false (: does notunify with e�et of any operator; this is ertainly trueif  is stati). Finally, we require �1; :::; �k to be stati.The following is an example of this type of onstraintin the bloks world stating that the table annot be onany blok: 8x; y ON (x; y)) NEQ(x;TABLE ).Single-valuedness Constraints. An sv-onstraintstates that the value of a ertain prediate argumentis unique for any given values of the remaining argu-ments. An example of an sv-onstraint is the followingbloks-world onstraint stating that any objet an beON at most one other objet:
434



8x; y; z:(ON (x; y) ^ON (x; z))) y = z:Impliative Constraints + Single-ValuednessConstraints. These invariants are formed by an im-pliative onstraint and a set of sv-onstraints that aresimultaneously disovered by Disoplan. We distin-guish two ases whih require di�erent veri�ation on-ditions: the ase of subsumed variables and the ase ofnon-subsumed variables. The bloks-world onstraint((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE))is an example of a ombined impliative and sv-onstraint for the �rst ase. In general, the implia-tive onstraints we are onsidering here have as theiranteedent a positive literal that ontains at least one\starred" variable not ourring in the onsequent, andzero or more \unstarred" variables ourring in the on-sequent. The stars indiate that for all values of theunstarred variables, the anteedent holds for at mostone tuple of values of the starred variables.In the seond ase we have impliations in whih bothanteedent and onsequent ontain variables not on-tained in the other. All suh variables are \starred",while the shared variables are unstarred. An example isthe following onstraint from the Logistis domain:((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)).This is an exlusive state onstraint, i.e., it states thatno objet an simultaneously be AT something and INsomething (and in addition an objet an be AT no morethat one thing, and IN no more than one thing).Antisymmetry Constraints. Antisymmetry on-straints are partiular impliative onstraints of the form((IMPLIES (P t1 t2) (NOT (P t2 t1))) �1 �2:::�n),where t1 and t2 an be onstants or universally quan-ti�ed variables, and �1; :::; �n are supplementary ondi-tions whose variables are a subset of ft1; t2g. An exam-ple of an antisymmetry onstraint in the bloks world is8x; y: ON (x; y)) :ON (y; x),i.e., if one objet is on another, then the seond is noton the �rst.OR and XOR Constraints. OR and XOR-onstraints are state onstraints of the form(([X℄OR �  ) �1 �2:::�n),where � and  are positive uent literals, suh thatnon-shared variables are existentially quanti�ed, whileshared variables are universally quanti�ed, and wherethe variables in �1, �2, ..., �n an only be variablesshared by � and  . An example of an XOR-onstraintin the logistis domain is((XOR (AT ?X ?Y) (IN ?X ?Z)) (OBJECT ?X)),stating that in any reahable state, any objet is eitherat some plae or in something.Strit Single-Valuedness and n-Valuedness Con-straints. This type of invariant is a generalization ofsv-onstraints. A nv-onstraint states that a ertainprediate an be bound to at most n arguments for anygiven values of the remaining arguments. A strit nv-onstraint states that a ertain prediate is bound toexatly n arguments for any given values of the remain-ing arguments. An example of a strit nv-onstraintwith n = 1 in the bloks world is the invariant statingthat any blok is on exatly one thing (either anotherblok or the table).Using \Expanded Operators" to Infer FurtherConstraints. Disoplan's pakage inludes routines

PDDL
to

UCPOP
compiler

DISCOPLAN
to

F.O.L.
compiler

PLANNER

Operators and

Init/goal states

(PDDL or UCPOP)

DISCOPLAN

HUMAN USER

PDDL UCPOP

Figure 2: General sheme of Disoplan's input/outputfor expanding an operator with a set of given invariants.The operator expansion onsists of enrihing the opera-tor desription with additional preonditions and e�etsthat are entailed by the given invariants. By using ex-panded operators Disoplan may infer new invariants,whih an be used to expand the operators again. Thisan be iterated until no new onstraints are inferred.Constraints with Exeptions. Some hypothesesare rejeted by Disoplan only beause they are notveri�ed against the initial state. For example, onsiderthe bloks world formalization of Figure 1, where wehave just one operator in whih the parameters are nottyped. If we have the simple initial state ((ON A TABLE)(ON C A) (CLEAR C) (ON B TABLE) (CLEAR B)), Disoplandisovers (ON ?X ?*Y), whih then beomes a hypothesiswith a strit sv-onstraint ((ON ?X ?Y!1) in Disoplanformat). But (ON ?X ?Y!1) is not on�rmed beause thetest against the initial state fails. This is beause theobjet TABLE is on nothing in the initial state. In orderto deal with these exeptions, we have reently weakenedthe test against the initial state, so that a hypothesis anbe veri�ed by restriting the domain of ertain variables.In our example (ON ?X ?Y!1) an be satis�ed in the ini-tial state, provided that ?X is not instantiated to TABLE.Hene, Disoplan weakens the hypothesis by exludingTABLE from the domain of ?X, and derives ((ON ?X ?Y!1)(NOT (MEMBER ?X (TABLE)))).These exeptions are omputed during the testagainst the initial state by keeping trak of uni�ers thatassign anomalous tuples of values to the unonstrainedvariables, i.e., tuples for whih strit single-valuednessis violated (e.g., TABLE=?X in the previous example), andweakening the onstraint by exluding these values fromthe domains of the relevant variables.This analysis of the initial state is also used to deriveadditional supplementary onditions resuing hypothe-ses that were rejeted beause a required simultaneoussv-onstraint was not satis�ed in the initial state (whileall the other required veri�ation onditions were satis-�ed). For example, if in the logistis domain the initialstate of a problem ontains the fats (AT ORANGES MIAMI),(AT ORANGES ORLANDO) and (OBJECT ORANGES), then the in-variants((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X))annot be inferred. However, Disoplan infers((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)(NOT (MEMBER ?X (ORANGES)))).11The omplete output for these examples an beseen by running Disoplan on-line at the web sitehttp://prometeo.ing.unibs.it/disoplan.
435



Interating with DISCOPLAN on-lineThe general input/output sheme of Disoplan is de-pited in Figure 2. The input domain and problem de-sriptions an be spei�ed using the syntax of eitherUpop or pddl. Sine the ore funtions of Disoplanassume Upop desriptions, when the input is spei�edusing pddl, it is automatially translated into a Upopset of operators.The output of Disoplan an be given as input toeither a planner that an exploit this information, orto a domain developer, as an aid to domain spei�a-tion and debugging. The syntax of the output an beeither FOL or the ompat format using impliit quan-ti�ation and \starred" variables as in the previous se-tions. The ompatness of the starred-variable formatis due to the fat that it allows an impliative or ex-lusive onstraint to be augmented with simultaneouslydiovered sv-onstraints merely by starring some vari-ables, rather than adding expliit FOL formulas. TheFOL desription of the state onstraints is obtained bya postproessing step translating the onstraints om-puted in Disoplan format into FOL.Disoplan on-line is a version of the system that anbe remotely run through any web browser. In partiu-lar, from the \test and demo" page of the web site ofDisoplan the user an run Disoplan either on a setof prede�ned domains and problems, or on any otherdomain and problem that is supplied by the user fromher/his loal mahine (see Figure 3). Before runningthe system, the user an set some parameters, suh asthe style of the output, the maximum number of supple-mentary onditions an invariant an have, the automatiomputation of the operator parameter domains usingtehniques desribed in [4℄, et. Finally, the user aninspet the domain and problem seleted.Related Work and ConlusionsWe have skethed how many natural types of state in-variants in planning domains with onditional e�etsan be eÆiently inferred, and have desribed the im-plemention of our tehniques in the Disoplan system.The invariants inferred inlude prediate domain on-straints, relations among stati type prediates, implia-tive onstraints, strit and non-strit sv-onstraints,ombinations of impliative and sv-onstraints (wherethese annot be inferred in isolation), and OR and XORonstraints. All invariants are found by algorithms thatare polynomial-time for any �xed bound on the num-ber of literals in an invariant, and the algorithms an beiterated to �nd additional invariants after expanding op-erators using previously found invariants. The outputsan be presented as FOL formulas or in a onise formatwith impliit universal quanti�ation and \starred" vari-ables indiating single-valuedness. The automatiallyderived invariants have been shown to radially boostthe performane of SAT planners, and are also poten-tially useful for other planning styles, and as a help indomain analysis and debugging.Other approahes for the automati inferene of stateinvariants have been proposed inluding [10, 9, 3, 13,14, 12℄, but to the best of our knowledge the only otherimplemented system that is available is Fox and Long'sTim. A major di�erene between the Disoplan andthese approahes is that Disoplan an proess do-mains spei�ed using a more expressive planning lan-guage. In partiular, Tim does not handle opera-

Figure 3: Test and Demo page of Disoplan on-linetors with onditional e�ets and negated preonditions.Moreover, disoplan infers some types of onstraintsthat are not inferred by Tim, suh as antisymmetryonstraints, XOR-onstraints and some impliative on-straints involding variable binding onstraints or pred-iates without parameters.2 On the other hand, someof Tim's \state membership invariants" and \unique-ness invariants" are not inferred by the urrently imple-mented version of Disoplan.It remains unlear how important the \omissions" ineah system, relative to the other, are for planning anddomain analysis purposes. In any ase a reasonablestrategy at this time, for builders of planning systemsthat an bene�t from state invariants, would be to om-bine the invariants found by Tim and Disoplan.We have developed some further algorithms for in-ferring invariants, beyond those implemented in Dis-oplan. The most general of these is an algorithm forinferring n-ary disjuntions of uent literals, togetherwith sv-onstraints and stati supplementary onditions,for n not limited to 2 (as at present). This algorithm isa andidate for future implementation.Referenes[1℄ A. Blum and M.L. Furst. Fast planning through planning graph analysis.In Pro. of IJCAI-95, pp. 1636{1642. 1995.[2℄ M.D. Ernst, T.D. Millstein, and D.S. Weld. Automati SAT-ompilationof planning problems. In Pro. of IJCAI-97, pp. 1169{1176. 1997.[3℄ M. Fox and D. Long. The automati inferene of state invariants inTIM. JAIR, 9:367{421, 1998.[4℄ A. Gerevini and L. Shubert. Aelerating Partial-Order Planners: SomeTehniques for E�etive Searh Control and Pruning. JAIR, 5:95{137,Sept. 1996.[5℄ A. Gerevini and L. Shubert. Inferring state onstraints for domain-independent planning. In Pro. of AAAI-98, pp. 905{912. 1998.[6℄ A. Gerevini and L. Shubert. Inferring state onstraints in disoplan:Some new results. In Pro. of AAAI-00, pp. 761{767. 2000.[7℄ M. Ghallab, A. Howe, G. Knoblok, D. MDermott, A. Ram, M. Veloso,D. Weld, and D. Wilkins. PDDL { planning domain de�nition language.Available at http://s-www.s.yale.edu/homes/dvm/.[8℄ H.A. Kautz and B. Selman. Pushing the envelope: Planning, proposi-tional logi, and stohasti searh. In Pro. of AAAI-96, 1996.[9℄ G. Kelleher. Determining general onsequenes of sets of ations. Teh-nial Report TR CMS.14.96, Liverpool Moores University, 1996.[10℄ J. Kelleher and A. Cohn. Automatially synthesising domain on-straints from operator desriptions. In Pro. of ECAI-92, pp. 653{655.1992.[11℄ J.S. Penberthy and D.S. Weld. UCPOP: A sound, omplete, partialorder planner for ADL. In Pro. of KR'92, pp. 103{114. 1992.[12℄ U. Sholz. Extrating state onstraints from PDDL-like planning do-mains. In Working Notes of the AIPS00 Workshop on Analysing and Ex-ploiting Domain Knowledge for EÆient Planning, pp. 43{48. 2000.[13℄ J. Rintanen. A planning algorithm not based on diretional searh. InPro. of KR'98, pp. 617{624. 1998.[14℄ J. Rintanen. An iterative algorithm for synthesizing invariants. InPro. of AAAI-00, pp. 806{811. 2000.2Examples of these onstraints are: ((IMPLIES(ON ?X ?Y) (NEQ ?X ?Y))) in the bloks works, and ((IMPLIES(HASBANANAS) (HASKNIFE)) in the Monkey domain.
436


