
DISCOPLAN: an EÆ
ient On-line System for Computing PlanningDomain Invariants�Alfonso Gerevini1 Lenhart S
hubert21 Dipartimento di Elettroni
a per l'Automazione, Universit�a di Bres
iaVia Branze 38, 25123 Bres
ia, Italy. E-mail: gerevini�ing.unibs.it2 Department of Computer S
ien
e, University of Ro
hesterRo
hester, NY 14627-0226. E-mail: s
hubert�
s.ro
hester.eduAbstra
tDis
oplan is an eÆ
ient system for dis
overing stateinvariants in planning domains with 
onditional e�e
ts.Among the types of invariants found are impli
ative
onstraints relating a 
uent predi
ation to a 
uent orstati
 predi
ation (with allowan
e for stati
 supplemen-tary 
onditions), single-valuedness 
onstraints, ex
lu-siveness 
onstraints, and several others. The algorithmsused are polynomial-time for any �xed bound on thenumber of literals in an invariant. Some 
ombinationsof 
onstraints are found by simultaneous indu
tion, andthe methods 
an be iterated by expanding operators us-ing previously found invariants. The invariants foundby Dis
oplan have been shown to enable large per-forman
e gains in SAT planners, and they 
an also behelpful in planning domain development and debugging.Introdu
tionState invariants (or state 
onstraints) in planning areproperties of obje
ts or relationships among obje
ts thathold in all states rea
hable from the initial state. Forexample, a familiar invariant in a blo
ks world is theproperty that that if one blo
k is on another, the latteris not 
lear. In our terminology, this is an impli
ative
onstraint. Another example is that a blo
k 
an be onat most one other blo
k; this is a single-valuedness 
on-straint (sv-
onstraint).A point that has be
ome widely re
ognized in theplanning 
ommunity (and that we amplify in what fol-lows) is that knowledge of state invariants is importantfor eÆ
ient planning. However, su
h knowledge 
an-not in general be assumed to be available a priori in agiven planning domain. Rather, planning domains aregenerally 
onsidered fully spe
i�ed on
e a set of opera-tors with well-de�ned pre
onditions and e�e
ts has beensupplied, along with an initial state. This is defensiblesin
e state invariants are impli
it in the spe
i�
ationof the operators and initial state; i.e., under a Stripsassumption the only properties and relationships that
hange when an operator is applied are those spelledout in the e�e
ts of the operator. So a separate spe
i-�
ation of what remains un
hanged when operators areapplied would be logi
ally redundant. However, it isfar from obvious from inspe
tion of a given set of plan-ning operators and an initial state what the invariantsof the domain are. The goal of our resear
h has been toformulate automati
, eÆ
ient methods for inferring themost important su
h invariants, and to implement thesemethods in our Dis
oplan system.�The on-line Dis
oplan system 
an be a

essed athttp://prometeo.ing.unibs.it/dis
oplan. Dis
oplan iswritten in Common Lisp.

The importan
e of state invariants for eÆ
ient plan-ning is that they 
an be used to radi
ally restri
t thesear
h spa
e. This is so for any approa
h to planningthat involves expli
it or impli
it exploration of in
om-pletely spe
i�ed possible states of the world, as is the
ase for dedu
tive planning, regression planning, bidi-re
tional planning, and planning by in
remental 
on-straint satisfa
tion (in parti
ular, SAT-based planning).In our work we have fo
used on SAT-based planners.These impli
itly sear
h a spa
e of state sequen
es, 
on-strained by disjun
tions of ground literals. Their per-forman
e depends 
riti
ally on the invariants added (asground instan
es) to the mix of disjun
tions, and intu-itively this is be
ause state invariants 
onstrain the al-ternative states that are possible at ea
h time step under
onsideration. Some results showing the dramati
 im-provements in the performan
e of SAT-based plannerslike SATPLAN [8℄ and MEDIC [2℄ obtainable throughthe use of automati
ally inferred invariants are in
ludedin [5℄.Dis
oplan �nds a variety of di�erent types of 
on-straints, in
luding stati
 (type) 
onstraints (most im-portantly, supertype / subtype and ex
lusion relationsamong stati
 monadi
 predi
ates { ones una�e
ted byany operator), and predi
ate domain 
onstraints (setsof possible argument tuples 
orresponding to ea
h pred-i
ate in the domain, after 0, 1, ..., t a
tions have o
-
urred). But the majority of its algorithms are devotedto the dis
overy of state invariants, using a hypothesize-and-test paradigm. All the algorithms instantiating thisparadigm are appli
able to sets of operators 
onform-ing with U
pop or pddl syntax [11, 7℄, allowing forwhen-
lauses (
onditional e�e
ts) but not disjun
tive oruniversally quanti�ed 
onditions. We will be referringto the un
onditional part of an operator as its primarywhen-
lause. The allowan
e for 
onditional e�e
ts is amajor distin
tion of Dis
oplan from related systems.Very brie
y, the hypothesize-and-test paradigm 
on-sists of hypothesizing invariants � of some parti
ularsynta
ti
 type, su
h as impli
ative 
onstraints (IMPLIES�  ) where � and  are literals that may 
ontain uni-versal variables, augmenting these hypotheses with po-tential supplementary stati
 
onditions, and then test-ing them against all when-
lauses of all operators andagainst the given initial 
onditions. In the testing phase,minimal sets � of supplementary 
onditions are found,up to sets of some limited size (e.g., 2 or 3) that suf-�
e to ensure that � ) � holds in all states rea
hablefrom the initial state. The hypotheti
al invariants �of a parti
ular type are 
hosen by inspe
ting the pre-
onditions and e�e
ts of parti
ular operators, to �nd
onditions that appear to be
ome or remain true when
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ertain kinds of e�e
ts o

ur. The idea is to 
hoose the
onstituents of � in su
h a way that a proof by indu
-tion of the invarian
e of � will be at least lo
ally enabled.In this way large numbers of synta
ti
ally possible in-variants are eliminated from 
onsideration. The testingphase 
an be viewed as an automated indu
tive proofattempt (with addition of supplementary 
onditions asneeded to allow the proof to su

eed). An importantpoint is that � may a
tually 
onsist of multiple hypothe-ses that 
an be proved to be invariants by simultaneousindu
tion. Typi
ally, su
h multiple hypotheses 
onsistof an impli
ative hypothesis (IMPLIES �  ) along withsv-hypotheses 
orresponding to argument positions in �and  o

upied by universal variables o

urring in onlyone of �,  . The point is important sin
e the invari-an
e of the individual formulas in su
h 
ases 
annot beproved in isolation. Our various hypothesize-and-testalgorithms have been proved to yield 
orre
t invariants,and run in polynomial time for �xed bound on the num-ber of supplementary 
onditions � added to �.In a little more detail, the hypothesize-and-test algo-rithms 
onform with the following stru
ture (iteratingover all possible 
andidate 
onstraints � found in the�rst step).1. Hypothesize a 
onstraint � based on 
o-o

urren
esof literals in a when-
lause w of an operator and inthe 
orresponding primary when-
lause w1 (if di�er-ent). For example, e�e
ts � and  might lead to animpli
ative hypothesis (IMPLIES �  ), and possiblysv-hypotheses about the predi
ates involved.2. Add a set of 
andidate supplementary 
onditionsf�1; :::; �ng, 
onsisting of the stati
 pre
onditions of wand w1 and if w 6= w1, the negations of stati
 pre
on-ditions of other when-
lauses (ex
ept ones that unifywith stati
 pre
onditions of w or w1 or their nega-tions).3. Test hypothesis � relative to ea
h when-
lause of ea
hoperator, using the relevant veri�
ation 
onditions;for ea
h apparent violation of � �nd the 
orrespond-ing possible \ex
uses" for the violation. An ex
use is aset of provisos f�01; :::; �0mg, 
hosen from the 
andidatesupplementary 
onditions, that weaken the hypothe-sis suÆ
iently to maintain its truth. If a violationhas no ex
uses, abandon the hypothesis �, otherwisere
ord the set of possible ex
uses of the violation ona global list.4. Find all minimal subsets (up to a given size, e.g., 3) off�1; :::; �ng that \
over" all apparent violations of �;a subset of f�1; :::; �ng 
overs an apparent violationof � if it 
ontains all elements of at least one \ex
use"for that violation;5. Che
k hypothesis (� �01:::; �0m) (i.e., the original hy-pothesis together with added provisos) for ea
h of theminimal subsets f�01; :::; �0mg of f�1; :::; �ng found inthe previous step for truth in the initial 
onditions ofthe problem being solved; return the variant hypothe-ses that pass this test as the veri�ed hypotheses.The veri�
ation 
onditions referred to in step 3 de-pend on the form of �, and are designed to ensure thatif � together with spe
i�ed supplementary 
onditionsholds in a given state, it also holds in every possiblesu

essor state. For example, in the 
ase of a simple im-pli
ative 
onstraint (IMPLIES �  ) together with a set ofstati
 supplementary 
onditions, the veri�
ation 
ondi-tions say (roughly) that any operator e�e
t mat
hing �

(de�ne (operator Put):parameters (?x ?y ?z):pre
ondition (and (on ?x ?z) (
lear ?x)(neq ?x Table) (neq ?y ?z) (neq ?x ?y)):e�e
t (and (when (eq ?y Table)(and (on ?x ?y) (
lear ?z) (not (on ?x ?z))))(when (and (neq ?y Table) (
lear ?y))(and (on ?x ?y) (
lear ?z) (not (on ?x ?z))(not (
lear ?y))))) )Figure 1: A Formalization of the blo
ks world.must be a

ompanied by an e�e
t or persistent pre
on-dition mat
hing  , or else the pre
onditions must entailthe falsity of a supplementary 
ondition; and similarlyfor the 
ontrapositive, (IMPLIES : :�). (The 
ondi-tions are a
tually slightly more 
ompli
ated be
ause ofthe allowan
e for 
onditional e�e
ts.)Types of DISCOPLAN InvariantsThe input of Dis
oplan is a domain des
ription 
on-sisting of the spe
i�
ation of an initial state and a setof extended Strips operators whi
h may involve 
ondi-tional e�e
ts, negated pre
onditions, 
onstants, typedand untyped parameters (Figure 1 gives a very sim-ple formalization of the blo
ks world 
ontaining some ofthese fetures). In the following we des
ribe the types ofinvariants that are dis
overed by the 
urrent version ofDis
oplan (for a more detailed des
ription the readeris referred to [5, 6℄).Predi
ate Domain Constraints. Predi
ate domain
onstraints are sets of possible argument tuples 
orre-sponding to ea
h predi
ate in the domain after 0, 1, ...,t a
tions have o

urred. These 
onstraints are 
omputedusing a simpli�ed version of the planning graph for thegiven problem [1℄.Stati
 Predi
ates and Stati
 Constraints. Stati

onstraints are invariants involving type-predi
ates, i.e.,stati
 monadi
 predi
ates that o

ur positively in theinitial state { ones una�e
ted by any operator. Stati

onstraints 
onsist of a (possibly empty) set of obje
tsfor ea
h type-predi
ate and a list of supertype, subtype,and in
ompatible relationships between type-predi
ates.Simple Impli
ative Constraints. Simple Impli
a-tive Constraints are 
onstraints of form ((� ) ) �1:::�k); where �,  , and �1; :::; �k are fun
tion-free literals, i.e., negated or unnegated atomi
 formulaswhose arguments are 
onstants or variables. Su
h 
on-straints are to be interpreted as saying \In every state,for all values of the variables, if � then  , provided that�1; ..., and �k". We assume that the variables o

urringin � in
lude all those o

urring in  and in the supple-mentary 
onditions �1; :::; �k . The predi
ate in � is a
uent predi
ate, while  may be 
uent or stati
. How-ever, if � 
ontains variables that do not o

ur in  , then is required to be \upward monotoni
", in the sensethat no instan
es of it 
an be
ome false (: does notunify with e�e
t of any operator; this is 
ertainly trueif  is stati
). Finally, we require �1; :::; �k to be stati
.The following is an example of this type of 
onstraintin the blo
ks world stating that the table 
annot be onany blo
k: 8x; y ON (x; y)) NEQ(x;TABLE ).Single-valuedness Constraints. An sv-
onstraintstates that the value of a 
ertain predi
ate argumentis unique for any given values of the remaining argu-ments. An example of an sv-
onstraint is the followingblo
ks-world 
onstraint stating that any obje
t 
an beON at most one other obje
t:
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8x; y; z:(ON (x; y) ^ON (x; z))) y = z:Impli
ative Constraints + Single-ValuednessConstraints. These invariants are formed by an im-pli
ative 
onstraint and a set of sv-
onstraints that aresimultaneously dis
overed by Dis
oplan. We distin-guish two 
ases whi
h require di�erent veri�
ation 
on-ditions: the 
ase of subsumed variables and the 
ase ofnon-subsumed variables. The blo
ks-world 
onstraint((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE))is an example of a 
ombined impli
ative and sv-
onstraint for the �rst 
ase. In general, the impli
a-tive 
onstraints we are 
onsidering here have as theirante
edent a positive literal that 
ontains at least one\starred" variable not o

urring in the 
onsequent, andzero or more \unstarred" variables o

urring in the 
on-sequent. The stars indi
ate that for all values of theunstarred variables, the ante
edent holds for at mostone tuple of values of the starred variables.In the se
ond 
ase we have impli
ations in whi
h bothante
edent and 
onsequent 
ontain variables not 
on-tained in the other. All su
h variables are \starred",while the shared variables are unstarred. An example isthe following 
onstraint from the Logisti
s domain:((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)).This is an ex
lusive state 
onstraint, i.e., it states thatno obje
t 
an simultaneously be AT something and INsomething (and in addition an obje
t 
an be AT no morethat one thing, and IN no more than one thing).Antisymmetry Constraints. Antisymmetry 
on-straints are parti
ular impli
ative 
onstraints of the form((IMPLIES (P t1 t2) (NOT (P t2 t1))) �1 �2:::�n),where t1 and t2 
an be 
onstants or universally quan-ti�ed variables, and �1; :::; �n are supplementary 
ondi-tions whose variables are a subset of ft1; t2g. An exam-ple of an antisymmetry 
onstraint in the blo
ks world is8x; y: ON (x; y)) :ON (y; x),i.e., if one obje
t is on another, then the se
ond is noton the �rst.OR and XOR Constraints. OR and XOR-
onstraints are state 
onstraints of the form(([X℄OR �  ) �1 �2:::�n),where � and  are positive 
uent literals, su
h thatnon-shared variables are existentially quanti�ed, whileshared variables are universally quanti�ed, and wherethe variables in �1, �2, ..., �n 
an only be variablesshared by � and  . An example of an XOR-
onstraintin the logisti
s domain is((XOR (AT ?X ?Y) (IN ?X ?Z)) (OBJECT ?X)),stating that in any rea
hable state, any obje
t is eitherat some pla
e or in something.Stri
t Single-Valuedness and n-Valuedness Con-straints. This type of invariant is a generalization ofsv-
onstraints. A nv-
onstraint states that a 
ertainpredi
ate 
an be bound to at most n arguments for anygiven values of the remaining arguments. A stri
t nv-
onstraint states that a 
ertain predi
ate is bound toexa
tly n arguments for any given values of the remain-ing arguments. An example of a stri
t nv-
onstraintwith n = 1 in the blo
ks world is the invariant statingthat any blo
k is on exa
tly one thing (either anotherblo
k or the table).Using \Expanded Operators" to Infer FurtherConstraints. Dis
oplan's pa
kage in
ludes routines
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Figure 2: General s
heme of Dis
oplan's input/outputfor expanding an operator with a set of given invariants.The operator expansion 
onsists of enri
hing the opera-tor des
ription with additional pre
onditions and e�e
tsthat are entailed by the given invariants. By using ex-panded operators Dis
oplan may infer new invariants,whi
h 
an be used to expand the operators again. This
an be iterated until no new 
onstraints are inferred.Constraints with Ex
eptions. Some hypothesesare reje
ted by Dis
oplan only be
ause they are notveri�ed against the initial state. For example, 
onsiderthe blo
ks world formalization of Figure 1, where wehave just one operator in whi
h the parameters are nottyped. If we have the simple initial state ((ON A TABLE)(ON C A) (CLEAR C) (ON B TABLE) (CLEAR B)), Dis
oplandis
overs (ON ?X ?*Y), whi
h then be
omes a hypothesiswith a stri
t sv-
onstraint ((ON ?X ?Y!1) in Dis
oplanformat). But (ON ?X ?Y!1) is not 
on�rmed be
ause thetest against the initial state fails. This is be
ause theobje
t TABLE is on nothing in the initial state. In orderto deal with these ex
eptions, we have re
ently weakenedthe test against the initial state, so that a hypothesis 
anbe veri�ed by restri
ting the domain of 
ertain variables.In our example (ON ?X ?Y!1) 
an be satis�ed in the ini-tial state, provided that ?X is not instantiated to TABLE.Hen
e, Dis
oplan weakens the hypothesis by ex
ludingTABLE from the domain of ?X, and derives ((ON ?X ?Y!1)(NOT (MEMBER ?X (TABLE)))).These ex
eptions are 
omputed during the testagainst the initial state by keeping tra
k of uni�ers thatassign anomalous tuples of values to the un
onstrainedvariables, i.e., tuples for whi
h stri
t single-valuednessis violated (e.g., TABLE=?X in the previous example), andweakening the 
onstraint by ex
luding these values fromthe domains of the relevant variables.This analysis of the initial state is also used to deriveadditional supplementary 
onditions res
uing hypothe-ses that were reje
ted be
ause a required simultaneoussv-
onstraint was not satis�ed in the initial state (whileall the other required veri�
ation 
onditions were satis-�ed). For example, if in the logisti
s domain the initialstate of a problem 
ontains the fa
ts (AT ORANGES MIAMI),(AT ORANGES ORLANDO) and (OBJECT ORANGES), then the in-variants((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X))
annot be inferred. However, Dis
oplan infers((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X)(NOT (MEMBER ?X (ORANGES)))).11The 
omplete output for these examples 
an beseen by running Dis
oplan on-line at the web sitehttp://prometeo.ing.unibs.it/dis
oplan.
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Intera
ting with DISCOPLAN on-lineThe general input/output s
heme of Dis
oplan is de-pi
ted in Figure 2. The input domain and problem de-s
riptions 
an be spe
i�ed using the syntax of eitherU
pop or pddl. Sin
e the 
ore fun
tions of Dis
oplanassume U
pop des
riptions, when the input is spe
i�edusing pddl, it is automati
ally translated into a U
popset of operators.The output of Dis
oplan 
an be given as input toeither a planner that 
an exploit this information, orto a domain developer, as an aid to domain spe
i�
a-tion and debugging. The syntax of the output 
an beeither FOL or the 
ompa
t format using impli
it quan-ti�
ation and \starred" variables as in the previous se
-tions. The 
ompa
tness of the starred-variable formatis due to the fa
t that it allows an impli
ative or ex-
lusive 
onstraint to be augmented with simultaneouslydi
overed sv-
onstraints merely by starring some vari-ables, rather than adding expli
it FOL formulas. TheFOL des
ription of the state 
onstraints is obtained bya postpro
essing step translating the 
onstraints 
om-puted in Dis
oplan format into FOL.Dis
oplan on-line is a version of the system that 
anbe remotely run through any web browser. In parti
u-lar, from the \test and demo" page of the web site ofDis
oplan the user 
an run Dis
oplan either on a setof prede�ned domains and problems, or on any otherdomain and problem that is supplied by the user fromher/his lo
al ma
hine (see Figure 3). Before runningthe system, the user 
an set some parameters, su
h asthe style of the output, the maximum number of supple-mentary 
onditions an invariant 
an have, the automati

omputation of the operator parameter domains usingte
hniques des
ribed in [4℄, et
. Finally, the user 
aninspe
t the domain and problem sele
ted.Related Work and Con
lusionsWe have sket
hed how many natural types of state in-variants in planning domains with 
onditional e�e
ts
an be eÆ
iently inferred, and have des
ribed the im-plemention of our te
hniques in the Dis
oplan system.The invariants inferred in
lude predi
ate domain 
on-straints, relations among stati
 type predi
ates, impli
a-tive 
onstraints, stri
t and non-stri
t sv-
onstraints,
ombinations of impli
ative and sv-
onstraints (wherethese 
annot be inferred in isolation), and OR and XOR
onstraints. All invariants are found by algorithms thatare polynomial-time for any �xed bound on the num-ber of literals in an invariant, and the algorithms 
an beiterated to �nd additional invariants after expanding op-erators using previously found invariants. The outputs
an be presented as FOL formulas or in a 
on
ise formatwith impli
it universal quanti�
ation and \starred" vari-ables indi
ating single-valuedness. The automati
allyderived invariants have been shown to radi
ally boostthe performan
e of SAT planners, and are also poten-tially useful for other planning styles, and as a help indomain analysis and debugging.Other approa
hes for the automati
 inferen
e of stateinvariants have been proposed in
luding [10, 9, 3, 13,14, 12℄, but to the best of our knowledge the only otherimplemented system that is available is Fox and Long'sTim. A major di�eren
e between the Dis
oplan andthese approa
hes is that Dis
oplan 
an pro
ess do-mains spe
i�ed using a more expressive planning lan-guage. In parti
ular, Tim does not handle opera-

Figure 3: Test and Demo page of Dis
oplan on-linetors with 
onditional e�e
ts and negated pre
onditions.Moreover, dis
oplan infers some types of 
onstraintsthat are not inferred by Tim, su
h as antisymmetry
onstraints, XOR-
onstraints and some impli
ative 
on-straints involding variable binding 
onstraints or pred-i
ates without parameters.2 On the other hand, someof Tim's \state membership invariants" and \unique-ness invariants" are not inferred by the 
urrently imple-mented version of Dis
oplan.It remains un
lear how important the \omissions" inea
h system, relative to the other, are for planning anddomain analysis purposes. In any 
ase a reasonablestrategy at this time, for builders of planning systemsthat 
an bene�t from state invariants, would be to 
om-bine the invariants found by Tim and Dis
oplan.We have developed some further algorithms for in-ferring invariants, beyond those implemented in Dis-
oplan. The most general of these is an algorithm forinferring n-ary disjun
tions of 
uent literals, togetherwith sv-
onstraints and stati
 supplementary 
onditions,for n not limited to 2 (as at present). This algorithm isa 
andidate for future implementation.Referen
es[1℄ A. Blum and M.L. Furst. Fast planning through planning graph analysis.In Pro
. of IJCAI-95, pp. 1636{1642. 1995.[2℄ M.D. Ernst, T.D. Millstein, and D.S. Weld. Automati
 SAT-
ompilationof planning problems. In Pro
. of IJCAI-97, pp. 1169{1176. 1997.[3℄ M. Fox and D. Long. The automati
 inferen
e of state invariants inTIM. JAIR, 9:367{421, 1998.[4℄ A. Gerevini and L. S
hubert. A

elerating Partial-Order Planners: SomeTe
hniques for E�e
tive Sear
h Control and Pruning. JAIR, 5:95{137,Sept. 1996.[5℄ A. Gerevini and L. S
hubert. Inferring state 
onstraints for domain-independent planning. In Pro
. of AAAI-98, pp. 905{912. 1998.[6℄ A. Gerevini and L. S
hubert. Inferring state 
onstraints in dis
oplan:Some new results. In Pro
. of AAAI-00, pp. 761{767. 2000.[7℄ M. Ghallab, A. Howe, G. Knoblo
k, D. M
Dermott, A. Ram, M. Veloso,D. Weld, and D. Wilkins. PDDL { planning domain de�nition language.Available at http://
s-www.
s.yale.edu/homes/dvm/.[8℄ H.A. Kautz and B. Selman. Pushing the envelope: Planning, proposi-tional logi
, and sto
hasti
 sear
h. In Pro
. of AAAI-96, 1996.[9℄ G. Kelleher. Determining general 
onsequen
es of sets of a
tions. Te
h-ni
al Report TR CMS.14.96, Liverpool Moores University, 1996.[10℄ J. Kelleher and A. Cohn. Automati
ally synthesising domain 
on-straints from operator des
riptions. In Pro
. of ECAI-92, pp. 653{655.1992.[11℄ J.S. Penberthy and D.S. Weld. UCPOP: A sound, 
omplete, partialorder planner for ADL. In Pro
. of KR'92, pp. 103{114. 1992.[12℄ U. S
holz. Extra
ting state 
onstraints from PDDL-like planning do-mains. In Working Notes of the AIPS00 Workshop on Analysing and Ex-ploiting Domain Knowledge for EÆ
ient Planning, pp. 43{48. 2000.[13℄ J. Rintanen. A planning algorithm not based on dire
tional sear
h. InPro
. of KR'98, pp. 617{624. 1998.[14℄ J. Rintanen. An iterative algorithm for synthesizing invariants. InPro
. of AAAI-00, pp. 806{811. 2000.2Examples of these 
onstraints are: ((IMPLIES(ON ?X ?Y) (NEQ ?X ?Y))) in the blo
ks works, and ((IMPLIES(HASBANANAS) (HASKNIFE)) in the Monkey domain.
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