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Abstract. One of the most promising trends in Domain Independent AI
Planning, nowadays, is state-space heuristic planning. The planners of this
category construct general but efficient heuristic functions, which are used as a
guide to traverse the state space either in a forward or a in backward direction.
Although specific problems may favor one or the other direction, there is no
clear evidence why any of them should be generally preferred.

This paper proposes a hybrid search strategy that combines search in both
directions. The search begins from theInitial State in a forward direction and
proceeds with a weighted A* search until no further improving states can be
found. At that point, the algorithm changes direction and starts regressing the
Goalstrying to reach the best state found at the previous step. The direction of
the search may change several times before a solution can be found. Two
domain-independent heuristic functions based on ASP/HSP planners enhanced
with a Goal Ordering technique have been implemented. The whole bi-
directional planning system, named BP, was tested on a variety of problems
adopted from the recent AIPS-00 planning competition with quite promising
results. The paper also discusses the subject of domain analysis for state-space
planning and proposes two methods for the elimination of redundant
information from the problem definition and for the identification of
independent sub-problems.
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1. Introduction
Motivated by the work of Drew McDermott in the mid 90’s on heuristic state-space
planning, a number of researchers turned to this direction. During the last few years a
great amount of work has been done in the area of domain-independent, state-space,
heuristic planning and a significant number of planning systems with remarkable
performance were developed.

Hector Geffner in his recent work on HSP-2 [3] studies the matter of search
direction and the HSP-2 planning system enables the user to decide for the direction
of the search. It is clear from the experimental results that there are specific problems,
which favor one or the other search directions, but in general there is no clear
evidence why any of the two directions should be preferred.

In this paper we propose a hybrid search strategy for domain-independent, state-
space heuristic planning that combines both progression (forward chaining) and
regression (backward chaining). The search begins from theInitial Stateand proceeds
with a weighted A* search until no further improving states can be found from the
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Goals. At that point the algorithm changes direction and regress theGoals trying to
reach the best state found at the previous step. The direction of the search may change
several times before a solution can be found.

Two domain-independent heuristic functions based on ASP/HSP enhanced with a
Goal Ordering technique were implemented and the whole bi-directional planning
system, named BP, was tested on a variety of problems adopted from the recent
AIPS-00 planning competition with quite promising results.

This paper also discusses the subject of automatic domain analysis and the
utilization of the information extracted from it in the planning process. We propose
two methods, based on the planning graphs created by the heuristic functions of BP,
which can identify valuable information about the internal structure of the problems.
The methods are utilized in BP for eliminating redundant information from the
definition of the domain and for dividing the problem in a number of easier sub-
problems that can be tackled in parallel.

The rest of the paper is organized as follows: Section 2 provides a brief review of
the work related to state-space, heuristic planning and other approaches to bi-
directional planning. Section 3 describes the bi-directional search strategy in detail
and deals with certain issues that arise while regressing the goals of a problem.
Section 4 describes the heuristic functions of BP and describes the adoption of a Goal
Ordering technique to heuristic state space planning. Section 5 presents experimental
results that illustrate the efficiency of BP on a variety of problems adopted from the
AIPS-00 planning competition. Section 6 discusses a number of domain analysis
techniques that result from the construction of planning graphs and section 7
concludes the paper and poses future directions.

2. Related Work
One of the most promising trends in domain-independent planning was presented over
the last few years. It is based on a relatively simple idea where a general domain
independent heuristic function is embodied in a heuristic search algorithm such as
Hill Climbing, Best-First Search or A*. A detailed survey of search algorithms can be
found in [9]. Examples of planning systems in this category are UNPOP[13], the
ASP/HSP family [2,3,4], GRT[16], AltAlt[14] and FF[7].

The first planner in this category was UNPOP[13], a regression planner that
constructed at each step a graph, namedgreedy regression-match graph. The graph
was used in the search, for creating the heuristic function and cutting down the
branching factor by pruning certain actions.

The direct descendant of UNPOP was HSP[4], which searches the state space in
the forward direction though and constructs a more sophisticated heuristic function
from a similar graph. HSP was followed by HSP-R[2], a similar planer with two main
differences from HSP. The search is performed in a backwards manner and the
heuristic is created in the opposite direction, which enables HSP-R to create the
planning graph only once. HSP and HSP-R were later embodied in a unifying
planning system called HSP-2[3]. GRT [18] is another extension to HSP that searches
in the forward direction and creates the heuristic backwards once at the beginning.

Nigenda, Nguyen and Kambhampati presented a hybrid planning system, named
AltAlt [14], which was created using programming modules from STAN [10] and
HSP-R. In the first phase, AltAlt uses the module from STAN to create a planning
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graph, from which it extracts a heuristic function that is used to guide the backward
hill-climbing search, which is performed in an HSP-R manner.

One of the latest planners in this category and the most effective according to the
results of the AIPS-00 planning competition1 is Hoffmann’s FF planning system [7].
FF constructs a graph similar to this of GRAPHPLAN from which it extracts a sketch
plan. The sketch plan is then used in a forward enforced hill-climbing search in two
ways. Firstly, the length of the sketch plan is used as an estimate for the distance
between theInitial state and theGoals and secondly a set ofhelpful actions is
extracted which helps in cutting down the branching factor of the search.

Bi-directional search is a well-known search strategy mentioned in almost any
textbook about Artificial Intelligence. However, it has not been broadly adopted as a
search strategy. Especially in planning, there are only a few systems performing a
combined search in both directions. The only bi-directional planners that have been
developed, to the knowledge of the authors, are PRODIGY [19], NOLIMIT[18],
FLECS[20] and RASPUTIN[6]. All of these planners have been developed by
researchers of the Carnegie Mellon University’s PRODIGY project and are based on
the combination of goal-directed backward chaining with simulation of plan
execution [18]. Although these planners perform some kind of search in both
directions, they are actually forward-direction planners, which utilize the backward
search as an action selection mechanism.

3. The Search Strategy of BP
The planners presented in the previous section have shown quite impressive
performance and they have proved to be able to handle a large variety of difficult
problems. However, they usually present variations in their efficiency among
different domains or even between problems of the same domain.There are two main
reasons that justify this behavior:
a) Although the heuristic functions constructed by all the planners are general, they

seem to work better with specific domains.
b) There are domains and problems that clearly favor one of the two search

directions (forward or backward).
The first argument, which is also a conclusion drawn from the experience of the

authors, has been stated by Stone, Veloso and Blythe in [17]. The second argument is
the main conclusion drawn by Bart Massey in an extensive study in the directions of
planning presented in [11]. Bonet and Geffner have pushed the same argument one
step further: “Although we don’t fully understand yet when HSP will run better than
HSP-R, the results suggest nonetheless that in many domains a bi-directional planner
combining HSP-R and HSP could probably do better than each planner separately”
[2]. The answer to the question posed by Bonet and Geffner above has been answered
by Massey in [11], where the planning problems are discriminated into forward and
backward problems, in the sense that strongly directed planners will find the problems
of the opposite direction intractable.

Motivated by the conclusions stated above we developed BP, a heuristic state-
space planner, which combines search in both directions. A part of the plan is

1 A complete review of the participating systems, the domains and the results of the
AIPS-00 competition can be found at the URL: http://www.cs.toronto.edu/aips2000/
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constructed with the progression module (forward chainer) and the rest is constructed
with the regression module (backward chainer). The sub-plan of the regression
module is inversed and merged with that of the progression module in order to
produce the final plan. However the case is not always that simple, because usually
BP interleaves the execution of both modules several times before a solution is found.
Details about the search strategy are presented later in this section but first we
describe the progression and the regression search modules.

3.1 The Progression Module
The progression module employs a best-first search method starting from the initial
state and moving forward trying to reach the goals with two main differences:
a) the size of the planning agenda is limited by an upper limitSOF_AGENDA. This

means that if there are N states (N>SOF_AGENDA) only the SOF_AGENDA
most promising (according toh) states will be stored and the rest will be pruned.
This fact sacrifices completeness but it is necessary, since otherwise a lot of
problems would become intractable.

b) The progression module will stop the search when it is not further possible to
move to a state, the distance of which is not greater than the distance of the
current state plusT. This part of the algorithm is crucial to the unified bi-
directional search strategy, since the value ofT determines how frequently will
the algorithm change the search direction.
The progression module takes five arguments, which are: a) the initial stateI’ of

the sub-problem, b) the goalsG’ of the sub-problem, c) the maximum size
SOF_AGENDAof the planning agenda d) a thresholdT declaring when should the
search stop and e) a heuristic functionh capable of estimating distances between
states. The progression module returns a new stateS, which is the state closer toG’
that the module could find.

3.2 The Regression Module
The algorithm of the regression module is quite similar to the one of the progression
module, since the search strategy is symmetric. The only differences are in the way of
finding the applicable actions and forming the successor states. The regression module
makes extensive use of binary mutual exclusions between facts. Two factsp andq are
mutual exclusive, denoted asmx(p,q), if no valid state contains both of them at the same
time. Mutual exclusions are calculated in a way similar to the one they are calculated in
GRAPHPLAN [1].

An actionA is backward applicable to stateS if S contains at least one add and
no del effects ofA and there are no mutual exclusions between facts ofSand the facts
added byA. StateS’ is produced from the backward application of actionA to stateS
by removing the del effects ofA from Sand adding the add ones.

3.3 Combining the two Search Modules
The underlying framework of the bi-directional search strategy is based on a
relatively simple idea. Usually, single-directional planners reach a point in the search
process where the heuristic function becomes less informative. Two of the main
reasons that justify this behavior are: a) the branching factor of the current sub-
problem is too large for the heuristic to produce accurate estimates b) the sub-problem
is much too complex and the heuristic function becomes obsolete as the search goes
on, especially when it is constructed only once at the beginning.
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In contrast, BP constructs the heuristic function in the backward direction and
starts performing a forward directed search until it reaches a stateSB from where it is
difficult to proceed. Then it reconstructs the heuristic function in the opposite
(forward) direction and starts searching, in the opposite direction (backward), from
the Goals towardsSB. If the backward search is also blocked after some steps in a
stateSB2, BP will restart the planning process replacing theInitial state withSB and
theGoalswith SB2. The value of theThresholdis increased each time a search module
returns without improving its initial state. The bi-directional search strategy of BP is
outlined in Figure 1, whereSt.planrepresents the plan from theInitial state toSt for
the progression module and the plan from theGoalsto St for the regression one.

Search Algorithm of BP
Input I , G, Output Plan
Plan1=Plan2=[], S = I , F = G,Direction=Forward,Threshold=Init_Thr
While F⊄S
Begin

If Direction = Forward
begin

Create backward heuristic function hB

St =Progression_module( S, F, MAX_SOF_AGENDA, Threshold , hB)

If St ≠ S Plan1=Plan1+St.plan, Threshold=Init_Thr, S=St
Else Threshold=Threshold+STEP
Direction = Backward

end
Else
begin

Create forward heuristic function hF

St =Regression_module( S, F, MAX_SOF_AGENDA, Threshold , hF)

If St ≠ F Plan2=Plan2+ St.plan,Threshold=Init_Thr,F=St
Else Threshold=Threshold+STEP
Direction = Forward

End
end
Return Plan1+reversed(Plan2)

Figure 1: The Search algorithm of BP

There are two reasons that enable BP to face the problems stated above: a) the
change in the direction enables BP to update the heuristic function, b) due to the
adaptive way in which BP changes directions, it tends to solve the major part of the
problem in the direction, which best fits it.

4. BP’s Heuristic Functions
In order to test the efficiency of the bi-directional search strategy, we developed two,
relatively simple, domain independent heuristics functions that were embedded in the
BP planning system. The two heuristic functions are quite similar and are based on
exactly the same idea, but the first one is used for the progression module and the
other for the regression one. Note here, that both search modules of BP adopt a
weighted A* search strategy, where the total cost of a stateS is calculated as:
w1*L(S)+w2*h(S). In this formula,L(S) is the number of steps needed to achieve state
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Sstarting from the Initial state (Goals in case of regression),h(S) is the value returned
by the heuristic function andw1 andw2 are user-defined constants.

4.1 The Progression Heuristic Function
The heuristic function used for the progression module is similar to the one of the
GRT planning system. The heuristic function is extracted from a leveled graph,
similar to the one built by GRAPHPLAN. The graph consists of all the subgoals of
the domain (the action levels of the GRAPHPLAN are omitted) that are generated
from the Initial state, tagging them with a number K, identifying the minimum
number of steps needed to generate them starting from the Goals.

The graph construction begins from the Goals of the problem (level 0) and
proceeds backwards adding iteratively a new levelL with all the subgoals that are
generated by actions that are applicable at levelL-1. An actionA is applicable at level
L-1, if at least one add-effect ofA exists inL-1. For each actionA that is applicable at
level L-1, the algorithm computes a valueV as the sum of the tags of all the facts in
add(A). The facts in its precondition list are then added at levelL and tagged withV+1
if they have not already been tagged with a smaller value thanV+1. The expansion of
the graph iterates until the graph reaches levelLMAX, where no more subgoals can be
generated with a cost smaller than the one in its tags.

After the creation of the graph, which is done only once as long as the planner
does not change direction, the tags of the facts are used to produce estimates for the
distance between any stateS in the domain and the goals, just by summing up the tags
of the facts inS.

4.2 The Regression Heuristic Function
As stated earlier in this section, the regression heuristic function is similar to the
progression one and just differs in the direction in which the graph is created. The
graph for the regression is built starting from the facts in the Initial state (level 0) and
proceeds forwards until it reaches a levelLMAX, where no more facts can be added to
the graph with a cost smaller than the one in their tags. Here, an actionA is applicable
at levelL, if all the preconditions ofA exist inL.

4.3 Refining the heuristic functions with Goal Ordering
Goal ordering for planning has been an active research topic over the last years and a
number of techniques have been successfully adopted by state-of-the-art planning
systems. The research so far has been focused on two tasks: a) how to automatically
extract as much information as possible about orderings among the goals of the
problem, with minimum computational cost and b) how to use this information during
planning. McCluskey and Porteous with their work on PRECEDE[12] proposed a
method for identifying goal orderings between pairs of atomic facts, based on direct
domain analysis. The more recent work of Koehler and Hoffman on GAM [8] have
resulted in two techniques for identifying goal orderings, one based on domain
analysis and another utilizing the information gained by the construction of a planning
graph. The simplest and yet quite effective orderings extracted by these techniques
have been described asreasonable ordersand are based on the following idea:

“A pair of goals A and B can be ordered so that B is achieved before A if it isn’t
possible to reach a state in which A and B are both true, from a state in which A is
true, without having to temporarily destroy A.”[15].
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IPP [8] and FF[7] make use of reasonable orderings during planning through the
construction of a goal agenda that divides the goals into an ordered set of sub-goals.
The planners sequentially achieve the first sub-goal in the agenda, which has not yet
been achieved. Experimental results have shown that the use of the goal agenda yields
in significance improvement in terms of both planning time and plan quality.

BP adopts a slightly different method to compute reasonable orderings between
goals, which is based on mutual exclusions between facts of the domain. Since the
planner calculates the set of binary mutual exclusions, in order to use them for the
regression phase, the overhead imposed by the calculation of reasonable orderings is
negligible. FunctionOB (Ordered Before), which is outlined in Figure 2, is iteratively
ran on every pair of goals in order to identify the possible orderings between the goals
of the problem.

Function OB
Input: Goals a and b

Output: True (a should be ordered beforeb) or False
For each action O: a∈add( O)
begin

MutexPre=false
For each fact f : f ∈prec( O)

If mx( b, f )= true MutexPre= true
If MutexPre = false return false

end
Return true

Figure 2: The OB Function

The orderings extracted by OB are used in the planning phase, in order to refine
the results of the heuristic functions and not to divide the goals into sub-sets. More
specifically, after the evaluation of a stateS by one of the two heuristic functions, as
exemplified by sub-sections 4.1 and 4.2, BP searches stateS for possible violations of
the goal orderings. Fact f of a state S is violating the goal ordering if:
f∈Goals and∃ goal g: g� S and OB(g,f)=true

For every ordering violation in state S, the estimated distance between S and the
Goals is increased by a constant number, since at a later point the ordering breaches
will have to destroyed and re-achieved after the correct ordering has been reinstated.

5. Experimental Results
In order to test the efficiency of BP we implemented two additional planners: a) PMP
(Progression Module Planner), a progression planner using the progression module
and heuristic function of BP and b) RMP (Regression Module Planner), a regression
planner using the regression module and heuristic function of BP. The search modules
in PMP and RMP were slightly modified, so as to continue their search until a
solution is found. The three planning systems were tested on a large variety of
problems adopted by the recent AIPS-2000 planning competition.

The codes of the planners were based on the publicly available code of the
second version of GRT and were implemented in C++. All the tests were run on a
SUN ENTERPRISE 3000 parallel computer, with a SPARC-1 processor at 167 MHz
and 256 MB of RAM. The underlying operating system was SUN Solaris 2.6 and the
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programs were compiled by GNU C++ compiler. For the tests we have chosen the
following configuration for the three planners:
MAX_SOF_AGENDA=200,Init_Thr = 2, STEP= 2, w1=0.4 andw2=1.0.

The three planners (PMP, RMP and BP) were tested on all problems of theblocks
world, the logistics, the MIC-10 and thefreecell domains used in the AIPS-00
planning competition. Tables 1, 2, 3 and 4 present the results of the tests. Columns 1,2
and 3 present the number of steps of the plan found by each planner and the time needed
to solve the problem (in brackets). Note that short dashes mean that the problem could
not be solved within the 180 seconds limit in CPU time set on all planners. Plan lengths
written in bold note the minimum plan length found by the three planners. Note that due
to space limitations, tables 1, 2, 3 and 4 present only a part of the tested problems.

5.1 Blocks world
It is clear from table 1 that the specific problems favor regression planners. RMP was
able to solve 47% more problems than PMP producing in all problems shorter plans
in much less time, while BP presented results quite similar to RMP. Specifically, BP
solved 1 problem less than RMP, producing 16% longer plans, spending though 45%
less time on average. BP clearly outrivaled PMP, producing 67% shorter plans and
spending almost 20 times (1930%) less time on average.

5.2 Logistics
In the logisticsproblems the choice of planning direction didn’t seem to play a very
important role. RMP and BP solved more problems than PMP, but produced slightly
worse plans than the latter. Specifically, BP produced 3% longer plans than PMP but
solved 32% more problems in 7% less time on average. RPM solved the same number
of problems with BP and was quite faster (9%) than the latter. However the plans it
produced were 5% longer than those of BP.

Prob PMP RMP BP
4-0 6 (40) 6 (40) 6 (60)
5-0 12 (790) 12 (100) 12 (110)
6-0 42 (14790) 12 (140) 18 (270)
6-2 54 (15820) 24 (640) 22 (260)
7-0 44 (12930) 20 (410) 22 (390)
7-1 70 (13990) 22 (430) 24 (440)
7-2 106 (42890) 20 (530) 22 (410)
8-1 88 (27360) 20 (490) 30 (850)
8-2 18 (250) 16 (410) 16 (390)
9-1 - 30 (5150) 30 (3570)
9-2 - 26 (5130) 28 (1740)
10-1 - 38 (21350) 42 (7490)
10-2 - - 114 (40200)
11-0 62 (5270) 34 (4730) 78 (8490)
11-1 - 30 (2080) -
11-2 - - 220(125030)
12-0 - 34 (5040) 48 (8680)
12-1 - 38 (18380) -
13-1 - - -
14-0 - 38 (8170) -
14-1 - 36 (5910) -
17-0 - - 50 (59280)

Table 1: Plan length and solution time
(in msec) for Blocks world problems

Prob PMP RMP BP
4-0 20 (150) 23 (240) 20 (240)
5-0 27 (220) 32 (350) 27 (350)
6-0 25 (210) 33 (440) 28 (450)
7-1 62 (10730) 51 (1340) 50 (1830)
8-0 31 (640) 41 (1230) 37 (1340)
9-1 32 (590) 34 (1230) 32 (1320)
10-0 74 (29650) 54 (3790) 50 (5010)
12-0 45 (4590) 51 (3820) 45 (4960)
13-1 - 83 (17620) 81 (24160)
14-0 - 78 (15490) 79 (31140)
14-1 76 (5970) 93 (20410) 87 (30120)
15-0 112 (70170) 95 (21480) 106 (38620)
15-1 76 (20240) 85 (20070) 82 (24410)
16-0 - 109(35820) 112 (47130)
16-1 83 (10330) 108 (40890) 85 (16430)
17-0 - 116 (41350) 114(53130)
17-1 - 120(45650) 120(85490)
18-1 104 (90900) 101(46410) 102 (59810)
19-1 - 119 (70160) 113(89260)
20-0 - 127(73580) 138 (116440)
20-1 110(22620) 123 (66510) 112 (33480)

Table 2: Plan length and solution time
(in msec) for Logistics problems
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5.3 MIC-10
MIC-10 is a domain that clearly favored progression planners, as shown by the
experimental results. RMP was unable to solve problems harder than s4-1, while PMP
and BP solved almost every problem of the domain. We tried to increase the size of
the planning agenda for RMP and as a result the planner was able to solve a few more
problems (up to s5-2) but this had a negative impact on planning time. Concerning the
other two planners, BP clearly outperformed PMP by solving 7.5% more problems in
35% less time on average and by producing 10% shorter plans.

5.4 Freecell
Like the logistics domain, freecell does not clearly favor a specific planning

direction. However PMP seemed to perform better than RMP and this is probably due
to the fact that there is too much implied information that is omitted from the goals. In
this domain BP solved 3 problems more than RMP and 2 less than PMP, producing
plans of lower quality (approx. 6% longer plans) than both RMP and PMP. However,
concerning planning time, BP clearly outperformed the other two, needing 35% less
time than PMP and 614% less time than RMP on average.

6. Domain Analysis through Planning Graphs
The relaxed planning graphs built by the heuristic functions of BP, as described in
sections 4.1 and 4.2, can be used as a means for extracting valuable information about
the structure of the domain. This information can then be used in various ways, such
as a) removing redundant information from the definition of the problem and thus
cutting down the branching factor and b) identifying independent sub-goals that can
be solved in parallel.

6.1 Simplifying the Definition of the Problem
The simplification of the problem’s definition concerns facts of theInitial state that
are useless for the planning process. For example, in thelogisticsdomain theInitial
state may contain facts noting the initial location of packages, which do not need to be

Prob PMP RMP BP
S1-0 4 (0) 4 (10) 4 (20)
S3-0 12 (40) 10 (320) 11 (40)
S4-0 16 (100) - 15 (100)
S10-0 40 (1980) - 36 (1390)
S11-0 41 (2400) - 39 (1580)
S12-0 48 (4280) - 41 (2500)
S15-0 60 (8710) - 52 (5130)
S17-0 67 (12840) - 62 (7880)
S17-4 65 (14280) - 57 (8040)
S18-4 70 (16050) - 62 (9140)
S19-0 - - 66 (11520)
S19-2 74 (26090) - 64 (11990)
S19-3 - - 67 (12100)
S19-4 77 (21910) - 66 (11570)
S20-0 - - 70 (16560)
S20-1 84 (28640) - 71 (13450)
S20-2 79 (23800) - 65 (12850)
S20-3 - - 72 (14770)
S20-4 - - 70 (15570)

Table 3: Plan length and solution
time (in msec) for MIC-10 problems

Prob PMP RMP BP
2-1 9 (3920) 9 (37660) 11 (4240)
2-2 8 (3910) 8 (34110) 9 (4150)
2-3 8 (3510) 8 (38860) 9 (3940)
2-4 8 (4110) 8 (32920) 9 (4150)
2-5 9 (3930) 9 (33770) 11 (4390)
3-1 18 (18990) 15 (88360) 18 (43870)
3-2 17 (20190) 19 (100650) 19 (15000)
3-3 16 (30130) 19 (90870) 15 (10580)
3-4 15 (14950) 13 (71910) 13 (9990)
3-5 16 (38760) 16 (83530) 17 (19310)
4-1 27 (106590) - 28 (93750)
4-2 24 (25090) 21 (150020) -
4-3 28 (78620) - 38 (86140)
4-4 26 (67300) 19 (127580) -
4-5 30 (100620) - 24 (27880)
5-1 - - -
5-2 28 (159790) - -
5-3 - - 46 (152930)
5-4 29 (85080) - 39 (153630)

Table 4: Plan length and solution time
(in msec) for Freecell problems
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moved. This information is present in the description of the world, for means of
completeness, but increases the branching factor of the problem with useless actions.

BP employs a simple but efficient method for eliminating useless facts from the
Initial state, which is based on the backward graph built by the progression heuristic
function. After the initial construction of the backward graph, the method eliminates
all the facts of theInitial state that do not appear in the graph. If a factf does not
appear in the backward graph, there is no way to reach a stateS where f∈S, by
regressing theGoals. This means that the facts added by the actions that havef in
their preconditions, are not present in the graph too and thereforef does not contribute
at all in the process of reaching theGoalsof the problem. So it is safe to remove it
from theInitial state without jeopardizing completeness.

There is no actual overhead imposed by the above method, since the backward
graph is built by the progression heuristic function no matter if the method for
eliminating useless facts is applied or not. As far as the efficiency of the method is
concerned, the method is not complete, in the sense that it does not identify all the
forms of information that could be safely removed from the definition of the problem.

6.2 Identifying Independent Sub-Goals
Motivated by the results of the method for eliminating useless facts from theInitial
state, we developed a second method for identifying independent sub-goals that can
be solved in parallel. Given the definition of a problem <I,A,G>, the method
iteratively buildsN (size ofG) backward planning graphs, removing at each time one
of the goals inG. It follows from the method in the previous sub-section that if we
remove goalGk from G, then the facts inI (noted asIk), that do not appear in the
backward graph ofG-{ Gk,} are closely related toGk and they are not needed for the
achievement of the rest of the goals. After the creation of the graphs, the algorithm
comes up with a numberL of sets of the form <Ik,Gk>, which indicate that the setIK of
initial facts is only needed for the achievement of goalGK.

Consider, for example, alogisticsproblem with a city consisting of two locations
(airport andcenter ), two trucks (tr1 andtr2 ) and three packages (P1, P2 and
P3) that have to be moved. The initial state and the goals of the problem are:

I ={at(P 1,center),at(P 2,center),at(P 3,center),at(tr1,center),a
t(tr2,center)}

G={at(P 1,airport),at(P 2,airport),at(P 3,center)}
The independent goals and the sub-sets of G used for the graphs are the following:

G1=at(P 1,airport), G-{G 1}={at(P 2,airport),at(P 3,center)}
G2=at(P 2,airport), G-{G 2}={at(P 1,airport),at(P 3,center)}
G3=at(P 3,center), G-{G 3}={at(P 1,airport),at(P 2,airport)}

The three subsets of theInitial state that are extracted from the backward graphs are
the following:

I 1={at(P 1,center)}
I 2={at(P 2,center)}
I 3={at(P 3,center)}

So the sets extracted by our method are the following:
S1=<{at(P 1,center)}, at(P 1,airport)>
S2=<{at(P 2,center)}, at(P 2,airport)>
S3=<{at(P 3,center)}, at(P 1,center)>

At a first step, these sets can be used for further elimination of redundant facts
from the problem’s definition. If for a given set <Ik,Gk>, the size ofIk is equal to 1 and
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Ik � { Gk}, it is safe to removeGk from G and Ik from I and discard <Ik,Gk>. This is
exactly the case with setS3 of the previous example, where it is obvious that fact
at(P 3,center) could be safely removed fromI andG.

The second use of the sets of the form <Ik,Gk> is for dividing G in sub-goals the
plans of which that can be combined in a parallel plan. The benefits of such a method
are: a) a speedup in the planning process since tackling each sub-problem
independently is usually easier than tackling the whole problem as one and b) a
parallel plan which will probably be executed in less time than any sequential one.

The first argument is also supported by experimental results. We developed a
planner, named BP-SP (Bi-directional Planner for Sub Problems), which uses the
above method for dividing the initial problem into a number of sub-problems and then
uses BP for solving the sub-problems sequentially. Supposing that we have L sets of
the form <Ik,Gk> and I and G are the initial state and the goals respectively, BP-SP
starts with the sub-problem <I’,A ,G’> where:

I’ = I - k

L

k

IU
2=

, G’ = {G1}

If BP manages to solve <I’,A ,G’> it will encounter a stateS’ whereG’ ⊆S’. S’will be
used for the next iteration of BP-SP to form the new sub-problem <I’’ ,A,G’’ > as
follows:
I’’ =S’-{ G1} ∪ I2, G’’ ={ G2}
This process is repeatedL times and the overall plan returned by BP-SP is constructed
by concatenating the plans of the sub-problems.

The two planners (BP and BP-SP) were tested on all 80logisticsproblems of the
AIPS-00 planning competition. BP-SP managed to solve 66 problems, 20 more than
BP, and it was almost 4 times faster on average. The resulted plans were
approximately 30% longer but this could be probably overcome by a planner utilizing
the fact that the sub-plans of BP-SP can be combined in a parallel plan. It lies in our
future plans, to enhance BP with the ability to handle parallel problems.

7. Conclusions and Future Work
It is a generally accepted fact that there are certain domains or certain problems of
domains that can be tackled more efficiently by forward planners and others that can
be tackled more efficiently by backward ones. The matter of direction in planning is
an active field of research and yet no clear answer has been given to the question of
which direction should be generally preferred. This paper proposed BP, a hybrid
planning system that combines search in both directions. BP changes the search
direction in an adaptive way, which enables it to solve the major part of the problems
in the direction that best fits them.

BP has been tested on a variety of problems used in the AIPS-00 competition
and has been compared to two single-direction planners (a forward and a backward)
that utilize the same heuristic function and optimization techniques. Experimental
results have shown that BP has a stable performance on all domains, outperforming,
in general, both of the single-direction planners.

It is in our future plans to develop a more sophisticated heuristic function and
embody it in BP, along with several optimization techniques extracted from automatic
domain analysis. Our experience with BP has shown that a large amount of useful
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information can be extracted from the combination of planning graphs in both
directions and this information can be used to construct efficient optimization
techniques, such as the two methods discussed in section 6.
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