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Abstract Flexible support for crisis management can definitely be improved
by making use of advanced planning capabilities. However, the complexity of
the underlying domain often causes intractable efforts in modeling the domain
as well as a huge search space to be explored by the system. A way to over-
come these problems is to impose a sophisticated structure not only according
to tasks but also according to relationships between and properties of the ob-
jects involved. We outline the prototype of a system that is capable of tackling
planning for complex application domains. It is based on a well-founded combi-
nation of action and state abstractions. The paper presents the basic techniques
and provides a formal semantic foundation of the approach. It introduces the
planning system and illustrate its underlying principles by examples taken from
the crisis management domain used in our ongoing project.

1 Introduction

When trying to exploit planning technology for realistic applications like system sup-
port for crisis management, one of the main problems to be tackled is the complexity
of the underlying domain. Not only does it cause intractable modeling efforts, a huge
search space has to be explored by the system as well. Furthermore, such a system
has to be flexible in the sense that mixed initiative planning has to be supported and
incoming information as well as most recently arising tasks should be considered and
integrated during runtime. In order to meet multiple requirements like in this case,
hybrid planning approaches have to be developed to provide enough flexibility and
lucidity as has repeatedly been argued by other authors as well (cf. [5] and [8]).
We introduce a planning approach for system support in the realistic and complex
application domain of crisis management. It integrates hierarchical action- and state-
based techniques in a consequent way by imposing hierarchical structures on both
operators and states. The hierarchical concept is partly adopted from traditional hier-
archical task network (HTN) planning (cf. [4]). Therefore, basic notions like primitive
and abstract tasks as well as methods for decomposing the latter stepwise into primi-
tive ones are among the core concepts. However, tasks do show pre- and postconditions
–like operators do in classical state-based planning– on every level of abstraction. This
provides the flexibility to make use of state-based planning techniques by introducing
additional tasks when trying to establish missing preconditions, and enables the system
to integrate incoming tasks on any level of abstraction at any time. This is done by
allowing for so-called decomposition axioms, which are defined as part of the domain
model. The planning approach is based on a formal semantics, which relies on previous
work on logic-based planning [20]. Our formalism builds upon the semantics for basic
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STRIPS-like operators and extends the formalism to abstract tasks and decomposition
methods.
A first prototype implements our integrative approach. We use an object-oriented pro-
gramming paradigm, thereby exploiting object-oriented structures and mechanisms to
efficiently deal with the hierarchy of planning objects and their properties. According to
our experience with this first implementation, the system is currently being completed
and extended towards several directions.
The paper is organized as follows. In Section 2 we introduce the formal semantics. The
application domain –a mission of the German Federal Agency for Technical Relief at
a flood– is briefly introduced in Section 3. Section 4 describes our planning method
and illustrates the techniques by means of examples taken from the crisis management
domain of Section 3. In Section 5, we shortly report on the implementation and the
lessons learned from this experiment. Section 6 is devoted to related work and finally
we conclude with some remarks in Section 7.

2 Formal Framework

The Logical Language: The semantics of our planning approach is based on a many-
sorted first-order logic. The logical language L = (Z,Rr,Rf ,C,V ) consists of a finite
set of sort symbols Z, Z∗ indexed families of finite disjoint sets of rigid and flexible
relation symbols (Rr and Rf , resp.), a Z indexed family of disjoint sets of constants,
and a Z indexed family of disjoint sets of variables. Formulae over L are built as usual.
The formal planning language is obtained by extending L by O, T , and E. O and T
are Z∗ indexed families of finite disjoint sets of operator and task symbols, respectively.
For all z̄ ∈ Z∗ the sets Rr,z̄, Rf,z̄, Oz̄, and Tz̄ are supposed to be mutually disjoint.
E denotes a Z∗ indexed family of so-called elementary operation symbols. It provides
for each flexible relation symbol R a so-called add-operation +R as well as a delete-
operation –R.
As for the semantics, we adopt some essential features of the planning formalisms
introduced in [19] and [20], which are based on programming and temporal logics,
respectively.
Following a state-based planning approach, we use operators and tasks to take us from
one state to another. The flexible symbols provided by our planning language are used
to express the changes caused by these state transitions. Consequently, we introduce
states as interpretations of the flexible symbols.

States and State Transitions: For a logical language L = (Z,Rr,Rf ,C,V ) a model
denotes a structure M = (D,S,I), where D is a Z indexed family of carrier sets, S is
a set of states, and I is a (state-independent) interpretation that assigns elements of
the respective carrier sets to constants and a relation of appropriate type to each rigid
symbol. As usual, sort preserving valuations β : Vz → Dz are used for variables. Given
a model M = (D,S,I), an atomic formula R(τ1, ..., τn) is valid in a state s ∈ S under
a valuation β denoted by s |=M,β R(τ1, ..., τn) according to the following definition.

For R ∈ Rr: s |=M,β R(τ1, ..., τn) iff (Iβ(τ1), ..., Iβ(τn)) ∈ I(R)
For R ∈ Rf : s |=M,β R(τ1, ..., τn) iff (Iβ(τ1), ..., Iβ(τn)) ∈ s(R)

Based on these definitions, validity of complex formulae is defined as usual.
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Now we are ready to turn from states to state transitions. To this end, we first assume
that our models are natural ones [19]. This means, the carrier sets are supposed to
be finite and we restrict the set of states to those, which assign finite relations to the
symbols in Rf . Furthermore, for each flexible symbol R ∈ Rf,z̄, z̄ = z1, ..., zn, two
functions d-R : Dz1 × ... × Dzn → S × S and a-R : Dz1 × ... × Dzn → S × S are
defined as follows.

s d-R(d1, ..., dn) s′ iff s′(R) = s(R)− {(d1, ..., dn)} and s′(R’) = s(R’) for R’ 6= R
s a-R(d1, ..., dn) s′ iff s′(R) = s(R) ∪ {(d1, ..., dn)} and s′(R’) = s(R’) for R’ 6= R.

Given a natural model, for any two states s and s′ there exists a finite sequence of a-...
and d-... function operations op1...opn such that s op1 ◦ ... ◦ opn s′, where ◦ denotes
functional composition [19].

Elementary Operations: Based on the definitions of a-... and d-... functions on
states, we can now define the semantics of the elementary operations E of our planning
language as follows. Given a model M = (D,S,I) and a valuation β, a pair of states
(s, s′) satisfies an elementary operation +R(τ1, ..., τn) according to

(s, s′) |=M,β +R(τ1, ..., τn) iff s a-R(Iβ(τ1), ..., Iβ(τn)) s′

(s, s′) |=M,β –R(τ1, ..., τn) iff s d-R(Iβ(τ1), ..., Iβ(τn)) s′

This means, elementary operations represent single state transitions.
We finally adopt from [19] the concept of weakest preconditions (wp) w.r.t. elementary
operations. Let ϕ be a formula which contains only variables that are distinct from
those occurring in τ1,...,τn. The weakest precondition of ϕ w.r.t. +R(τ1, ..., τn) is the
formula resulting from ϕ when replacing all atomic sub-formulae R(σ1,...,σn) by [(τ1 6=
σ1 ∨ ... ∨ τn 6= σn) → R(σ1,...,σn) ]. wp(ϕ, –R(τ1, ..., τn)) results from ϕ by replacing
all atomic sub-formulae R(σ1,...,σn) by [R(σ1,...,σn) ∧ (τ1 6= σ1 ∨ ... ∨ τn 6= σn)].

Operators and Invariants: Given a planning language P = (Z,Rr,Rf ,C,V ,O,T ,E),
an operator (primitive task) is a triple (O(x̄), prec, ē), where O is an operator symbol,
x̄ = x1...xn is a list of variables, prec is a formula over L = (Z,Rr,Rf ,C,V ), and ē =
e1...em is a (finite) sequence of elementary operations from E. For a given model M =
(D,S,I) and a valuation β, this operator transforms a state s into a state s′, denoted
by (s, s′) |=M,β (O(x̄), prec, ē), iff s |=M,β prec (the operator is applicable in s)

and s op1 ◦ ... ◦ opm s′ where opi is the a-... resp. d-... function corresponding to
ei for 1 ≤ i ≤ m. The operator generates a formula post over L if in addition s |=M,β

wp(post,ē). The weakest precondition of a formula ϕ w.r.t a sequence of elementary
operations is generated according to a straightforward extension of the above definition.
Before finally defining tasks and methods, we introduce the notion of invariant in order
to extend the generation of formulae from single operators to operator sequences.
For a given model M = (D,S,I) and a valuation β, a formula ϕ is invariant against an
operator (O(x̄), prec, ē) iff for all states s and s′ with (s, s′) |=M,β (O(x̄), prec, ē) : if
s |=M,β ϕ , then s′ |=M,β ϕ.
A formula post is generated by a sequence O1...On of operators iff it is generated by
some Oi (1 ≤ i ≤ n) and is invariant against each Oj (i < j ≤ n).
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Tasks and Methods: Given a planning language P = (Z,Rr,Rf ,C,V ,O,T ,E), a task
is a triple (T(x̄), prec, post), where T is a task symbol, x̄ = x1...xn is a list of variables,
and prec and post are formulae over L = (Z,Rr,Rf ,C,V ). For a given model M =
(D,S,I) and a valuation β, the task transforms a state s into a state s′, denoted by
(s, s′) |=M,β (T(x̄), prec, post) iff s |=M,β prec and s′ |=M,β post and there exist a finite
sequence s1...sn of states and a finite sequence O1...On−1 of operators, where s = s1,
s′ = sn, (si, si+1) |=M,β Oi for all 1 ≤ i < n, and O1...On−1 generates a formula post′

such that sn |=M,β post′ → post. The task generates a formula post′′ iff in addition
sn |=M,β post → post′′.
The hierarchical structure of planning domains is reflected in two ways. First of all
so-called methods are used to specify how an abstract task can be subdivided into a set
of (primitive) subtasks, like it is usually done in HTN planning. Secondly, a hierarchy
is imposed on the formulae used to express the pre- and postconditions of primitive
and non-primitive tasks. To this end, user-defined decomposition axioms of the form
ϕ ↔ [ψ1 ∨ ... ∨ ψn] specify how an abstract condition ϕ can be refined into a more
concrete one, each ψi being a possibility to do so.
A method {(T(x̄), prec, post), T } is given by a task and a set T of task sequences.
For each such sequence t1...tn the ti may be primitive or non-primitive. A method is
called legal iff each task sequence t1...tn ∈ T is a legal decomposition of the task.
For a given model M = (D,S,I) and a valuation β a task sequence t1...tn is a legal
decomposition of a task (T(x̄), prec, post) iff the task sequence transforms a state s
into s′ such that for the precondition prec′ of task t1 s |=M,β prec′ → prec and the
sequence t1...tn generates a formula post′ such that s′ |=M,β post′ → post.
The above mentioned axioms are thereby used to justify legality of decompositions
when specifying methods. Illegal decompositions can be detected during compilation
of the domain.

3 The Application

Our planning domain is crisis management as being provided by organizations like
THW. The German Technisches Hilfswerk is a governmental disaster relief organization
that provides technical assistance at home as well as humanitarian aid abroad. Their
mission within the flood disaster at the river “Oder” in July 1997 is used in our ongoing
project to build a first realistic domain model for the planner. In the following, examples
from this domain will be used to demonstrate our approach. The tasks of the THW
are rich and widespread, they cover all aspects of crisis management, ranging from first
measures after a hazardous event to long term supplies after clearing some disaster area.
Therefore, Figure 1 only shows a relative small part of the complex task hierarchy, and
most task networks are depicted as single, more “self-explanatory” actions.
The most abstract task is named flood-disaster. It comprises a management and
communication task to determine which areas are endangered to what level. Further-
more, the logistics and supplies have to be installed, e.g. quarters for the relievers to
be set up. The evacuation and the securing of the embankment are the most crucial
sub-tasks in reality, and during all the activities, the relievers have to clear the area
continuously, i.e. to check damaged buildings, to remove perished animals, etc.
In our examples we will focus on the evacuation task, which consists of two sub-tasks:
one informs the population about the relief measures, the second brings people to safe
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...

determine−critical−places
determine−safe−places

install−depot
establish−camp

...

management−and−communications

logistics−and−supplies

...

securing−embankment clearing

evacuating

informing−population

securing−population
...

assist−leaving−population

transport

medical−treatment
build−support−camp...

driving ...
board un−board

ship
...

maintenance

check−weather

get−clearance
fly
...

check−engine

drive−by−truck
drive−by−jeeptechnical−assistance

clearing−roadsbuilding−bridges

flood−disaster

Figure 1. Task hierarchy in the flood disaster scenario, ellipses represent task networks

areas. The methods for latter define two expansions, depending on the initial situation.
The relievers can help the people to leave the endangered area by themselves, or the
circumstances might require the population to be moved by the THW.

4 Combining hierarchical action- and state-based planning

Our planning approach flexibly combines classical HTN and classical state-oriented
POCL planning based on the formal framework introduced in Section 2. The prototype
implements a simple top-level algorithm comparable to [16, p. 374], which is basically
a classical nonlinear planning algorithm with decomposition of abstract tasks as an
additional plan modification step. Although it looks very similar to those used by
existing hybrid planning systems (see section 6), we will use it to outline the underlying
principles in the sub-routines. First we will focus on the closing of open preconditions.
In order to enable the planner to reason about the plans’ causal structures and depen-
dencies at all levels of abstraction, complex tasks do carry preconditions and effects like
the operators do. For the time being they are assumed to be conjunctions of positive
and negative literals.
While the relation between abstract and primitive tasks is given by a number of meth-
ods as in classical HTN planning, in our approach relations between the respective
preconditions and effects are specified by the decomposition axioms. The example in
Figure 2 shows two methods for the expansion of the abstract transport task in the
evacuation context. The ordering constraints represent all possible sequences of sub-
tasks, sort information for the variables is given in the task definitions.
One of the decomposition axioms that will be applied in the respective expansion steps,
will e.g. look like this (assuming the intuitive subsort relationships):

At(Unit u,Location l)↔ [ Standing-at(Vehicle u,Location l,Road r) ∨
Aircraft-at(Aircraft u,Location l,Height h) ∨
(At(Container c,Location l) ∧ In(Container c,Unit u)) ∨ . . . ]

The specified decomposition axioms together with the sort and subsort definitions,
represent a hierarchy on the relations and objects in the domain. We can make use
of this knowledge when closing open preconditions with tasks on different levels of
abstraction. When some (possibly abstract) effect of a task is needed to establish the
precondition of another, the planner can provide this by choosing some –according to
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method m_1 method m_2
expands transport (?passengers,?from,?to,?by ) expands transport (?passengers,?from,?to,?by )
vars ?road Road vars ?tower Tower
nodes (1:board (?passengers,?from,?by )) nodes (1:get-clearance (?from,?tower,?by ))

(2:driving (?by,?from,?to,?road )) (2:check (?by ))
(3:un-board (?passengers,?from,?by )) (3:board (?passengers,?by ))
... (4:fly (?by,?from,?to,?tower ))

...
order 1<2, 2<3 order 1<4, 2<4, 3<4
causal 1--in(?passengers,?by )--2 causal 1--cleared(?by )--4,

2--checked(?by )--4,
1--in(?passengers,?by )--4

binding - binding -

Figure 2. Example for a method definition

the decomposition axioms– suitable tasks in the partial plan to close the open condition.
We then add causal links like in classical non-hierarchical POCL planning to represent
causality. But no establisher may be identified, even in the initial state. In this case the
planner can introduce a suitable establisher for the open condition from the domain
description. Figure 3 shows the planning process in such a situation.

(Vehicle ?u, Location ?from,
Location area4, Road ?r)

Pre:

Effect:

driving

Standing−at(?u,?from,?r),

+Standing−at(?u,area4,?r),

Reachable−by−land(?from,area4,?r),

−Standing−at(?u,?from,?r)

status(?r,ok)

transport

(Passengers group1, Location area4,

Pre:

Effect:

Location camp2, Unit ?u)

At(?u,area4),At(group1,area4)

+At(?u,camp2),+At(group1,camp2),
−At(?u,area4),−At(group1,area4)

medical−treatment
build−support−camp...

informing−population

securing−population
...

evacuating

...

logistics−and−supplies

Pre:

fly

(Aircraft ?u, Location ?from,
Location area4,Tower ?t)

Effect:

At(?u,?from),
Handled−by(?u,?t),

+At(?u,area4),
−At(?u,?from),

clearence(?t,ok),
maintenance−status(?u,ok)

+maintenance−status(?u,ko)
−maintenance−status(?u,ok)

(Location area4, Group thw26,

Pre:

Effect:

establish−camp

Jeep jeep18,Truck truck9 ...)

+At(jeep18,area4),

status(area4,cleared) ...

+At(truck9,area4),

+status(area4,occup),
−status(area4,cleared) ...

Pre:

Effect:

move

(Unit ?u, Location ?from,
Location area4)

At(?u,?from)

+At(?u,area4),
−At(?u,?from)

Figure 3. Closing an open precondition along the condition hierarchy.

The abstract need for an arbitrary THW unit to be present in the evacuation area can
be fulfilled by any of the tasks shown. The first task move is a “classical” candidate. Its
sub-task fly and the establish-camp action qualify in our system, because of aircraft
and jeeps being sub-sorts of the abstract sort unit. The driving task establishes a
more specialized effect than the precondition needs in two ways. Not only vehicles are
more special objects, but also the relation Standing-at is more concrete than At (see
decomposition axiom above).
At this point, search control has more choices to investigate, some of which might spe-
cialize the involved objects too early, an effect sometimes called hierarchical promiscu-
ity. But on the other hand, the commitment to a less abstract establisher can rule out
inconsistent solutions at an early stage. We may use the driving task for closing the
condition at this point and add a variable assignment for the “downcast” of the unit
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in the transportation task. Later in plan generation we might find out, that there is no
road to the evacuation area anymore, and the planner has to backtrack and focus on
solutions with aircraft.
We note, that especially at this point the search strategy plays a crucial role, i.e.
when to insert new tasks. Currently, we work on an extension to the algorithm, that
is looking for invariants in expansions. If an open precondition is invariant against all
tasks expanded so far, it is obvious, that the planner has to insert a new task. But if
ther are tasks in the current plan, against which the condition is not invariant, it is a
promising strategy to enforce their expansion. The rationale behind this strategy is to
check, whether the expansions in which the desired effect might manififests eventually
result in consistent solutions.
Now assume, the abstract movement is chosen for establishing the condition, and a
causal link with the label At(?u,area4) is inserted. Furthermore, let the planner decide
to expand the transport task according to the above definition in method m 1 into the
task network describing a transport by land vehicles. As in classical HTN planning,
the specified network substitutes the expanded task in the net, respecting existing
orderings and variable bindings, but we cannot update the causal links, because the less
abstract tasks show more concrete, and hence syntactically not equivalent, conditions.
Our solution lies in the decomposition axioms, according to which we distribute the
abstract effects and conditions under the tasks of the expanded network. This means,
the decomposition axioms are used to inherit causal links from an abstract level to
a more concrete one. Figure 4 shows the result: the passengers are boarded on some
vehicle, driven to the camp and then un-boarded again. The more abstract link carried

Pre:

Effect:

move

Location depot)
(Unit Jeep1, Location ?l,

At(Jeep1,?l)

−At(Jeep1,?l),
+At(Jeep1,depot)

driving

Pre:

Effect:

(Vehicle ?u, Location area4,
Location camp2, Road ?r)

Standing−at(?u,area4,?r),
Reachable−by−land(area4,camp2,?r),

+Standing−at(?u,camp2,?r),
−Standing−at(?u,area4,?r)

status(?r,ok)

board(group1,area4,?u)
un−board(group1,area4,?u)

medical−treatment
build−support−camp...

transport

logistics−and−supplies
evacuating

...

Standing−at(?u,area4,?r)

At(?
u,

ar
ea

4)

...

Pre:

Effect:

move

(Unit ?u, Location ?from,
Location area4)

At(?u,?from)

+At(?u,area4),
−At(?u,?from)

Figure 4. Handling task interactions on different abstraction levels

the At relation between a vehicle ?u and the location area4. The decomopsition axioms
justify a specialization of this link into Standing-At for vehicles. Please note, that
the vehicle boarding task may carry the same precondition, which leads to a second
inherited causal link derived from the abstract causal relation. Furthermore, when the
abstract move task is specialized, it has to be checked against the decomposition axioms,
whether the newly introduced causal links are inheritable or not. If not, the plan has
to be considered inconsistent.
Now we come to threat handling, where the system can make use of the decomposition
axioms like it did for condition establishment. Conflicts can be detected and resolved
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between arbitrary expansion levels, as the negation of an abstract condition implies the
negation of every concrete one specified in the decomposition axioms, and a negation of
one of the concrete conditions threatens the abstract one. This mechanism guarantees
correct solutions when using the standard POCL conflict resolution strategies at any
time the algorithm chooses to check for threats. In addition, besides orderings and non-
codesignation, expansion becomes a reasonable threat resolution mechanism. Due to a
finer granularity, the conflicting effect might turn out to be harmless at the primitive
operator level where the conflicting tasks may overlap.
The example in Figure 4 shows the expansion of a support procedure with a second
movement task, and how it interferes with an established condition. The light line
indicates the conflict at an abstract level, the dark one does so for the more concrete
link. The negated effect can be specialized in a way that makes the plan inconsistent.
A simple non-codesignation or some ordering constraint can solve this situation, for a
conflict involving several layers of abstraction.

5 Implementation

We implemented a first prototype of the planning system in Java. It integrates task
decomposition with state-based planning techniques for conflict handling and closing
of preconditions. The main algorithm, which is briefly described in Section 4, performs
non-deterministic steps according to a very simple strategy that first tries to close
open preconditions, then resolves threats and binds variables, and with least priority
expands complex tasks. This rather simple procedure is able to perform a systematic
planning strategy like it can be found in classical nonlinear planners: As a last choice
in closing preconditions, binding variables, and resolving threats, it tries to expand the
respective task. In a least commitment fashion it tries to develop the plan at the most
abstract level. The upcoming next version of the system will use a more flexible top
level routine which determines the appropriate sequence of plan manipulating steps by
analyzing the visited and expected plan space, thereby projecting causal interactions.
As already suggested above, we found it e.g. very useful to concentrate expansion within
the conflicting tasks to rule out inconsistent solutions at an level as early as possible.
However, we note that in the first experiments the proposed modeling approach seems
to lead to more “benign” domain models in terms of efficient task hierarchies, that
prune large parts of the non-useful search space quite efficient.
To increase the system’s performance, we use a conservative algorithm for manipulating
a global plan structure representing the expanded networks. By doing so, we have the
additional advantage to automatically bookkeep the performed expansion steps as well
as all other choices made by the algorithm (cf. decomposition links in [24]). When
looking for an appropriate effect to close an abstract precondition, the system can
easily inspect already expanded abstract tasks and follow their decomposition to less
abstract levels.
The algorithm allows recursive task expansion schemata to model loops. If for every
recursive task a terminating method is provided and if an appropriate search algorithm
is used (here: iterated deepening) then the recursion is harmless with respect to program
termination and “increasing the incompleteness” of the planning process. These loops
are very useful in the presented examples, e.g. evacuation has to be performed until all
persons safe, although recursion handling still requires improvement (cf. future work
in section 7).
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6 Discussion and Related Work

Hierarchical task network (HTN) planning as described and analyzed in [3] is the basis
for systems like O-Plan, UMCP and Shop.
In contrast to our approach, which makes use of state abstractions in condition achieve-
ment, abstract tasks in O-Plan [2] do not carry preconditions and effects. Instead, the
system relates conditions of primitive operators over different levels in the plan gen-
eration process by introducing condition types in the abstract expansion schemes [21].
These types specify how conditions of the tasks in the expansion can be achieved: by
the effect of a task that is (a) inside or outside the current expansion and (b) in-
troduced at the current plan generation level, above, or below. Please note, that this
technique requires the domain encoder to structure the task hierarchy very carefully
as methodologically it’s pruning works rather on the system’s search space structure
than on that of plan space. Compared to O-Plan, UMCP [4] is a much more puristic
implementation. The search space is constraint pruned, down to the most concrete
operator level, where the typical conditions are introduced. Both systems merely rely
on action abstraction.
A new direction in the HTN paradigm is given by the Shop system [14], that proposes
ordered task decomposition, using if-then-else cascades in method selection. The main
idea is to plan all tasks in the order they are later executed. This enables the system
to deduce complete state descriptions, beginning with the initial state. The developers
met the criticism on their linearity assumption with a modified system, called M-
Shop [15] which can handle planning problems with parallel goals in the initial task.
Many realistic domains may meet this partial linearity property, the crisis management
domain in our work, however, does not as task execution itself is higly distributed and
the execution order for most tasks is not known in advance.
Planning using state abstraction was the earliest form of hierarchical planning in linear
planning systems. Nonetheless, the Abstrips system [17] is still discussed [7], and has
influenced many modern planners. Classical state abstraction works by deleting certain
sets of preconditions, thereby defining ”criticality levels” for each of which the system
plans in a classical manner. Alpine in [9] automatically generates these levels, building
abstraction hierarchies with “ordered monotonicity”, i.e. detailed action levels do not
interfere with more abstract established conditions. Similar work in the context of
nonlinear planning has been done by Yang in the Abtweak planner [23].
Exploiting object-oriented formalisms or state abstraction is a comparatively new tech-
nique in planning. Semantic foundations for “real” object oriented approaches can be
found in the literature, ranging form reasoning about object database models in the
style of terminological logics [1] to specification oriented work [18]. [6] uses plans as
object methods for an hybrid reactive robot controller, mapping incoming percepts
on partially specified object templates as plan selection criteria. More related to our
view is that of object centered planning [13], where objects are organized in static and
dynamic sorts. Each instance of a dynamic sort has its own local state which is defined
by a set of predicates. Consequently, predicates are owned by exactly one sort, the
key attribute of the predicate, and thereby becoming static or dynamic themselves.
For all sorts legal local states are specified, and over their transitions again operators.
OCLh [12] extends this formalism to action abstraction by introducing a sort hierarchy,
in which dynamic predicates are inherited from super-sorts. So-called guards play the
role of pre and postconditions of objects transition sequences that build the semantics
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for abstract tasks. The planning algorithm in this framework repeats an expand then
make-sound cycle: after expanding one level of task networks, the system is checking
for inconsistencies and repairing them. Although our state abstraction is similar (and
so far yet simple, compared to “full” object oriented systems), we can handle the re-
finement of objects and predicates, likewise, and are not restricted to a fixed planning
strategy.
Integrating state-based nonlinear planning capabilities, i.e. reasoning about operator
interactions and inserting new plan steps/tasks in the fashion of e.g. UCPop [11], into
an action abstracting system promises many advantages. As Estlin, Chien and Wang
point out in [5] it adds the strengths of both, at the same time softening their weak
points. This is reflected in the modeling process: task networks more naturally represent
hierarchy and modularity and enable the user to represent domains in an object oriented
form which easier to write and reason about. Decomposition rules can refer to either
low- or high-level forms of a particular object or goal, as the information pertaining
to specific entities is contained in smaller, more specialized rules. The drawback of
this technique is that “inter-modular constraints” [5], i.e. exceptions or special cases
in action execution, cannot be represented adequately, which often leads to overly-
specified reduction rules. This can be seen in the example in figure 3, where classical
hierarchical planners would introduce expansion schemes for every kind of support
task to be ordered before the evacuation. Operator based techniques on the other hand
help encoding implicit constraints, as their kind of plan refinement is more general and
provides more compact representations. In addition, it brings with it an early detection
of inconsistencies at an abstract level, together with means of resolving the conflicts.
But using solely operators, certain aspects are difficult to represent (for a discussion
about the expressive power of HTN planning, see [3]). The advantages of a natural
mixed domain knowledge representation are obvious, although difficult to evaluate
quantitatively: “[it is] easier to encode the initial knowledge base, fewer encoding errors
occur [...], and maintenance of the knowledge base is considerably easier.”[5]
Such hybrid systems had been watched suspiciously a long time, because the planning
paradigms were considered to be conflictive. New AI textbooks present this approach in
the style of state abstraction planning in [23], i.e. the abstract tasks carry preconditions
and effects from a subset of the less abstract tasks. Yang suggests in [22] to keep
hierarchical models restricted in such a way, that in every reduction schema there is one
task carrying the main effects of the network and hence those of the associated abstract
task. In such domains the downward solution property holds as a basis for effective
search space reduction. A similar approach is presented by Russell and Norvig [16], who
allow distribution of conjuncts of conditions among the sub-tasks of the network. One of
the very few existing systems is DPOCL [24], mentioned before with its introduction of
decomposition links to record decisions during planning. DPOCL decomposes abstract
tasks into networks with additional initial and final steps which carry the conditions
of the abstract tasks. Some of the techniques used there raise the crucial question
of user intent. The system prunes unused steps and takes condition establishers from
every level of abstraction, even from sub-tasks of potential establishers. The problem
of when to insert new tasks, and where to use decomposition rules only, is very hard
to solve, as it depends in part on the modeller’s intention. So far, we have provided
the system a switch for explicitly not inserting new tasks in precondition achievement,
as well as an output, indicating the inserted tasks Moreover, premature insertion of
new tasks may lead to non-optimal short plans, but we postpone this problem for this

166



From Abstract Crisis to Concrete Relief 11

time as a matter of “good” search strategies, like it is solved for classical state-based
nonlinear planners –but of course it will be tackled in the future.
Closely related to our approach is the work of Kambhampati [8]. He integrates HTN
planning in a general framework for refinement planning, thereby making use of op-
erator based techniques. This unified view should help making use of recent progress
in planning algorithms, e.g. by giving propositional encodings for SAT based planners
[10]. In his view, the algorithm uses reduction schemes where available, and primitive
actions otherwise. Causal interaction is analyzed also at the abstract level, and refined
by a mapping of conditions and effects of abstract tasks on conditions and effects in its
sub-tasks. Abstract conditions are closed by phantom establishers that are identified
at a later stage, while our algorithm just “waits” if no suitable task is less abstract
enough. Conflict detection and resolution can only be done at the primitive level, as
in contrast to our methodology, there is no “vertical” link between causalities in the
different levels of abstraction. Kambhampati addresses user intent by defining a subset
of abstract effects explicitly for condition establishment, and by explicit representing
the incompleteness of scheme definitions. For the latter, a specific predicate prevents
insertion of new steps.
Another aspect of hybrid planning to mention is its relevance to the relative new area of
mixed initiaive planning. Only small modifications to hybrid planning algorithms allow
the user to propagate decisions as commitments to the planner, including insertion of
new tasks (many technical problems concerning systematicity of the system, etc. are
of course beyond the scope of this paper). The resulting system benefits from our state
abstraction technique, because the intermediate results, which are the basis for user
interaction, become more usable in two ways: (a) The explicit representation of causal
interactions is intuitive, even for abstract tasks, and (b) all modifications can be done at
an arbitrary level of abstraction. An example might be an abstract plan with transport
tasks, for some of which a human user can decide – on the basis of the plan developped
so far – not to be performed by aircraft. He can introduce at this level constraints to
choose land vehicles.

7 Conclusions and Future Work

We have introduced a planning approach that integrates hierarchical task networks
and state-based POCL planning techniques by imposing hierarchical structures on
both tasks and state descriptions. Tasks on all abstraction levels are extended by pre-
and postconditions, which enable the flexible integration of hierarchical decomposition
and nonlinear planning. A formal semantics of the approach provides the notion of
legal decomposition, among others. It is an essential means to ensure that during
domain modelling tasks and state abstractions are defined in a mutually consistent
way. A planning system has been presented, which implements this integrative planning
approach. It will be used to flexibly generate mission plans for environmental disasters.
Future work will, among others, be devoted to even further exploit the object-oriented
implementation paradigm and to the implementation of a more flexible search strat-
egy. Furthermore, the example domain strongly demands resource reasoning, especially
time, and a specialized loop mechanism.
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