OBDD-Based Optimistic and Strong Cyclic
Adversarial Planning

Rune M. Jensen, Manuela M. Veloso and Michael H. Bowling
Computer Science Department,
Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh,
PA 15213-3891, USA
Email: {runej,mmv,mhb@cs.cmu.edu
Tel.: +1 (412) 268%3053 1474,306p
Fax: +1 (412) 268-4801

Abstract

Recently, universal planning has become feasible throbghuse of efficient
symbolic methods for plan generation and representatisedan reduced ordered
binary decision diagram®@DDs). In this paper, we address adversarial universal
planning for multi-agent domains in which a set of uncoéfadle agents may be
adversarial to us (as in e.g. robotics soccer). We presentéwoBDD-based uni-
versal planning algorithms for such adversarial non-deitgstic finite domains,
namely optimistic adversarial planningind strong cyclic adversarial planning
We prove and show empirically that these algorithms exteackisting family of
0BDD-based universal planning algorithms to the challengingalos with adver-
sarial environments. We further relate adverserial plago positive stochastic
games by analyzing the properties of adversarial plans witese are considered
policies for positive stochastic games. Our algorithmsehlagen implemented
within the Multi-agentoBDD-based Planneymop, using the Non-deterministic
Agent Domain Languag&ADL

Keywords: adversarial universal planning, multi-agent planning;deierministic do-
mains, stochastic games.

1 Introduction

Universal planning, as originally developed by Schoppers (1987), &paroach for
handling environments with contingencies. Universal planning isqaatily appeal-

ing for active environments causing actions to be non-deterministimiversal plan
associates each possible world state with actions relevant in that statéfeving the
goal. Due to the non-deterministic outcome of actions, a univeraaliplexecuted by
iteratively observing the current state and executing an action in the paciated
with that state.

In the general case the non-determinism forces a universal plan to covee all th

domain states. Since planning domains traditionally have large glates, this con-
straint makes the representation and generation of universal plans imnR¢ly,

265

266

reduced ordered binary decision diagramsgDs,[1]) have been shown to be efficient
for synthesizing and representing universal plans [2, 3, @D are compact repre-
sentations of Boolean functions that have been successfully appkgdhinolic model
checking[7] to implicitly represent and traverse very large state spaces. Usimg si
lar techniques, a universal plan represented asewD can be efficiently synthesized
by a backward breadth-first search from the goal to the initial states iplamaing
domain?

There are thre@BDD-based planning algorithmstrong strong cyclicand opti-
mistic planning Strong and strong cyclic planning were contributed within nee
planner[2, 3]. MBP specifies a planning domain in the action description langutige
[4]. The strong planning algorithm tries to generate a strong plana plan where all
possible outcomes of the actions in the plan change the state to aatevelsiser to
the goal. The strong cyclic planning algorithm returns a stroag,af one exists, or
otherwise tries to generate a plan that may contain loops but Is guaranteciidge
the goal, given that all cyclic executions eventually terminate.

Optimistic planning was contributed within thewopr planner [6]. WMoP spec-
ifies a planning domain in the non-deterministic agent domain langunNiget, , that
explicitly defines a controllable system and an uncontrollable envieonas two sets
of synchronous agents. Optimistic planning tries to generate a reléedvpere the
only requirement is that there exists an outcome of each action that leaddaie a s
nearer the goal.

None of the previous algorithms are generally better than the othleesr. Sirengths
and limitations depend on the structure of the domain [6]. Howeuenitation of the
previous algorithms is that they can not reason explicitly about enmient actions,
due to their usage of amplicit representation of the effect of these actiohJhis is
an important restriction for adversarial domains, as for the strongcayetl optimistic
algorithms, an adversarial environment may be able to prevent goal achigvemen

In this paper we contribute two new planning algorithms robusathersarial en-
vironments: optimistic adversarial planningnd strong cyclic adversarial planning
These algorithms explicitly represent environment actions. The plaamethen rea-
son about these actions and take adversarial behavior into account. Wehagve
contrast to strong cyclic plans, strong cy@didversarialplans guarantee goal achieve-
ment independently of the environment behavior. Similarly, we ptbaeoptimistic
adversarial plans improve the quality of optimistic plans by guaramgethiat a goal
state can be reached from any state covered by the optimistic adversarialgdan in
pendently of the behavior of the environment. The results are verifigurieaily in
a scalable example domain using an implementation of our algorithnieiomopr
planning framework.

Adversarial planning is related to game theory. The main difference isthatal
is represented In terms of a set of states instead of a utility functiotikeJstrong
cyclic adversarial planning, game tree algorithms, such as alpha-betam@in|5],
can only guarantee goal achievement if the search is complete and the opp@semt us
strict mini-max strategy. In practice, though, the explicit-stateckehas to be depth-
bounded which reduces the approach to heuristic action selection. Matrix gaenes
stateless and therefore strictly less expressive. The game-theoretieviydatbat is
closest in relation to adversarial planning is stochastic games (SGshaSt@ games
extend Markov decision processes (MDPs) to multiple agents. An MDR drasition
probabilities and is thus more expressive than the non-deterioitvahsition model
of adversarial planning. However, by translating an adversarial plannaidem into
an SG problem by adding non-zero transition probabilities, we preaitsin optimistic
adversarial plan exists if and only if the solution to the correspandositive stochas-
tic game has a positive expected reward. Moreover, if a strong cyclersafal plan

1This work assumes that the non-deterministic domain digfinis known and the focus is on the devel-
opment of effective universal planning algorithms undés #ssumption.

2Figure 1(b) illustrates this restricted representatiarafoexample domain introduced in next section.

existsathen the solution to the corresponding stochastic gamenhasiamum expected
reward.

The restricted domain model of adversarial planning is suitable folgmdwhere
transition probabilities are irrelevant (e.g. worst case analysisd.aflvantage of this
domain model compared to the MDP model of SGs is that it allows the apphoait
efficient OBDD-based symbolic solution methods that potentially scateuch larger
domains than can be handled by the explicit-state value iteration metbads[9])
used for solving stochastic games.

The remainder of the paper is organized as follows. Section 2 defines our repre-
sentation of adversarial domains and introduces an example domain usaghitud
the paper. Section 3 defines the optimistic and strong cyclic adverskelipg al-
gorithms and proves their key properties. In Section 4 we define ané properties
of the stochastic game representation of the adversarial planning poblenmally,
Section 5 draws conclusions and discusses directions for future work.

2 Adversarial Plan Domain Representation

An NADL domair? description consists of: a definition sfate variablesa description

of systemandenvironment agentaind a specification dhitial andgoal conditions

The set of state variable assignments defines the state space of the domagrent’'s
description is a set olctions An action has a precondition and an effect defining

in which states the action is applicable and what states the action can lead to. At
each step, all of the agents perform exactly one action, and the resulting augile

is ajoint action* The system agents model the behavior of the agents controllable
by the planner, while the environment agents model the uncontrolivieonment.
There are two causes of non-determinisidADL domains: (1) actions having multiple
possible outcomes, and (2) uncontrollable concurrent environmemacggystem and
environment actions are assumed to be independent, such that an action chibsen by
system in some state can not influence the set of actions that can be chosen by th
environment in that state and vice versa. No assumptions are made abbehéwvéor

of environment agents. They might bdversaria) trying to prevent goal achievement

of the system agents.

We represent the transition relation of BADL domain with a Boolean function,
T(S,as,a.,S"). Sis the current state;, anda. are system and environment actions
andS’ is a next stateT'(S, as, a., S’) is true if and only ifS’ is apossiblenext state
when executindas, a.) in S.

A planning problenis a tuple(7, I, G), whereT is a transition relation, anfand
G are Boolean functions representing the initial and goal states, respec#velyi-
versal plan U, is a partial mapping from the domain states to the power set of system
actions. A universal plan would xecutedby the system agents by iteratively observ-
iﬂg the current state and executing one of the actions in the univeasehptociated to
that state.

As an example, consider the domain shown in Figure 1. This domain hiagla s
system agent that can execute the actiprand—s, and a single environment agent
that can execute the actionrs and—e. Edges in the figure are labeled with the cor-
responding joint action. There are 5 states, naniely, D, U andG. I andG are the
only initial and goal states, respectively.is a dead end state, as the goal is unreach-
able fromD. This introduces an important difference betwdéandU, that captures
a main aspect of the adversarial planning problem. We can view the two gtated
U as states in which the system and the environment have different opijpiesuOb-
serve that the system “wins”, i.e., reaches the goal, only if the sigredfito actions

3The reader is referred to [6] for a formal definitionN¥#DL
4In the remainder of the paper we will often refer to jointi@es as simply actions.

267

268

in the joint action are different. Otherwise it “loses”, as there is nositemm to the
goal with a joint action with actions with the same sign. The goal is raslehfrom
both stated” andU . However the result of a “losing” joint action is different férand

U. In F, the system agent remainskh Thus, the goal is still reachable for a possible
future action. InU/, however, the agent may transition to the dead end flatghich
makes it impossible to reach the goal in subsequent steps.

(+s,%€) (-s,—e) +S —-S

°M

Figure 1: An adversarial planning domain example with initial sfeded goal staté;.
There is a single system and environment agent with acfiens—s} and{+e, —e},
respectively. (a) shows the explicit representation of environment aatieed by our
adversarial planning algorithms, while (b) shows the implicit repméstion used by
previous algorithms, where the effect of environment actions is modwsi¢de non-
determinism of system actions.

Now consider how an adversarial environment can take advantage of the fggssibi
of the system reaching a dead end frém Since the system may end i, when
executing—s in U, it is reasonable for the environment to assume that the system will
always execute-s in U. But now the environment can prevent the system from ever
reaching the goal by always choosing actieny so the system should completely avoid
the path through.

This example domain is important as it illustrates how an adversariaiczmaent
can act purposely to obstruct the goal achievement of the system. We avitlinghe
following sections to explain our algorithms. A universal plan, gunéeeing thats is
eventually reached, i§(I, {+s}), (F, {+s,—s})}. In contrast to any previous univer-
sal planning algorithm, the strong cyclic adversarial planning algorican generate
this plan as shown in Section 3.3.

3 Adversarial Planning

We introduce a generic functid®lan(T', I, G) for representingpsDD-based universal
planning algorithms. The algorithms, including ours, onlyelifby definition of the
function computing the precomponeRréComgT’, V)).

The generic function performs a backward breadth-first search from thetgted
to the initial states. In each step the precompongpt,of the visited statesl’, is

computed. The precomponent is a partial mapping from states to the petvef s
system actions. Each state in the precomponent is mapped to a set of rejstamt s
actions for reachingy’.

function Plan(T, I, G)

U:=0V:=G
whileI ¢ V

Up := PreComp(T,V)

if U, = 0 then return failure

elseU :=UUU,

V :=V U states(Up)

return U

If the precomponent is empty a fixpoint bf has been reached that does not cover the
initial states. Since this means that no universal plan can be generated thattbever
initial states, the algorithm returrigilure. Otherwise, the precomponent is added to
the universal plan and the states in the precomponent are added to the wsitedf v
states. All sets and mappings in the algorithm are representedbys. In particular,
the universal plan and the precomponent are represented by the characterettanf

of the set of state-actions pairs in the mapping.

3.1 The Optimistic Adversarial Precomponent

The core idea in adversarial planning is to be able to generate a plan feydtesn
agents that ensures that the environment agents, even with complete kyewielde
domain and the plan, are unable to prevent reaching the goals. We forthadimea

in the definition of &air state A states is fair with respect to a set of statds, and

a universal planlJ, if, for each applicable environment action, there exists a system
action inU such that the joint action may lead intd. Let Ar(s) denote the set of
ﬁpplicable environment actions in statdor transition systenf’. We then formally

ave:

Definition 1 (Fair State) A state,s, is fair with respect to a set of stateg, and a
universal planlJ, if and only if Va, € Ar(s).3as € U(s) . T(s,as,a.,8) Ns' € V.

For convenience we define amfair state to be a state that is not fair. The optimistic
adversarial precomponent is an optimistic precomponent pruned for stdgas. In
order to use a precomponent fmBDD-based universal planning, we need to define it as
a boolean function represented by@BDD. The optimistic adversarial precomponent
(OAP) is the characteristic function of the set of state-action paireiptacomponent:

Definition 2 (OAP) Given a transition relation]’, the optimistic adversarial precom-
ponent of a set of state¥), is the set of state-action pairs given by the characteristic
function:

OAP(T,V)(s,a;) = (VYac.A(T)(s,ac) = J(T,V)(s,ac)) A 1)
(Jac,s' . T(s,as,ac,s') Ns' €V As¢V) 2

J(T,V)(s,a.) = Fas,s'.T(s,as,ae,8)ANs €V (3)
A(T)(s,ae) = 3Fas,s' . T(s,as,ae,s"). 4)

Line (1) ensures that the state is fair. It says that, for any state iprédfmmponent,
every applicable environment action (definedAfg, a.)) must also be included in a
joint action leading td” (defined by.J (s, a.)). Line (2) says that every system action
as relevant for a state ¢ V- must have at least one next statd/in

Figure 2 shows the optimistic adversarial precomponent of &dite the example
domain QAP(T,G) = {(F, +s), (F,—s), (U, +s), (U, —s)}). For clarity we include
the transitions of the actions in the precomponent.

269

| AE esee)

' (+s,-e)

L (sre) N T
| . eG
| (+s,-e)

| (-s,+e) =

|

| °

(s-e)
| (“)\\
Uo(#s,4e) N

N —

Figure 2: The OAP of7 for the example of Figure 1.

3.2 The Strong Cyclic Adversarial Precomponent

A strong cyclic adversarial planis a strong cyclic plan where everyisté#. Thus, all
the actions in the plan lead to states covered by the plan. In particulaguaianteed
that no dead ends are reached. The strong cyclic adversarial precomponenj (SCAP
consists of a union of optimistic precomponents where each state infdhe opti-
mistic precomponents is fair with respect to all states in the previcemomponents
and the set of visited states.

The algorithm for generating an SCAP adds one optimistic precompahamime.
After each addition, it first prunes actions with possible next statesowered by the
optimistic precomponents and the set of visited states. It then sulrsthgprunes all
the states that are no longer fair after the pruning of outgoing actlbal.the states
are pruned from the precomponent, the algorithm continues addingisfiti precom-
ponents until no actions are outgoing. Thus, in the final SCAP, we lmag cycles
due to loops and transitions crossing the boundaries of the @pitrprecomponents.
Again, we define the precomponent as the characteristic function of a satebstion
pairs:

Definition 3 (SCAP) Given a transition relation]’, the strong cyclic adversarial pre-
component of a set of statdg, is the set of state-action pairs given by the character-
istic functionSCAP (T, V')(s, as).

function SCAP(T,V)
i:=0; OAp := OAP(T,V)
while OA; # 0
SCA := PruneSCA(T,V,0A, i)
if SCA # () then
return SCA
elsei:=i+1
OA; := OAP(T,V U (U}, states(OA)))
return ()

270

— —_
+ T
& &
&)
RURCS
\ ;/
[PY \
. G)/
it
+ \
o |
AL)
N
7)) !
\ ® ,
N—r
O/ /

NCCR S
@ (b)

Figure 3: (a) The OAP pruned for actions with outgoing transitignsThe SCAP of
G, for the example of Figure 1.

function PruneSCA(T,V, OA, 1)
repeat .
SCA := Uj_, OA .
Vo :=V; Vp =V U (U, states(0Ay))
for j=0toi
P := PruneOutgoing(T, Vr, OA;)
OA; := PruneUnfair(T, Ve, P)
Ve = Ve U states(OA;j)
until SCA = Ui_, OA,

return SCA
PruneOutgoing(T,V, OA) = OA(s,as) A (Vae,s' . T(s,as,ae,s") = V(s'))
PruneUnfair (T,V, 0A) = OA(s,as) A (Yae . A(T)(s,a.) = J(T,V)(s,a.))

SCAP(T,V) adds an optimistic adversarial precomponent until the pruning func-
tion PruneSCA(T,V,OA, 1) returns a non-empty precomponent. The pruning func-
tion keeps a local copy of the optimistic adversarial precomponents in an @A.
SCA is the precomponent found so far. The pruning continues 6t reaches a fix
point. V- is the set of states in the current precomponent. In each iteration trassitio
leading out of’ are pruned. States turning unfair with respect'tg because of this
pruning, are then removed- is the union of all the states in the previous optimistic
precomponents and the set of visited stafes

For an illustration, consider again the OAP®f(see Figure 2). Action-s would
have to be pruned froii since it has an outgoing transition. The pruned OAP is shown
in Figure 3(a). Now there is no action leadingian U when the environment chooses

+e. U has become unfair and must be pruned from the precomponent. Since the

precomponentis non-empty no more optimistic precomponents hdneadded. The
resulting precomponensCAP(G) = {(F, +s), (F, —s)}, is shown in Figure 3(b).

271

272

3.3 Properties of the Algorithms

Optimistic and strong cyclic adversarial planning extend the pusd@DD-based uni-
versal planning algorithms by pruning unfair states from the plar. ekample, for
the domain of Figure 1, the strong cyclic planning algorithm woggnerate the plan
{(I,{+s,—s}), (F,{+s,—s}), (U, {+s})}, while the strong cyclic adversarial plan-
ning algorithm, as introduced above, generates the{gla{ +s}), (F, {+s,—s})}. It
is capable of pruning from the plan, since it becomes unfair. Also note that the plan
is not a plain strong plan since progress towards the goal is not gaacaim every
state. It is easy to verify that there actually is no strong plan for thisaiio.

In order to state formal properties of adversarial planning, we definkevieéof a
state to be the number of optimistic adversarial precomponents fregothl states to
the state. We can now prove the following theorem:

Theorem 1 (SCA Termination) The execution of a strong cyclic adversarial plan even-
tually reaches a goal state if it is initiated in some state coverettiéylan and actions
in the plan are chosen randomly.

Proof: Since all unfair states and actions with transitions leading out of tioagst
cyclic adversarial plan have been removed, all the visited states will barfeicov-
ered by the plan. From the random choice of actions in the plan it theswfelihat
each execution of a plan action has a non-zero probability of leading to aastate
lower level. Letrn be the maximum level of some state in the strong cyclic adversarial
plan (n exists since the state space is finite). hetenote the smallest probability of
progressing at least one level for any state in the plan. Then, from staggyin the
plan, the probability of reaching a goal staterirsteps is at leagt™. Thus, the proba-
bility of reaching a goal state imn steps is at leadt — (1 — p™)", which approaches
1forn — oo . Thus, a goal state will eventually be reached. |

The termination theorem makes strong cyclic adversarial plans more pohenf
strong cyclic plans since termination of strong cyclic plans only @agumranteed by
assuming no infinite looping (i.e. a “friendly” environment). F@timistic adversarial
plans, termination can not be proved since dead ends may be reached. Howeeer, si
optimistic plans only consist of fair states, there is a chance of pssgrg towards the
goal in each state:

Theorem 2 (OA Progress) The execution of an optimistic adversarial plan has a non-
zero probability of eventually reaching the goal from each stateersd by the plan if
the actions in the plan are chosen randomly.

Proof: This follows directly from the fact that each state in the plan is fair. O

Optimistic plans do not have this property since unfair states magdbeded in the
plans. Thus, it may be possible for the environment to preventytsters from pro-
gressing towards the goal either by forcing a transition to a dead engd wraking
transitions cyclic.

3.4 Empirical Results

The adversarial and previowssDbD-based universal planning algorithms have been
implemented in the publicly availablevoPp planning framework. In order to illustrate
the scalability of our approach, we use a general version of the exampiaidof
Figure 1, as shown in Figure 4.

The domain has a single system and environment agent with adtiens-s, [}
and{+e, —e}, respectively. The system progresses towards the goal if the sigims of t
two actions In the joint action are different. At any time, it can switchfitbie lower

(+s,+e) (+s,+e) (+s,+e) (+s,+€e)

(+s.-e) (+s.-€)
—_—

e —P sxx —P0— P o G
(I,+e) (I,+e) (I,+e) (I,+e)
(I,-e) (,-e) (l,-e) (I,-e)
_Gsme) _Gsme)
()(“e)() O
(+s,+e) (+s,+e) (+s,+e) (+s,+€)
(se) (se) (se) (-s.—e)

Figure 4: A general version of the domain shown in Figure 1.

to the upper row of states by executingn the upper row, the system can only execute
+s. Thus, in these states an adversarial environment can prevent furtheegs dgr
always executing-e.

Figure 5 shows, in a double logarithmic scale, the running timafgdlan size as
a function of the number of domain states when finding strong cyclictndg cyclic

adversarial plan®.In this domain both algorithms scale well. The experiment indicate
a polynomial time complexity for both algorithms. For the larghshain with 65,536
states the CPU time is less than 32 seconds for generating the stroicgacersarial
plan. The results also demonstrate the efficiencg®bDs for representing universal
plans in structured domains. The largest plan consists of only 38 Oiiles.

The strong cyclic adversarial plans only consider executing@nd+s, while the
strong cyclic plans consider all applicable actions. Hence, the stronig eglslersarial
plans have about twice as mamgDD nodes and take about twice as long time to
generate. But this slightly higher cost of generating a strong cyclieradvial plan
pays off well in plan quality. The strong cyclic adversarial plan is gu@eohto achieve
the goal when choosing actions in the plan randomly. In contrast, ti@pility of
achieving the goal in the worst case for the strong cyclic plan is hess(£)"/?~1,
whereNN is the number of states in the domain. Thus, for an adversarial enviranmen
the probability of reaching the goal with a strong cyclic plan is pcatiy zero, even
for small instances of the domain.

4 Relation to Stochastic Games

A stochastic games a tuple(n, S, A1, T, R:1...n,), Wheren is the number of agents,
S is the set of statesd; is the set of actions available to playiefand A is the joint
action spaced; x ... x A,), T'is the transition functiof x A x S — [0,1], and
R; is a reward function for théth agentS — R. A solution to a stochastic game
is a stationary and possibly stochastic poliey, S — PD(A4;), for an agent in this
environmentthat maps states to a probability distribution over itsre:t The goal is to
find such a policy that maximizes the agent’s future discounted rewaual zéro-sum
stochastic game, two agents have rewards adding up to a constant valasicualar,
zero. The value of a discounted stochastic game with discount faésoa vector of

5The experiment was carried out on a 500 MHz Pentium Il PC &it8 MB RAM running Red Hat
Linux 5.2.

273

274

100 E T T T T T T
- « [. -
0% "0 gogoa B0
3
/X///
0.1 ><’/) .
E .~ SCAP CPU Time/sec. —+—
% SCP CPU Time/sec. ---*---
[/->"SCAP Plan Size/OBDD nodes ---*---
SCP Plan Size/OBDD nodes &
Ool v * ¥ 1 1 1 1 I

4 16 64 256 1024 4096 16384 65536
Number of States

Figure 5: CPU time and plan size of strong cyclic and strong cyclieesrial plans
as a function of domain size.

values, one for each state, satisfying the equation:

Vi(s) = max min ol(as) <Z T(s,as,ae,s") (R(s") +’YV»Y(SI))>
s€EAs

PD(A;) ac€A.
o€ (As) ac€ " oS

For positive stochastic games, the payoffs are summed without aidisfe@tor, which
can be computed ds(s) = lim.,_,;- V,(s).

The derived stochastic game from a universal planning problem is giyeheb
following definition:

Definition 4 A derived stochastic ganieom a planning problem(T’, I, GG), is a zero-
sum stochastic game with states and actions identical to thdke ptanning problem.
Reward for the system agent is one when entering a staie aero otherwise. Transi-

tion probabilities,T’, are any assignment satisfying,

T(s,as,a.,8") € (0,1] if T(s,as,ae,s)

T(s,as,ae,8") =0 otherwise
We can now prove the following two theorems:

Theorem 3 An optimistic adversarial plan exists if and only if, foamy derived stochas-
tic game, the value at all initial states is positive.

Proof: (=) We prove by induction on the level of a state. For a stajegt level
one, we know the state is fair with respect to the goal states. So, for agon of
the environment, there exists an action of the system that transttoagoal state
with some non-zero probability. if,,;,, is the smallest transition probability, then if
the system simply randomizes among its actions, it will receive a rewasdeowith

probabilityT‘giT. Therefore} (s) > fg“lt > 0. Consider a state, at leveln. Sinces

is fair, we can use the same argument as above that the next state will leeeltlass

thann with probability Tgi‘" . With the induction hypothesis, we get,

T .
Vi(s) > 2y (s') >0
|As]

Therefore, all states in the sEthave a positive value. Since the algorithm terminates
with I C V, then all initial states have a positive value.

(<) Assume for some derived stochastic game that the value at all initiasstat
positive. Consider running the optimistic adversarial planningritigm and for, the
purpose of contradiction, assume the algorithm terminates igth'. Consider the
states* ¢ V' that maximizes/, (s*). We know that, since the algorithm terminated,
s* must not be fair with respect 6. So there exists an action of the environmegt,
such that, for alk;, the next state will not be ilv. So we can bound the value equation
by assuming the environment selects actipn

V() < max Y ofa) (Z T(s" aua,) (m(s')))

s'¢V

Notice that we do not have to sum over all possible next states sinkaavethe
transition probabilities to states in are zero (by the selection af). We also know
that immediate rewards for states notlinare zero, since they are not goal states.
By our selection of* we know thatV/, (s") must be smaller than the value &f. By
substituting this into the inequality we can pull it outside af fummations which now
sum to one. S& (s*) = 0, as we need to satisfy:

V,(s%) S 4V (%) - 1

Since any initial state is not iV, V' (s*) must have value equal to zero, which is a
contradiction to our initial assumption. So, the algorithm mushieate withl C V/,
and therefore an optimistic adversarial plan exists. |

Theorem 4 If a strong cyclic adversarial plan exists, then famy derived stochastic
game, the value at all initial states is 1.

Proof: Consider a policyr that selects actions with equal probability among the un-
pruned actions of the strong cyclic adversarial plan. For states noeiadversarial
plan select an action arbitrarily. We will compute the value of executirggpblicy,
V.
Y

Consider a state in the strong cyclic adversarial plan such thit(s) is minimal.
Let L(s) = N bethe level of this state. We know that this state is fair with respetatto
states at level less tha¥i, and therefore (as in Theorem 1) the probability of reaching
a states’ with L(s") < N — 1 when following policyr is at leasp = T‘giT > 0. This
same argument can be repeatedsfoand so after two steps, with probability at least
p?, the state will bes” whereL(s") < L(s’) —1 < N — 2. Repeating this, afteN
steps with probability?, the state will bes™ WhereL(sJ\c? < L(s) = N <0,s0sV
must be a goal state and the system received a reward of one.

So we can consider the value at statghen following the policyr. We know after
N steps if it has not reached a goal state it must be in some state still autiersarial
plan due to the enforcement of the strong cyclic property. In essence,iatisatith
outgoing transitions are pruned and therefore are never executed bige value of
this state by definition must be larger thefi(s). Therefore,

T N _ N N Nyrm
VIi(s) > piat 14+ (1 =p")y VI (s)

S N
T 1= (1 =pN)N
pN
YT 2 T 2!

275

276

SoV™(s) = 1 and sinces is the state with minimal value, for any initial statg
V7™ (s;) = 1. SinceV (s;) maximizes over all possible policieg(s;) = 1. O

5 Conclusion

This paper contributes two neaBDD-based universal planning algorithms, namely
optimistic and strong cyclic adversarial planning. These algorithatsrally extend
the previous optimistic and strong cyclic algorithms to adveasarivironments. We
have proved that, in contrast to optimistic plans, optimistic ashial plans always
have a non-zero probability of reaching a goal state. Furthermore, weepraved
and shown empirically that, in contrast to strong cyclic plans, a gtoguolic adversar-
ial plan always eventually reach the goal. Finally, we introduced and praexnted
relations between adversarial universal planning and positive stochastizsg An in-
teresting direction for future work is to investigate if adversariahping can be used
to scale up the explicit-state approaches for solving stochastic ganpesiipg states
and transitions irrelevant for finding an optimal policy.

Acknowledgments

We wish to thank Scott Lenser for early discussions on thiskw®he research is sponsored in
part by the Danish Research Agency and the United StatesofdéeRunder Grants Nos F30602-
00-2-0549 and F30602-98-2-0135. The views and conclusiontained in this document are
those of the authors and should not be interpreted as netgsspresenting the official poli-
cies or endorsements, either expressed or implied, of tfienBe Advanced Research Projects
Agency (DARPA), the Air Force, the Danish Research Agencyhe US Government.

References

[1] R. Bryant. Graph-based algorithms for boolean functizemipulation.|EEE Transactions
on Computers8:677—691, 1986.

[2] A. Cimatti, M. Roveri, and P. Traverso. OBDD-based gatien of universal plans in non-
deterministic domains. IRroceedings of AAAI-9®ages 875-881. AAAI Press, 1998.

[3] A. Cimatti, M. Roveri, and P. Traverso. Strong plannimgnion-deterministic domains via
model checking. IrProceedings of the 4th International Conference on Artfitntelli-
gence Planning System (AIPS'9pages 36—43. AAAI Press, 1998.

[4] E. Giunchiglia, G. Kartha, and Y. Lifschitz. Represeagtiaction: Indeterminacy and ramifi-
cations.Artificial Intelligence 95:409-438, 1997.

[5] T. P. Hartand D. J. Edwards. The tree prune (TP) algoritiiechnical report, MIT, 1961.
Artificial Intelligence Project Memo 30.

[6] R.Jensen and M. Veloso. OBDD-based universal planrongynchronized agents in non-
deterministic domainsJournal of Artificial Intelligence Researcth3:189—226, 2000.

[7] K. L. McMillan. Symbolic Model Checkind<luwer Academic Publ., 1993.

[8] M. Schoppers. Universal planning for reactive robotsunpredictable environments. In
Proceedings of IJCAI-8hages 1039-1046, 1987.

[9] L. S. Shapley. Stochastic gamdaNAS 39:1095-1100, 1953.

