
OBDD-Based Optimistic and Strong Cyclic
Adversarial Planning

Rune M. Jensen, Manuela M. Veloso and Michael H. Bowling
Computer Science Department,

Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh,

PA 15213-3891, USA
Email: frunej,mmv,mhbg@cs.cmu.edu
Tel.: +1 (412) 268-f3053,1474,3069g

Fax: +1 (412) 268-4801

Abstract

Recently, universal planning has become feasible through the use of efficient
symbolic methods for plan generation and representation based on reduced ordered
binary decision diagrams (OBDDs). In this paper, we address adversarial universal
planning for multi-agent domains in which a set of uncontrollable agents may be
adversarial to us (as in e.g. robotics soccer). We present two newOBDD-based uni-
versal planning algorithms for such adversarial non-deterministic finite domains,
namelyoptimistic adversarial planningand strong cyclic adversarial planning.
We prove and show empirically that these algorithms extend the existing family of
OBDD-based universal planning algorithms to the challenging domains with adver-
sarial environments. We further relate adverserial planning to positive stochastic
games by analyzing the properties of adversarial plans whenthese are considered
policies for positive stochastic games. Our algorithms have been implemented
within the Multi-agentOBDD-based Planner,UMOP, using the Non-deterministic
Agent Domain Language,NADL.

Keywords: adversarial universal planning, multi-agent planning, non-deterministic do-
mains, stochastic games.

1 Introduction
Universal planning, as originally developed by Schoppers (1987), is anapproach for
handling environments with contingencies. Universal planning is particularly appeal-
ing for active environments causing actions to be non-deterministic. A universal plan
associates each possible world state with actions relevant in that state forachieving the
goal. Due to the non-deterministic outcome of actions, a universal plan is executed by
iteratively observing the current state and executing an action in the plan associated
with that state.

In the general case the non-determinism forces a universal plan to cover all the
domain states. Since planning domains traditionally have large state spaces, this con-
straint makes the representation and generation of universal plans nontrivial. Recently,

265

reduced ordered binary decision diagrams (OBDDs,[1]) have been shown to be efficient
for synthesizing and representing universal plans [2, 3, 6]. OBDDs are compact repre-
sentations of Boolean functions that have been successfully applied insymbolic model
checking[7] to implicitly represent and traverse very large state spaces. Using simi-
lar techniques, a universal plan represented as anOBDD can be efficiently synthesized
by a backward breadth-first search from the goal to the initial states in theplanning
domain.1

There are threeOBDD-based planning algorithms:strong, strong cyclicandopti-
mistic planning. Strong and strong cyclic planning were contributed within theMBP
planner [2, 3]. MBP specifies a planning domain in the action description languageAR
[4]. The strong planning algorithm tries to generate a strong plan, i.e., a plan where all
possible outcomes of the actions in the plan change the state to a new state closer to
the goal. The strong cyclic planning algorithm returns a strong plan, if one exists, or
otherwise tries to generate a plan that may contain loops but is guaranteed toachieve
the goal, given that all cyclic executions eventually terminate.

Optimistic planning was contributed within theUMOP planner [6]. UMOP spec-
ifies a planning domain in the non-deterministic agent domain language,NADL , that
explicitly defines a controllable system and an uncontrollable environment as two sets
of synchronous agents. Optimistic planning tries to generate a relaxed plan where the
only requirement is that there exists an outcome of each action that leads to a state
nearer the goal.

None of the previous algorithms are generally better than the others. Their strengths
and limitations depend on the structure of the domain [6]. However, alimitation of the
previous algorithms is that they can not reason explicitly about environment actions,
due to their usage of animplicit representation of the effect of these actions.2 This is
an important restriction for adversarial domains, as for the strong cyclic and optimistic
algorithms, an adversarial environment may be able to prevent goal achievement.

In this paper we contribute two new planning algorithms robust foradversarial en-
vironments:optimistic adversarial planningandstrong cyclic adversarial planning.
These algorithms explicitly represent environment actions. The plannercan then rea-
son about these actions and take adversarial behavior into account. We provethat, in
contrast to strong cyclic plans, strong cyclicadversarialplans guarantee goal achieve-
ment independently of the environment behavior. Similarly, we provethat optimistic
adversarial plans improve the quality of optimistic plans by guaranteeing that a goal
state can be reached from any state covered by the optimistic adversarial plan inde-
pendently of the behavior of the environment. The results are verified empirically in
a scalable example domain using an implementation of our algorithms in the UMOP
planning framework.

Adversarial planning is related to game theory. The main difference is that the goal
is represented in terms of a set of states instead of a utility function. Unlike strong
cyclic adversarial planning, game tree algorithms, such as alpha-beta mini-max [5],
can only guarantee goal achievement if the search is complete and the opponent uses a
strict mini-max strategy. In practice, though, the explicit-state search has to be depth-
bounded which reduces the approach to heuristic action selection. Matrix gamesare
stateless and therefore strictly less expressive. The game-theoretic framework that is
closest in relation to adversarial planning is stochastic games (SGs). Stochastic games
extend Markov decision processes (MDPs) to multiple agents. An MDP has transition
probabilities and is thus more expressive than the non-deterministic transition model
of adversarial planning. However, by translating an adversarial planning problem into
an SG problem by adding non-zero transition probabilities, we prove that an optimistic
adversarial plan exists if and only if the solution to the corresponding positive stochas-
tic game has a positive expected reward. Moreover, if a strong cyclic adversarial plan

1This work assumes that the non-deterministic domain definition is known and the focus is on the devel-
opment of effective universal planning algorithms under this assumption.

2Figure 1(b) illustrates this restricted representation for an example domain introduced in next section.

266

exists, then the solution to the corresponding stochastic game has amaximum expected
reward.

The restricted domain model of adversarial planning is suitable for problems where
transition probabilities are irrelevant (e.g. worst case analysis). The advantage of this
domain model compared to the MDP model of SGs is that it allows the application of
efficient OBDD-based symbolic solution methods that potentially scale to much larger
domains than can be handled by the explicit-state value iteration methods(e.g. [9])
used for solving stochastic games.

The remainder of the paper is organized as follows. Section 2 defines our repre-
sentation of adversarial domains and introduces an example domain used throughout
the paper. Section 3 defines the optimistic and strong cyclic adversarial planning al-
gorithms and proves their key properties. In Section 4 we define and prove properties
of the stochastic game representation of the adversarial planning problems. Finally,
Section 5 draws conclusions and discusses directions for future work.

2 Adversarial Plan Domain Representation

An NADLdomain3 description consists of: a definition ofstate variables, a description
of systemandenvironment agents, and a specification ofinitial andgoal conditions.
The set of state variable assignments defines the state space of the domain.An agent’s
description is a set ofactions. An action has a precondition and an effect defining
in which states the action is applicable and what states the action can lead to. At
each step, all of the agents perform exactly one action, and the resulting action tuple
is a joint action.4 The system agents model the behavior of the agents controllable
by the planner, while the environment agents model the uncontrollableenvironment.
There are two causes of non-determinism inNADLdomains: (1) actions having multiple
possible outcomes, and (2) uncontrollable concurrent environment actions. System and
environment actions are assumed to be independent, such that an action chosen bythe
system in some state can not influence the set of actions that can be chosen by the
environment in that state and vice versa. No assumptions are made about thebehavior
of environment agents. They might beadversarial, trying to prevent goal achievement
of the system agents.

We represent the transition relation of anNADLdomain with a Boolean function,T (S; as; ae; S0). S is the current state,as andae are system and environment actions
andS0 is a next state.T (S; as; ae; S0) is true if and only ifS0 is apossiblenext state
when executing(as; ae) in S.

A planning problemis a tuple(T; I;G), whereT is a transition relation, andI andG are Boolean functions representing the initial and goal states, respectively. A uni-
versal plan, U , is a partial mapping from the domain states to the power set of system
actions. A universal plan would beexecutedby the system agents by iteratively observ-
ing the current state and executing one of the actions in the universal plan associated to
that state.

As an example, consider the domain shown in Figure 1. This domain has a single
system agent that can execute the actions+s and�s, and a single environment agent
that can execute the actions+e and�e. Edges in the figure are labeled with the cor-
responding joint action. There are 5 states, namelyI; F;D;U andG. I andG are the
only initial and goal states, respectively.D is a dead end state, as the goal is unreach-
able fromD. This introduces an important difference betweenF andU , that captures
a main aspect of the adversarial planning problem. We can view the two statesF andU as states in which the system and the environment have different opportunities. Ob-
serve that the system “wins”, i.e., reaches the goal, only if the signs of the two actions

3The reader is referred to [6] for a formal definition ofNADL.
4In the remainder of the paper we will often refer to joint-actions as simply actions.

267

in the joint action are different. Otherwise it “loses”, as there is no transition to the
goal with a joint action with actions with the same sign. The goal is reachable from
both statesF andU . However the result of a “losing” joint action is different forF andU . In F , the system agent remains inF . Thus, the goal is still reachable for a possible
future action. InU , however, the agent may transition to the dead end stateD, which
makes it impossible to reach the goal in subsequent steps.

I D G

−s

+s

+s

−s

U

F

+s

−s

+s −s

+s

−s

I D G

(−s,+e)

(+s,−e)
(+s,−e)

(−s,−e)

(+s,−e)

(−s,+e)

(−s,−e)

(+s,+e)

(+s,+e) (−s,−e)

U

F

(a) (b)

Figure 1: An adversarial planning domain example with initial stateI and goal stateG.
There is a single system and environment agent with actionsf+s;�sg andf+e;�eg,
respectively. (a) shows the explicit representation of environment actions used by our
adversarial planning algorithms, while (b) shows the implicit representation used by
previous algorithms, where the effect of environment actions is modeledby the non-
determinism of system actions.

Now consider how an adversarial environment can take advantage of the possibility
of the system reaching a dead end fromU . Since the system may end inD, when
executing�s in U , it is reasonable for the environment to assume that the system will
always execute+s in U . But now the environment can prevent the system from ever
reaching the goal by always choosing action+e, so the system should completely avoid
the path throughU .

This example domain is important as it illustrates how an adversarial environment
can act purposely to obstruct the goal achievement of the system. We will use it in the
following sections to explain our algorithms. A universal plan, guaranteeing thatG is
eventually reached, isf(I; f+sg); (F; f+s;�sg)g. In contrast to any previous univer-
sal planning algorithm, the strong cyclic adversarial planning algorithm can generate
this plan as shown in Section 3.3.

3 Adversarial Planning

We introduce a generic functionPlan(T; I;G) for representingOBDD-based universal
planning algorithms. The algorithms, including ours, only differ by definition of the
function computing the precomponent (PreComp(T; V)).

The generic function performs a backward breadth-first search from the goalstates
to the initial states. In each step the precomponent,Up, of the visited states,V , is

268

computed. The precomponent is a partial mapping from states to the power set of
system actions. Each state in the precomponent is mapped to a set of relevant system
actions for reachingV .

function Plan(T; I;G)U := ;; V := G
while I 6� VUp := PreComp(T; V)

if Up = ; then return failure
elseU := U [UpV := V [states(Up)

return U
If the precomponent is empty a fixpoint ofV has been reached that does not cover the
initial states. Since this means that no universal plan can be generated that covers the
initial states, the algorithm returnsfailure. Otherwise, the precomponent is added to
the universal plan and the states in the precomponent are added to the set of visited
states. All sets and mappings in the algorithm are represented byOBDDs. In particular,
the universal plan and the precomponent are represented by the characteristic function
of the set of state-actions pairs in the mapping.

3.1 The Optimistic Adversarial Precomponent
The core idea in adversarial planning is to be able to generate a plan for thesystem
agents that ensures that the environment agents, even with complete knowledge of the
domain and the plan, are unable to prevent reaching the goals. We formalizethis idea
in the definition of afair state. A states is fair with respect to a set of states,V , and
a universal plan,U , if, for each applicable environment action, there exists a system
action inU such that the joint action may lead intoV . Let AT (s) denote the set of
applicable environment actions in states for transition systemT . We then formally
have:

Definition 1 (Fair State) A state,s, is fair with respect to a set of states,V , and a
universal plan,U , if and only if 8ae 2 AT (s) : 9as 2 U(s) : T (s; as; ae; s0) ^ s0 2 V .

For convenience we define anunfair state to be a state that is not fair. The optimistic
adversarial precomponent is an optimistic precomponent pruned for unfairstates. In
order to use a precomponent forOBDD-based universal planning, we need to define it as
a boolean function represented by anOBDD. The optimistic adversarial precomponent
(OAP) is the characteristic function of the set of state-action pairs in the precomponent:

Definition 2 (OAP) Given a transition relation,T , the optimistic adversarial precom-
ponent of a set of states,V , is the set of state-action pairs given by the characteristic
function:OAP(T; V)(s; as) = �8ae : A(T)(s; ae)) J(T; V)(s; ae)� ^ (1)�9ae; s0 : T (s; as; ae; s0) ^ s0 2 V ^ s =2 V � (2)J(T; V)(s; ae) = 9as; s0 : T (s; as; ae; s0) ^ s0 2 V (3)A(T)(s; ae) = 9as; s0 : T (s; as; ae; s0): (4)

Line (1) ensures that the state is fair. It says that, for any state in theprecomponent,
every applicable environment action (defined byA(s; ae)) must also be included in a
joint action leading toV (defined byJ(s; ae)). Line (2) says that every system actionas relevant for a states =2 V must have at least one next state inV .

Figure 2 shows the optimistic adversarial precomponent of stateG for the example
domain (OAP(T;G) = f(F;+s); (F;�s); (U;+s); (U;�s)g). For clarity we include
the transitions of the actions in the precomponent.

269

G

(+s,-e)
(-s,+e)

(+s,-e)
(-s,+e)

(+s,+e)

(-s,-e)
(+s,+e)

(-s,-e)

F

U

Figure 2: The OAP ofG for the example of Figure 1.

3.2 The Strong Cyclic Adversarial Precomponent
A strong cyclic adversarial plan is a strong cyclic plan where every stateis fair. Thus, all
the actions in the plan lead to states covered by the plan. In particular, it isguaranteed
that no dead ends are reached. The strong cyclic adversarial precomponent (SCAP)
consists of a union of optimistic precomponents where each state in oneof the opti-
mistic precomponents is fair with respect to all states in the previous precomponents
and the set of visited states.

The algorithm for generating an SCAP adds one optimistic precomponentat a time.
After each addition, it first prunes actions with possible next states not covered by the
optimistic precomponents and the set of visited states. It then subsequently prunes all
the states that are no longer fair after the pruning of outgoing actions.If all the states
are pruned from the precomponent, the algorithm continues adding optimistic precom-
ponents until no actions are outgoing. Thus, in the final SCAP, we mayhave cycles
due to loops and transitions crossing the boundaries of the optimistic precomponents.
Again, we define the precomponent as the characteristic function of a set of state-action
pairs:

Definition 3 (SCAP) Given a transition relation,T , the strong cyclic adversarial pre-
component of a set of states,V , is the set of state-action pairs given by the character-
istic functionSCAP(T; V)(s; as).

function SCAP(T; V)i := 0; OA0 := OAP(T; V)
while OAi 6= ;SCA := PruneSCA(T; V;OA; i)

if SCA 6= ; then
return SCA

else i := i+ 1OAi := OAP�T; V [(Si�1k=0 states(OAk))�
return ;

270

G

(+s,+e)

(-s,-e)
(+s,+e)

F

U

(+s,-e)

(-s,+e)
(+s,-e)

G

(-s,-e)
(+s,+e)

F

(+s,-e)
(-s,+e)

(a) (b)

Figure 3: (a) The OAP pruned for actions with outgoing transitions; (b) The SCAP ofG, for the example of Figure 1.

function PruneSCA(T; V;OA; i)
repeatSCA := [ik=0OAkVC := V ; VT := V [�Sik=0 states(OAk)�

for j = 0 to iP := PruneOutgoing(T; VT ;OAj)OAj := PruneUnfair(T; VC ; P)VC := VC [states(OAj)
until SCA = [ik=0OAk
return SCAPruneOutgoing(T; V;OA) = OA(s; as) ^ �8ae; s0 : T (s; as; ae; s0)) V (s0)�PruneUnfair (T; V;OA) = OA(s; as) ^ �8ae : A(T)(s; ae)) J(T; V)(s; ae)�SCAP(T; V) adds an optimistic adversarial precomponent until the pruning func-

tion PruneSCA(T; V;OA; i) returns a non-empty precomponent. The pruning func-
tion keeps a local copy of the optimistic adversarial precomponents in an arrayOA.SCA is the precomponent found so far. The pruning continues untilSCA reaches a fix
point. VT is the set of states in the current precomponent. In each iteration transitions
leading out ofVT are pruned. States turning unfair with respect toVC , because of this
pruning, are then removed.VC is the union of all the states in the previous optimistic
precomponents and the set of visited statesV .

For an illustration, consider again the OAP ofG (see Figure 2). Action�s would
have to be pruned fromU since it has an outgoing transition. The pruned OAP is shown
in Figure 3(a). Now there is no action leading toG in U when the environment chooses+e. U has become unfair and must be pruned from the precomponent. Since the
precomponent is non-empty no more optimistic precomponents have tobe added. The
resulting precomponent,SCAP(G) = f(F;+s); (F;�s)g, is shown in Figure 3(b).

271

3.3 Properties of the Algorithms
Optimistic and strong cyclic adversarial planning extend the previousOBDD-based uni-
versal planning algorithms by pruning unfair states from the plan. For example, for
the domain of Figure 1, the strong cyclic planning algorithm would generate the planf(I; f+s;�sg); (F; f+s;�sg); (U; f+sg)g, while the strong cyclic adversarial plan-
ning algorithm, as introduced above, generates the planf(I; f+sg); (F; f+s;�sg)g. It
is capable of pruningU from the plan, since it becomes unfair. Also note that the plan
is not a plain strong plan since progress towards the goal is not guaranteed in every
state. It is easy to verify that there actually is no strong plan for this domain.

In order to state formal properties of adversarial planning, we define thelevelof a
state to be the number of optimistic adversarial precomponents from the goal states to
the state. We can now prove the following theorem:

Theorem 1 (SCA Termination) The execution of a strong cyclic adversarial plan even-
tually reaches a goal state if it is initiated in some state covered bythe plan and actions
in the plan are chosen randomly.

Proof: Since all unfair states and actions with transitions leading out of the strong
cyclic adversarial plan have been removed, all the visited states will be fairand cov-
ered by the plan. From the random choice of actions in the plan it then follows that
each execution of a plan action has a non-zero probability of leading to a stateat a
lower level. Letm be the maximum level of some state in the strong cyclic adversarial
plan (m exists since the state space is finite). Letp denote the smallest probability of
progressing at least one level for any state in the plan. Then, from everystate in the
plan, the probability of reaching a goal state inm steps is at leastpm. Thus, the proba-
bility of reaching a goal state inmn steps is at least1� (1� pm)n, which approaches1 for n!1 . Thus, a goal state will eventually be reached. 2

The termination theorem makes strong cyclic adversarial plans more powerful than
strong cyclic plans since termination of strong cyclic plans only can be guaranteed by
assuming no infinite looping (i.e. a “friendly” environment). For optimistic adversarial
plans, termination can not be proved since dead ends may be reached. However, since
optimistic plans only consist of fair states, there is a chance of progressing towards the
goal in each state:

Theorem 2 (OA Progress)The execution of an optimistic adversarial plan has a non-
zero probability of eventually reaching the goal from each state covered by the plan if
the actions in the plan are chosen randomly.

Proof: This follows directly from the fact that each state in the plan is fair. 2
Optimistic plans do not have this property since unfair states may beincluded in the
plans. Thus, it may be possible for the environment to prevent the system from pro-
gressing towards the goal either by forcing a transition to a dead end or by making
transitions cyclic.

3.4 Empirical Results
The adversarial and previousOBDD-based universal planning algorithms have been
implemented in the publicly availableUMOP planning framework. In order to illustrate
the scalability of our approach, we use a general version of the example domain of
Figure 1, as shown in Figure 4.

The domain has a single system and environment agent with actionsf+s;�s; lg
andf+e;�eg, respectively. The system progresses towards the goal if the signs of the
two actions in the joint action are different. At any time, it can switch from the lower

272

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,+e)
(−s,−e)

(+s,−e)

(−s,+e)

(+s,−e)

(−s,+e)

(l,+e)
(l,−e)

(l,+e)
(l,−e)

(l,+e)
(l,−e)

(l,+e)
(l,−e)

...

...

GI

(+s,−e) (+s,−e)

(+s,+e) (+s,+e) (+s,+e) (+s,+e)

G

Figure 4: A general version of the domain shown in Figure 1.

to the upper row of states by executingl. In the upper row, the system can only execute+s. Thus, in these states an adversarial environment can prevent further progress by
always executing+e.

Figure 5 shows, in a double logarithmic scale, the running time andthe plan size as
a function of the number of domain states when finding strong cyclic andstrong cyclic
adversarial plans.5 In this domain both algorithms scale well. The experiment indicate
a polynomial time complexity for both algorithms. For the largestdomain with 65,536
states the CPU time is less than 32 seconds for generating the strong cyclic adversarial
plan. The results also demonstrate the efficiency ofOBDDs for representing universal
plans in structured domains. The largest plan consists of only 38 OBDDnodes.

The strong cyclic adversarial plans only consider executing�s and+s, while the
strong cyclic plans consider all applicable actions. Hence, the strong cyclic adversarial
plans have about twice as manyOBDD nodes and take about twice as long time to
generate. But this slightly higher cost of generating a strong cyclic adversarial plan
pays off well in plan quality. The strong cyclic adversarial plan is guaranteed to achieve
the goal when choosing actions in the plan randomly. In contrast, the probability of
achieving the goal in the worst case for the strong cyclic plan is less than(23)N=2�1,
whereN is the number of states in the domain. Thus, for an adversarial environment
the probability of reaching the goal with a strong cyclic plan is practically zero, even
for small instances of the domain.

4 Relation to Stochastic Games
A stochastic gameis a tuple(n; S;A1:::n; T; R1:::n), wheren is the number of agents,S is the set of states,Ai is the set of actions available to playeri (andA is the joint
action spaceA1 � : : : � An), T is the transition functionS � A � S ! [0; 1], andRi is a reward function for theith agentS ! R. A solution to a stochastic game
is a stationary and possibly stochastic policy,� : S ! PD(Ai), for an agent in this
environment that maps states to a probability distribution over its actions. The goal is to
find such a policy that maximizes the agent’s future discounted reward. In a zero-sum
stochastic game, two agents have rewards adding up to a constant value, in particular,
zero. The value of a discounted stochastic game with discount factor is a vector of

5The experiment was carried out on a 500 MHz Pentium III PC with512 MB RAM running Red Hat
Linux 5.2.

273

0.01

0.1

1

10

100

4 16 64 256 1024 4096 16384 65536
Number of States

SCAP CPU Time/sec.
SCP CPU Time/sec.

SCAP Plan Size/OBDD nodes
SCP Plan Size/OBDD nodes

Figure 5: CPU time and plan size of strong cyclic and strong cyclic adversarial plans
as a function of domain size.

values, one for each state, satisfying the equation:V(s) = max�2PD(As) minae2Ae Xas2As �(as) Xs02S T (s; as; ae; s0) (R(s0) + V(s0))!
For positive stochastic games, the payoffs are summed without a discount factor, which
can be computed asV (s) = lim!1� V(s).

The derived stochastic game from a universal planning problem is given by the
following definition:

Definition 4 A derived stochastic gamefrom a planning problem,(T; I;G), is a zero-
sum stochastic game with states and actions identical to those ofthe planning problem.
Reward for the system agent is one when entering a state inG, zero otherwise. Transi-
tion probabilities,�T , are any assignment satisfying,�T (s; as; ae; s0) 2 (0; 1] if T (s; as; ae; s0)�T (s; as; ae; s0) = 0 otherwise

We can now prove the following two theorems:

Theorem 3 An optimistic adversarial plan exists if and only if, foranyderived stochas-
tic game, the value at all initial states is positive.

Proof: ()) We prove by induction on the level of a state. For a state,s, at level
one, we know the state is fair with respect to the goal states. So, for every action of
the environment, there exists an action of the system that transitionsto a goal state
with some non-zero probability. IfTmin is the smallest transition probability, then if
the system simply randomizes among its actions, it will receive a reward of one with
probability TminjAsj . Therefore,V (s) � TminjAsj > 0. Consider a state,s, at leveln. Sinces
is fair, we can use the same argument as above that the next state will be at alevel less
thann with probability TminjAsj . With the induction hypothesis, we get,V (s) � TminjAsj V (s0) > 0

274

Therefore, all states in the setV have a positive value. Since the algorithm terminates
with I � V , then all initial states have a positive value.(() Assume for some derived stochastic game that the value at all initial states is
positive. Consider running the optimistic adversarial planning algorithm and for, the
purpose of contradiction, assume the algorithm terminates withI 6� V . Consider the
states� =2 V that maximizesV(s�). We know that, since the algorithm terminated,s� must not be fair with respect toV . So there exists an action of the environment,ae,
such that, for allas, the next state will not be inV . So we can bound the value equation
by assuming the environment selects actionae,V(s�) � max� Xas2As �(as) Xs0 =2V T (s�; as; ae; s0) (V(s0))!

Notice that we do not have to sum over all possible next states since weknow the
transition probabilities to states inV are zero (by the selection ofae). We also know
that immediate rewards for states not inV are zero, since they are not goal states.
By our selection ofs� we know thatV(s0) must be smaller than the value ofs�. By
substituting this into the inequality we can pull it outside of the summations which now
sum to one. SoV (s�) = 0, as we need to satisfy:V(s�) � V(s�) � 1
Since any initial state is not inV , V (s�) must have value equal to zero, which is a
contradiction to our initial assumption. So, the algorithm must terminate withI � V ,
and therefore an optimistic adversarial plan exists. 2
Theorem 4 If a strong cyclic adversarial plan exists, then forany derived stochastic
game, the value at all initial states is 1.

Proof: Consider a policy� that selects actions with equal probability among the un-
pruned actions of the strong cyclic adversarial plan. For states not in the adversarial
plan select an action arbitrarily. We will compute the value of executing this policy,V � .

Consider a states in the strong cyclic adversarial plan such thatV � (s) is minimal.
LetL(s) = N be the level of this state. We know that this state is fair with respect tothe
states at level less thanN , and therefore (as in Theorem 1) the probability of reaching
a states0 with L(s0) � N � 1 when following policy� is at leastp = TminjAsj > 0. This
same argument can be repeated fors0, and so after two steps, with probability at leastp2, the state will bes00 whereL(s00) � L(s0) � 1 � N � 2. Repeating this, afterN
steps with probabilitypN , the state will besN whereL(sN) � L(s) �N � 0, sosN
must be a goal state and the system received a reward of one.

So we can consider the value at states when following the policy�. We know afterN steps if it has not reached a goal state it must be in some state still in the adversarial
plan due to the enforcement of the strong cyclic property. In essence, all actions with
outgoing transitions are pruned and therefore are never executed by�. The value of
this state by definition must be larger thanV � (s). Therefore,V � (s) � pNN � 1 + (1� pN)NV � (s)� NpN1� (1� pN)Nlim!1V � (s) � pN1� (1� pN) � 1

275

SoV �(s) = 1 and sinces is the state with minimal value, for any initial statesi,V �(si) = 1. SinceV (si) maximizes over all possible policies,V (si) = 1. 2
5 Conclusion
This paper contributes two newOBDD-based universal planning algorithms, namely
optimistic and strong cyclic adversarial planning. These algorithmsnaturally extend
the previous optimistic and strong cyclic algorithms to adversarial environments. We
have proved that, in contrast to optimistic plans, optimistic adversarial plans always
have a non-zero probability of reaching a goal state. Furthermore, we have proved
and shown empirically that, in contrast to strong cyclic plans, a strong cyclic adversar-
ial plan always eventually reach the goal. Finally, we introduced and proved several
relations between adversarial universal planning and positive stochastic games. An in-
teresting direction for future work is to investigate if adversarial planning can be used
to scale up the explicit-state approaches for solving stochastic games bypruning states
and transitions irrelevant for finding an optimal policy.

Acknowledgments
We wish to thank Scott Lenser for early discussions on this work. The research is sponsored in
part by the Danish Research Agency and the United States Air Force under Grants Nos F30602-
00-2-0549 and F30602-98-2-0135. The views and conclusionscontained in this document are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force, the Danish Research Agency, or the US Government.

References
[1] R. Bryant. Graph-based algorithms for boolean functionmanipulation.IEEE Transactions

on Computers, 8:677–691, 1986.

[2] A. Cimatti, M. Roveri, and P. Traverso. OBDD-based generation of universal plans in non-
deterministic domains. InProceedings of AAAI-98, pages 875–881. AAAI Press, 1998.

[3] A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic domains via
model checking. InProceedings of the 4th International Conference on Artificial Intelli-
gence Planning System (AIPS’98), pages 36–43. AAAI Press, 1998.

[4] E. Giunchiglia, G. Kartha, and Y. Lifschitz. Representing action: Indeterminacy and ramifi-
cations.Artificial Intelligence, 95:409–438, 1997.

[5] T. P. Hart and D. J. Edwards. The tree prune (TP) algorithm. Technical report, MIT, 1961.
Artificial Intelligence Project Memo 30.

[6] R. Jensen and M. Veloso. OBDD-based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intelligence Research, 13:189–226, 2000.

[7] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[8] M. Schoppers. Universal planning for reactive robots inunpredictable environments. In
Proceedings of IJCAI-87, pages 1039–1046, 1987.

[9] L. S. Shapley. Stochastic games.PNAS, 39:1095–1100, 1953.

276

