Solving I nformative Partially Observable M arkov
Decision Processes

Weihong Zhang andNevin L. Zhang

Department of Computer Science
Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong, China

Abstract. Solving Partially Observable Markov Decision Process€\PPs)
generally is computationally intractable. In this papez,study a special POMDP
class, namely informative POMDPSs, where each observatmriges good albeit
incomplete information about world states. We propose twgsamo accelerate
value iteration algorithm for such POMDPSs. First, dynamiocgzamming (DP)
updates can be carried out over a relatively small subsedlflspace. Conduct-
ing DP updates over subspace leads to two advantages: eptatsnal savings
in space and computational savings in time. Second, a paistd procedure is
used to cut down the number of iterations for value iterativar subspace to
converge. Empirical studies are presented to demonstaaiteug computational
gains.

1 Introduction

Partially Observable Markov Decision Processes (POMDPS) provide aajérzene-
work for Al planning problems where effects of actions are nondetertiuraad the
state of the world is not known with certainty. Unfortunately, sadvgeneral POMDPs
is computationally intractable [10]. For this reason, special classes BICHRS incur
much attention recently in the community(e.g., [8, 12]).

In this paper, we study a class of POMDPs, naniefgrmative POMDPswhere
any observation can restrict the world into a small set of states. InfaerfROMDPSs
come to be a median ground in terms of informative degree of obsamsatio one
extreme case, unobservable POMDPs assume that observations do i provin-
formation about world states(e.g.,[9]). In other words, an obsenvatnnot restrict the
world into any range of states. In another extreme case, fully observdbiRsMssume
that an observation restricts the world into a unique state.

For informative POMDPs, we propose two ways to accelerate value iter&iist,
for such POMDPs, we observe that dynamic programming(DP) update® azried
out over a subset of belief space. DP updates over a subset leads to two advantages
fewer vectors are in need to represent a value function over a subset;cdonaltat
savings are gained in computing sets of vectors representing valueofusotrer the
subset. Second, to further enhance our capability of solving inform&®MDPs, a
point-based procedure is integrated into value iteration over thees[ll8. The pro-
cedure effectively cuts down the number of iterations for value iteratiacotverge.

301

302

The integrated algorithm is able to solve an informative POMDP W5 states, 35
observations and 5 actions within 430 CPU seconds.

The rest of the paper is organized as follows. In next section, we unteoback-
ground knowledge and conventional notations. In Section 3, we digcabem char-
acteristics of informative POMDPs and problem examples in the litexaliuSection 4,
we show how the problem characteristics can be exploited in value iterSgation 5
reports experiments on comparing value iteration over belief space and sMeset of
it. In Section 6, we integrate the point-based procedure to valueidterater a subset
of belief space. In Section 7, we briefly discuss some related work.

2 Background

In a POMDP model, the environment is described by a set of statéthe agent
changes the states by executing one of a finite set of actlorg each point in time,
the world is in one state. Based on the information it has, the agent chooses and
executes an action. Consequently, it receives ammediate reward-(s,a) and the
world moves stochastically into another stateaccording to aransition probability
P(s'|s, a). Thereafter, the agent receives an observatifsom a finite setZ according
to anobservation probability?(z|s’, a). The process repeats itself.

Information that the agent has about the current state of the world camirea
rized by a probability distribution ove$ [1]. The probability distribution is called a
belief stateand is denoted by. The set of all possible belief states is called biedief
spaceand is denoted big. A belief subspacer simplysubspacés a subset oB. If the
agent observes after taking actior in belief stateb, its next belief staté’ is updated
as

b'(s') = kP(z]s',a) ZP(S'|s,a)b(s) 1)

wherek is a re-normalization constant. We will sometimes denote this new tstditf
by 7(b, a, z).

A policy prescribes an action for each possible belief state. In other words, it is
a mapping fromB to .4. Associated with policyr is its value functionV’ ™. For each
belief stateh, V™ (b) is the expected total discounted reward that the agent receives by
following the policy starting fromb, i.e. V™(b) = E; 4[> .-, A'r¢], wherer, is the
reward received at timeand\ (0<\ < 1) is thediscount factorlt is known that there
exists a policyr* such tha/ ™" (b) > V™ (b) for any other policyr and any belief state
b. Such a policy is called aaptimal policy The value function of an optimal policy
is called theoptimal value functionWe denote it byy*. For any positive numbet, a
policy 7 is e-optimal if V™ (b) + ¢ > V*(b) for any belief state.

The dynamic programming(DP) update operatdr maps a value functiofy” to
another value functioft'V' that is defined as follows: for artyin B,

TV (b) = mgx[r(b, a)+ A Z P(z|b,a)V(7(b,a, z))]

wherer(b,a) =), r(s,a)b(s) is the expected reward if actienis taken inb.

Value iterationis an algorithm for finding-optimal value functions. It starts with
an initial value functioriy and iterates using the formuld, = T'V,,_;. Value iteration
terminates when thBellman residuamax; |V,, (b) — V,,—1 (b)| falls belowe(1— X) /2.
When it does, the value functidr, is e-optimal.

Value functionV/, is piecewise linear and convex (PL&)d can be represented by a
finite set of|S|-dimensionalectorg11]. It is usually denoted by, . In value iteration,

a DP update computes a 88t representing/,+1 fromV,, representing/, .

3 Problem Characteristics

In general, a POMDP agent perceives the world by receiving observationsnétar
from any state, if the agent executes an actiand receives an observatienworld
states can be categorized into two classes by the observation model: stagsthean
reach and states it cannot. Formally, the set of reachable stét¢s s S andP(z|s, a) >
0}. We denote it byS,..

An [a, z] pair is said to benformativeif the size|S,.| is much smaller thanfS|.
Intuitively, if the pair[a, 2] is informative, after executing and receiving:, the agent
knows that the true world states are restricted into a small set. Analiisrrz is said
to beinformativeif [a, z] is informative for every actiom giving rise toz. Intuitively,
an observation is informative if it always gives the agent an good ideat atmnid
states regardless of the action executed at previous time point. A POME#d to
be informativeif all observations are informative. In other words, any observatien th
agent receives always provides it a good idea about world states. Sincesameation
is received at each time point, a POMDP agent always has a good albeit imperfect idea
about the world.

Informative POMDPs are especially suitable and appropriate for magaltiass
of problems. In this class, a problem state is described by a numbeiathes(fluents).
Some variables are observable while others are not. The possiblerassits to observ-
able variables form the observation space. A specific assignment to obseradables
restricts the world states into a small range of thensldtted Alohgprotocol problem
belongs to this class [2, 4]. Similar problem characteristics also exéshon-stationary
environment model proposed for reinforcement learning [7].

4 Exploiting Problem Characteristics

In this section, we show how informativeness can be exploited in véduation. We
start from belief subspace representation.

4.1 Belief subspace

We are interested in particular subspace tyqmdief simplexIt is specified by a list of
extreme belief state$he simplex with extreme belief statks b, ... b, consists of all
belief states of the forfy_+_, \;b; where); > 0 andy"F_| \; = 1.

Suppose the current belief statebidf the agent executes an actiorand receives
an observation, its next belief state is(b, a, z). If we vary the belief state in the belief

303

spaceB, we obtain a sefr(b,a, z)|b € B}. Abusing notation, we denote this set by
7(B, a, z). In words, no matter which belief state the agent starts from, if it receives
after performingg, its next belief state must be 5, a, z). Obviously,r (B, a, z) C B.

Belief states in the set(B, a, z) have nice property which can be explored in con-
text of informative POMDPSs. By belief state update equation, if staienot in the set
S, the beliefbt/(s") equals 0. The nonzero beliefs must distribute over statég.in
To reveal the relation between belief states and th&€ setwe define a subset &:

¢(B,a,z) = {b] Y_ b(s) = 1.0, Vs € S,z,b(s) > 0}.
SESaz

It can be proven that for any belief stabe (b, a,z) must be in the above set.
Therefore,r(B, a, z) is a subset ofp(B, a, z) for a pair[a, z]. It is easy to see that
¢(B, a, z) is a simplex in which each extreme point has probability mass on oree stat

We consider the union of subspates. #(3, a, z) for all possible combinations of
actions and observations. It consists of all the belief states the agent camssrcn
other words, the agent can never get out of this set. To ease presentatidmmate this
set by@(B, A, Z). Since each simplex in it is a subseti®ifso is¢(B, A, Z).

One example on belief space and subspaces is shown in Figure 1. A POMDP has
four states and four observations. Its belief region is the tetrahesB&@D where A,

B, C and D are extreme belief states. For simplicity, we also use thesesl&dtrefer

to the states. Suppose th@}. sets are independent of the actions. More specifically,
for any actiona, S,., = {4,B,C}, S.., = {4,B,D}, S.., = {4,C, D}, and
Suzs = {B,C, D}. In this POMDP, belief simplexes are four facets ABC, ABD, ACD
and BCD and belief subspagé3, A, Z) is the surface of the tetrahedron. We also note
that the subspacg3, A, Z) is much smaller thaf in size.

A

Belief space Belief simplexes

Fig. 1. Belief space, belief simplexes and belief subspace

4.2 Valuefunctionsover subspaces

A value functionV,, over belief spacé is a mapping from the belief spad¢®to real
line. Conceptually, for anyin B, V,,(b) is the maximum rewards the agent can receive
in n steps if it starts frond. Value function over subspacedefined similarly. An-step
value function over simplex(B, a, z) is a mapping from the simplex. We denote it by

V2522 Conceptually, for a belief statein subspace(B, a, z), Vi ®* (b) is the

304

maximum rewards the agent can receive if it starts florAn n-step value function
VP BAZ) (b) can be defined similarly and its domain is restricteg (8, A, Z).

Value functionV,, can be represented by a 3&t of |S|-dimensional vectors. ¥,
is restricted to a simplex(B, a, z), it is a value funcuorV"“B “%) over the simplex. It
preserves the PLC property and can be represented by a set of vectors. Froativie
POMDPs, the restriction will result in a representational advantage. fjadlgj for a
pair [a, z], since the beliefs over states outsilg are zero, we need to allocate only
|S..| components for a vector. Typically, a value function is represented byat gr
number of vectors. If one represents the same value function over aesintplould
lead to tremendous savings because the vectors are of smaller dimensions.

Given a collection{ VZ®**)} in which each sev?®**) is associated with an

underlying setS, ., defining a value funCt|0W¢(B A2) over subspace(B, A, Z) ex-
hibits a little bit difficulty. This is because the underlying &t contains different
states for differenta, z] pairs. It makes no sense if one defines the value function by
computing the inner product of a vector and a belief state because pdbsitdlimen-
sion of the vector differs from that of the belief state. We deﬁﬁéB’A’Z) this way: for
anybin ¢(B, A, Z),

VaEAR b) = v (v) e

where[a, 2] is a pair such thai € ¢(B,a,z). The setV¢(B 42) can be regarded as a
two-dimensional array of sets over simplexes. When it needs to determateesfor a
belief state, one (1) identifies a simplex containing it and (2) compb#sgélue using

the corresponding set of vectors. Obviously, thé/ﬁé?’““’z) represents value function
Vn¢(B’A’2).

4.3 DP update over subspace

In this subsection, we show how to conduct implicit DP update oveebslibspace.
The problem is cast as: given an arna@.g}&f‘@ representingfn¢(87““’2) over subspace

#(B, A, Z), how to compute an array?5%)2

To compute the séffﬁ AZ) , We construct one set,f (B.a',2") gor any possible pair

[@',2']. Before doing so, we recaII how DP update over behef space constructs a vecto
in setTV,,.

DP updatel'V,, computes a sé¥,,.1 from a current sev,. It is known that each
vector inV,; can be defined by a pair of action and a mapping from the set of ob-
servations to the séf,,. Let us denote the action byand the mapping by. For an
observatiorz, we used. to denote the mapped vector¥y. Given an actior: and a
mapping), the vector, denoted by, s, is defined as follows: for eachin S,

Ba,s5(s) =r(s,a) +/\ZZP s'|s,a)P(z|s',a)d.(s").

,/.

By enumerating all possible combinations of actions and mappings, ondefare
different vectors. All these vectors form a 3&t,1, i.e.,{fus5la € A,0 : Z = V,}. It
turns out that this set represents value funciign; .

305

306

We move forward to define a vectomf(s ,a’52") given an array)ﬂf(B’AZ). Similar

to the case in DP updafgV,,, a vector in sen)ff(ﬁ %) can be defined by a pair of
actiona and a mapping but with two important modifications. First, the mappihg
from set of observations to the arra’ﬁ(g AZ) Moreover, for an observation ¢, is a
vector inVZ’(B’“’Z). Second, the vector only need to be defined over th§ set To be
precise, given a pajt’, '], an actiors and a mapping, a vector, denoted by, 5, can
be defined as follows:

foreachs in S,/ .1,

Bas(s) =1(s,a) + XY > P(s']s,a)P(z]s',a)d.(s").

z §'€S,:

A couple of remarks are in order for the above definition. Figgt; has only|S,, .|
components. For states outsifig.., it is unnecessary to allocate space for them. Sec-
ond, given the action and observation, when we define the componesy ;(s), we
only need to account for next statesdp.. This is true because for other states the
probabilities of observing are zero. It is important to note that &), .- |-dimensional
vector 3, s is constructed by making use pf| vectors: these vectors are of different
dimensions because they come from different representing sets oveexsnpl

If we enumerate all possible combinations of actions and mappings abewegw
define various vectors. These vectors form a set

{Basla € A6 : 2 = VEBAZ) gz 5, € YeBay,

The setis denoted bW (B.a's2) The following lemma reveals the relation between the

set and value funcnob(fff a2,

i ¢(B,a,z) é(B,a,2)
Lemmal. For any pair [a, 2], the setV, '} represents value functioli,’,
over simplex)(B, a, z). O

For now, we are able to construct a seﬁ*“*z) for a pair[a, z]. A complete DP
update ovep(B, A, Z) needs to construct such sets for all possible pairs of actions and
observations. After these sets are constructed, they are pooled togetiren an array

Vﬁfﬁ’““’z). It induces a value function by (2). It can be proved that the alv}féﬁ’““z)
represents value functioVi,ﬁ(ff’A’Z) over the sety(B, A, Z). The following theorem
means that/,fff 2] defines the same value functionigs,, over the set (B, A, Z).

Theorem 1. Foranybin ¢(B, A, Z), Vﬁlf AZ) (b) = Viur1 (b). |

As a corollary of the above theorem, we remark that, i6 a belief state in the
intersection of two simplexes(B, a;, z1) and¢(B, as, z2) for two pairs|a;, z;1] and
[as, z2], VT (0) = VI ().

4.4 Complexity analysis

DP updat€el'V,, improves values for belief spad& while DP update of computing
V{’fﬁ’/"z) from V{’f(B’A’Z) improves values for subspagéB3, 4, Z). Since the sub-
space is much smaller thahin an informative POMDP, one expects:(1)fewer vectors
are in need to represent a value function over a subspace;(2)since keepingertefs
needs solve linear programs, this would lead to computational gainséndst. Our
empirical studies confirmed these two expectations.

45 Valueiteration over subspace

Value iteration over subspace starts with a value funcﬁﬁﬂg’“‘l’z). Each set in it is
initialized to contain a zero-vector ¢, |-dimension.

As value iteration continues, the Bellman Residual becomes smaller between two
consecutive value functions ove(B, A, Z). When the residual ovef(, A, Z) falls
below a predetermined threshold, it is also the case for the residual ovsmaplex.
This suggest that the stopping criterion depend on residuals ovelesiasp\When the
quantity max,, - Maxye g(5,q,2) |fo(fl’“’z)(b) — ygB®3))| the maximal difference
between two consecutive value functions over all simplexes, falls belbweatolds,
value iteration should terminate.

When value iteration terminates, it outputs the ahfﬁﬁp’““’z). A value functionV’
over the entire belief space can be defined by one step lookahead operatones follo

V(b) = max{r(b,a) + > P(z|b,a)Vi B (r(b,a,2))} V b e B. (3)

The value functio’” defined is said to bb’{’f(B’A’Z)-greedy

The hope is that e (BA2) s g good value function ovep(B, A4, Z), so is
V{’f(B’A’Z)—greedy value function. The following theorem shows how the thidsho
impacts the quality of value functio\vli’f(B’A’Z) andvﬁ(B’A’Z)-greedy value function.

Theorem 2. If n < (1 — A)/(2A|Z]) and value iteration over(B, A, Z) outputs

VZ’(B’A’Z), then Vﬁ(&““’z)-greedy value function ig-optimal over the entire belief
space. O

This theorem is important for two reasons. First, although valuatiter over subspace
computes a value function over a subset of belief spaoptimal value function over
the entire belief space can be obtained by one step lookahead operator. Seeand, d
the availability ofe-optimal value function oveB, the agent can use it to select action
for any belief state irB. This is true for any initial belief states. AlthoughB, 4, Z)
consists of all belief states the agent can encounter after receiving any obsenetio
initial belief state does not necessarily belong to this set. The theorpliegrhat the
V{’f(B’A’Z)—greedy value function can be used to guide the agent to select near optimal
action for any initial belief state.

Finally, we note that to guarantee theptimality, the threshold) (set toe(1 —
A)/(2\|Z])) in value iteration over subspace is smaller than that over belief space.

307

308

This stopping criterion is said to bstrict one. Ify is set to be:(1 — A)/(2)) for value
iteration over subspace, the condition islt@se stopping criteriorin our experiments,
we use the loose stopping criterion.

5 Experiments

Experiments have been designed to test the performances of value itergtiathais
with and without exploiting the informative characteristics. Herergmort results on a
3x3 grid world problem in Figure 2. It has nine states and the loc8{jorarked byx) is
the goal state. The grid is divided by three rows and three columnse Enetthree lo-
cations along any row or column. The agent can perform one of four nomlireation
moving actions or a declaring success action. After performing a movingnacdtie
agent reaches a neighboring location with probability 0.80 and stays sathe loca-
tion with probability 0.20. Reasonable constraints are imposed tonga@ctions. For
instance, if the agent is in location 0 and moves north, it stays at the seatioh. A
declare-success action does not change the agent’s location. After performiag-an
tion, the agent is informed of the column number with certainty. As stinghproblem
has three observations: col-0, col-1 and col-2. A move action incurs atektlf the
agent declares success in location 8, it receives a reward of 10;If it does dwein ot
locations, it receives a cost of -2.

Columns: 0,1,2.
Py,
=
2 0 |3 |6 N
o 1 |4 |7 W E
5 2 |5 |* S

Fig. 2. A 3x3 grid world

This POMDP is informative. If value iteration is conducted withoutleiing infor-
mativeness, one need to improve values over spaee{b| Zfzo b(s;) = 1.0}. Since
the observations are column numbers and independent of actions, DP apelaselb-
space need to account for three simplex®s= {b[>, 5., 3.0 b(s;) = 1.0} for
j=0,1,2 wheregj is the column number.

Our experiments are conducted on a SUN SPARC workstation. The difeator
is set to 0.95. The precision parameter is set to 0.000001. The quadityrement
is set to 0.01. We use the loose stopping criterion. In our exerisn incremental
pruning [12,5] is used to compute sets of vectors representing vahotidas over
belief space or subspace. For convenience, wevaseand VI to refer to the value
iteration algorithms with and without exploiting regularitiesgestively. We compare
VI andvI1 at each iteration along two dimensions: the size of set representing value
function and time cost to conduct a DP update. The results are presenigdiia 8.

le+07 T T T

100000 T T T T T
VI1: belief subspace —— VI1: subspace —
VI: belief space -o- 1e+06 F { VI: space o o

10000

ki

100000
10000 F
1000
1000

100 F

R SN

.
=)
S 3

7

R N

10 F:

CPU seconds(in log scale)

1k

0.1

sizes of sets representing value functions(in log scale)

L L L 0.01 L L L L
50 100 150 200 250 0 50 100 150 200 250
number of iterations number of iterations

N
o

Fig. 3. Comparative study on value iterations over belief spacebafidf subspace

The first chart in the figure depicts the number of vectors in log-scalergtad
at each iteration fovI andvIl. In VI, at each iteration, we collects the sizes of
sets representing value functions.\um1, we compute three sets representing value
functions over three simplexes and report the sum of the sizes of tiesesets. For
this problem, except the first iterationsI generates significantly more vectors than
VI1.InVI, after a severe growth, the number of vectors tends to be stable. tatds
value functions over belief space are represented by over 10,000 vectonstrargahe
number of vectors generated by 1 is much smaller. Our experiments show that the
maximum number is below 150. AfterT 1 terminates, the value function is represented
by only 28 vectors.

Due to the big difference between numbers of vectors generated byand vz,
V11 is significantly efficient thaw 1. This is demonstrated in the second chart in Fig-
ure 3. Note that CPU times in the figure are drawn in log-scale. Wheanterminates
after 207 iterations, it takes around 2,700 seconds. On average, one Bfe tgices
less than 13 seconds. For, it never terminates within reasonable time limit. By our
data, it takes 1,052,590 seconds for first 25 iterations. On average, eationt¢akes
around 42,000 seconds. Comparing withl, we see that11 is drastically efficient.

6 Integrating Point-based | mprovement

In this section, we integrate a point-based improving proceduevadtie iteration over
subspace and report our experiments on a larger POMDP problem.

6.1 Point-based improvement

The standard DP updateV is difficult because it has to account for infinite number of

belief states. However, given a §éand a belief state, computing the vector in the set

TV atb is much easier. This can be accomplished by using a so-dadleldip operatar
Given a sel of vectors, a point-based procedure heuristically generates a finite set

of belief points and backs up on the set to obtain a set of vectors. It igrassto have

309

this property: the value function represented by the set of backup véstoetter than
the input sel. Because the set of belief states are generated heuristically, point-based
improvements is much cheaper than DP improvements.

A point-based value iteration algorithm interleaves standard DP upditduenulti-
ple steps of point-based improvements. The standard DP update ehsuites toutput
value function is-optimal when value iteration terminates.

6.2 Backup operator

In value iteration over subspace, DP update compufég’A’Z) from VZ’(B’A’Z). To
do so, it computes the se’ff(g 95%) for each[a’, 2] pair. It is conceivable that this is
still not so easy becaugéB3, a’, z") usually consists of infinite number of belief states.

Consequently, it is necessary to design a point based procedureto éﬂlﬁf&ﬂ””
before itis fed to DP update over subspa¢g, o', z'). We can generate heuristically a
finite set of belief states in the simplex and back up on this set to obsainat vectors.
The key problem is, given a s’ ®4%) and a belief staté in ¢(B,d’,z"), how to
compute a vector in the svﬁfﬁ’“l’zl)? We can define a backup operator in this context.
The backup vector can be built by three steps as follows.

1. For each actiom and each observation, find the vector ianf(B’“’z) that has
maximum inner product with (b, a, z). Denote it by3,, ..
2. For each action, construct a vecta8, by: for eachs in the setS,. ./,

Ba(s) = sa+’yzz (s',2|s,a)Bq,2(s")

2€EZ 8'€Sq2

whereP(s', z|s, a) equals toP(s'|s, a) P(z|s, a).
3. Find the vector, among th#'s, that has maximum inner product withDenote it

by 3.
It can be proven that is a vector meﬁ) With the backup operator, before
the setVn ¢(B.0.2) is fed to DP update over subspace, it is improved by multiple steps of

point-based procedure. After these preliminary steps, the improvedrsetsd to DP
update over subspace. As such, we expect that the number of iterations ealuted
as value iteration converges.

6.3 Experiments

The problem is an extended version of the 3x3 grid world. It istithted in Figure 4.
It has 35 columns. The goal location is 104, marked«kg the figure. The agent is
informed of its column number. So the problem has 105 states, 35 aliseivand 5
actions. The transition and observation models are similar to th@eigrid world.

For simplicity, we useeB-vI1 andVv11 to refer to the algorithms conducting DP
over subspace with and without integration of point-based procedure.t® space

310

10

Columns: 0...34

Fig. 4. A 3x35 grid world

limit, we report only on the time cost of DP updatevanl andPB-VvI1. For conve-
nience, the time reported for a DP updatesf vI1 consists of two portions: the time
for multiple point-based improvements and the time for a DP update subspace.
The results are collected in Figure 5. Note that the time axis is dnatagiscale.

100000 T T T T

PB-VI1, sibspace+pb —
S subspace only -

10000 g E

1000

=
o
]

N
o

CPU seconds(in log scale)

-

0.1 Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40
number of iterations

Fig. 5. Comparative study on value iteration over subspace witbilatfpased improving

We see thav11 stand-alone is still insufficient to solve the problem. It takekelitt
time in first 15 iterations but the DP time grows later on. For instarfor the 20th
iteration, it takes 2,500 CPU seconds and for 27th iteration, it tak€9 $€conds. It is
believed that'I can by no means solve this problem.

The situation changes when the point-based procedure is integeatedI 1 con-
verges in 425 seconds after 36 DP updates (plus point-based improveaventsglief
subspace. On average, each iteration takes less than 15 seconds. It is muchafaster th
VI1.In addition,vI1 needs to run 207 iterations to converge for 3x3 grid world (men-
tioned in previous section). Taking this as a reference, we also noté¢hpbint-based
procedure is still efficient in cutting down the number of iterations/ol to converge.

7 Related Work and Future Directions

Our concept of informative POMDPs is very similar to that of regioriadeyvable
POMDPs in [12]. Both of them assume that any observation restrictsdhle into a

311

312

small set of states. In [12], a regional observable POMDP is proposgiproximate an
original POMDP and value iterations for regional observable POMD@sanducted
over the entire belief space. Our work focuses on accelerating value iteratioswech

POMDP class by restricting them over a subset of belief space.

The approach we use to exclude belief states from being considered warksikeu
that in reachability analysis (e.qg., see [6, 3]). In fully observable MBIB technique is
used to restrict value iteration over a small subset of state space. Evenghlttalue
iteration is restricted into a subspace for informative POMDPs, vesvdhat value
function of good quality over entire belief space can be obtained from vahetions
over its subset. In addition, as mentioned in Subsection 4.5, thefuamcion generated
by value iteration over subspace is guaranteed todygtimality without much effort.

Acknowledgments

This work has been supported by Research Grants Council of the Hong Keeips
Administrative Region, China (Project No. HKUST658 / 95E).

References

1. Astrom, K. J.(1965). Optimal control of Markov decisioropesses with incomplete state
estimationJournal of Mathematical Analysis and Applicatioi®), 403-406.

2. Bertsekas, D. P. and Gallagher, R. G.(198&ta NetworksPrentice Hall., Englewood Cliffs,
N. J..

3. Boutilier, C., Brafman, R. |. and Geib, C. (1998). Struetlireachability analysis for Markov
decision processes. Proceedings of UAI-98

4. Cassandra, A. R.(199&xact and approximate algorithms for partially observabarkov
decision processe®PhD Thesis, Department of Computer Science, Brown Urityers

5. Cassandra, A. R., Littman, M. L. and Zhang, N. L.(1997rémental pruning: A simple, fast,
exact method for partially observable Markov decision pesesProceedings of Thirteenth
Conference on Uncertainty in Atrtificial Intelligence4-61.

6. Dean, T., Kaelbling, L. P., Kirman, J. and Nicholson, A99%). Planning under time con-
straints in stochastic domaiArtificial Intelligence volume 76, number 1-2, Pages 35-74.

7. Choi, S.P.M,, Yeung, D. Y. and Zhang, NAn environment model for non-stationary rein-
forcement learningAdvances in Neural Information Processing Systems 126M\dB), 987-
993.

8. Hansen, E. A. (1998Finite-memory controls of partially observable systenD thesis,
Depart of Computer Science, University of Massachusetsrdterst.

9. Hauskrecht, M.(2000). Value-function approximatioos gartially observable Markov deci-
sion processesournal of Artificial Intelligence Research3, 33-94.

10. Papadimitriou, C. H. and Tsitsiklis, J. N.(1987). Thenptexity of Markov decision pro-
cessesMathematics of Operations Researtol. 12, No. 3, 441-450.

11. Sondik, E. J. (1971). The optimal control of partiallysebvable decision processes. Ph D
thesis, Stanford University, Stanford, California, USA.

12. Zhang, N. L. and Liu, W. (1997). A model approximationestie for planning in stochastic
domainsJournal of Artificial Intelligence Researcfi, 199-230.

13. Zhang, N. L. and Zhang, W. (2001). Speeding up the coeveryof value iteration in par-
tially observable Markov decision processésurnal of Artificial Intelligence Researchol.
14, 29-51.

