
Solving Informative Partially Observable Markov
Decision Processes

Weihong Zhang andNevin L. Zhang

Department of Computer Science
Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong, China

Abstract. Solving Partially Observable Markov Decision Processes (POMDPs)
generally is computationally intractable. In this paper, we study a special POMDP
class, namely informative POMDPs, where each observation provides good albeit
incomplete information about world states. We propose two ways to accelerate
value iteration algorithm for such POMDPs. First, dynamic programming (DP)
updates can be carried out over a relatively small subset of belief space. Conduct-
ing DP updates over subspace leads to two advantages: representational savings
in space and computational savings in time. Second, a point-based procedure is
used to cut down the number of iterations for value iterationover subspace to
converge. Empirical studies are presented to demonstrate various computational
gains.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a general frame-
work for AI planning problems where effects of actions are nondeterministic and the
state of the world is not known with certainty. Unfortunately, solving general POMDPs
is computationally intractable [10]. For this reason, special classes of POMDPs incur
much attention recently in the community(e.g., [8, 12]).

In this paper, we study a class of POMDPs, namelyinformative POMDPs, where
any observation can restrict the world into a small set of states. Informative POMDPs
come to be a median ground in terms of informative degree of observations. In one
extreme case, unobservable POMDPs assume that observations do not provide any in-
formation about world states(e.g.,[9]). In other words, an observation cannot restrict the
world into any range of states. In another extreme case, fully observable MDPs assume
that an observation restricts the world into a unique state.

For informative POMDPs, we propose two ways to accelerate value iteration. First,
for such POMDPs, we observe that dynamic programming(DP) updates can be carried
out over a subset of belief space. DP updates over a subset leads to two advantages:
fewer vectors are in need to represent a value function over a subset;computational
savings are gained in computing sets of vectors representing value functions over the
subset. Second, to further enhance our capability of solving informative POMDPs, a
point-based procedure is integrated into value iteration over the subset [13]. The pro-
cedure effectively cuts down the number of iterations for value iteration to converge.

301



The integrated algorithm is able to solve an informative POMDP with105 states, 35
observations and 5 actions within 430 CPU seconds.

The rest of the paper is organized as follows. In next section, we introduce back-
ground knowledge and conventional notations. In Section 3, we discussproblem char-
acteristics of informative POMDPs and problem examples in the literature. In Section 4,
we show how the problem characteristics can be exploited in value iteration. Section 5
reports experiments on comparing value iteration over belief space and over asubset of
it. In Section 6, we integrate the point-based procedure to value iteration over a subset
of belief space. In Section 7, we briefly discuss some related work.

2 Background

In a POMDP model, the environment is described by a set of statesS. The agent
changes the states by executing one of a finite set of actionsA. At each point in time,
the world is in one states. Based on the information it has, the agent chooses and
executes an actiona. Consequently, it receives animmediate rewardr(s; a) and the
world moves stochastically into another states0 according to atransition probabilityP (s0js; a). Thereafter, the agent receives an observationz from a finite setZ according
to anobservation probabilityP (zjs0; a). The process repeats itself.

Information that the agent has about the current state of the world can be summa-
rized by a probability distribution overS [1]. The probability distribution is called a
belief stateand is denoted byb. The set of all possible belief states is called thebelief
spaceand is denoted byB. A belief subspaceor simplysubspaceis a subset ofB. If the
agent observesz after taking actiona in belief stateb, its next belief stateb0 is updated
as b0(s0) = kP (zjs0; a)Xs P (s0js; a)b(s) (1)

wherek is a re-normalization constant. We will sometimes denote this new beliefstate
by �(b; a; z).

A policy prescribes an action for each possible belief state. In other words, it is
a mapping fromB to A. Associated with policy� is its value functionV �. For each
belief stateb, V �(b) is the expected total discounted reward that the agent receives by
following the policy starting fromb, i.e. V �(b) = E�;b[P1t=0 �trt], wherert is the
reward received at timet and� (0�� < 1) is thediscount factor. It is known that there
exists a policy�� such thatV ��(b) � V �(b) for any other policy� and any belief stateb. Such a policy is called anoptimal policy. The value function of an optimal policy
is called theoptimal value function. We denote it byV �. For any positive number�, a
policy � is �-optimal if V �(b) + � � V �(b) for any belief stateb.

The dynamic programming(DP) update operatorT maps a value functionV to
another value functionTV that is defined as follows: for anyb in B,TV (b) = maxa [r(b; a) + �Xz P (zjb; a)V (�(b; a; z))]
wherer(b; a) =Ps r(s; a)b(s) is the expected reward if actiona is taken inb.

302



Value iterationis an algorithm for finding�-optimal value functions. It starts with
an initial value functionV0 and iterates using the formula:Vn = TVn�1. Value iteration
terminates when theBellman residualmaxb jVn(b)�Vn�1(b)j falls below�(1��)=2�.
When it does, the value functionVn is �-optimal.

Value functionVn is piecewise linear and convex (PLC)and can be represented by a
finite set ofjSj-dimensionalvectors[11]. It is usually denoted byVn. In value iteration,
a DP update computes a setVn+1 representingVn+1 fromVn representingVn.

3 Problem Characteristics

In general, a POMDP agent perceives the world by receiving observations. Starting
from any state, if the agent executes an actiona and receives an observationz, world
states can be categorized into two classes by the observation model: states theagent can
reach and states it cannot. Formally, the set of reachable states isfsjs 2 S andP (zjs; a) >0g. We denote it bySaz.

An [a; z] pair is said to beinformativeif the sizejSaz j is much smaller thanjSj.
Intuitively, if the pair[a; z] is informative, after executinga and receivingz, the agent
knows that the true world states are restricted into a small set. An observationz is said
to beinformativeif [a; z] is informative for every actiona giving rise toz. Intuitively,
an observation is informative if it always gives the agent an good idea about world
states regardless of the action executed at previous time point. A POMDPis said to
be informativeif all observations are informative. In other words, any observation the
agent receives always provides it a good idea about world states. Since one observation
is received at each time point, a POMDP agent always has a good albeit imperfect idea
about the world.

Informative POMDPs are especially suitable and appropriate for modeling a class
of problems. In this class, a problem state is described by a number of variables(fluents).
Some variables are observable while others are not. The possible assignments to observ-
able variables form the observation space. A specific assignment to observable variables
restricts the world states into a small range of them. Aslotted Alohaprotocol problem
belongs to this class [2, 4]. Similar problem characteristics also exist in a non-stationary
environment model proposed for reinforcement learning [7].

4 Exploiting Problem Characteristics

In this section, we show how informativeness can be exploited in value iteration. We
start from belief subspace representation.

4.1 Belief subspace

We are interested in particular subspace type:belief simplex. It is specified by a list of
extreme belief states. The simplex with extreme belief statesb1, b2, ...,bk consists of all
belief states of the form

Pki=1 �ibi where�i � 0 and
Pki=1 �i = 1.

Suppose the current belief state isb. If the agent executes an actiona and receives
an observationz, its next belief state is�(b; a; z). If we vary the belief state in the belief

303



spaceB, we obtain a setf�(b; a; z)jb 2 Bg. Abusing notation, we denote this set by�(B; a; z). In words, no matter which belief state the agent starts from, if it receivesz
after performinga, its next belief state must be in�(B; a; z). Obviously,�(B; a; z) � B.

Belief states in the set�(B; a; z) have nice property which can be explored in con-
text of informative POMDPs. By belief state update equation, if states0 is not in the setSaz , the beliefb0(s0) equals 0. The nonzero beliefs must distribute over states inSaz.
To reveal the relation between belief states and the setSaz , we define a subset ofB:�(B; a; z) = fbj Xs2Saz b(s) = 1:0; 8s 2 Saz; b(s) � 0g:

It can be proven that for any belief stateb, �(b; a; z) must be in the above set.
Therefore,�(B; a; z) is a subset of�(B; a; z) for a pair [a; z]. It is easy to see that�(B; a; z) is a simplex in which each extreme point has probability mass on one state.

We consider the union of subspaces[a;z�(B; a; z) for all possible combinations of
actions and observations. It consists of all the belief states the agent can encounter. In
other words, the agent can never get out of this set. To ease presentation, wedenote this
set by�(B;A;Z). Since each simplex in it is a subset ofB, so is�(B;A;Z).

One example on belief space and subspaces is shown in Figure 1. A POMDP has
four states and four observations. Its belief region is the tetrahedronABCD where A,
B, C and D are extreme belief states. For simplicity, we also use these letters to refer
to the states. Suppose thatSaz sets are independent of the actions. More specifically,
for any actiona, Saz0 = fA;B;Cg, Saz1 = fA;B;Dg, Saz2 = fA;C;Dg, andSaz3 = fB;C;Dg. In this POMDP, belief simplexes are four facets ABC, ABD, ACD
and BCD and belief subspace�(B;A;Z) is the surface of the tetrahedron. We also note
that the subspace�(B;A;Z) is much smaller thanB in size.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

B C

D

A

B C

A

B

A

D

C

D
Z

Z Z

Z
1

2 3

4

Belief simplexesBelief space

Fig. 1. Belief space, belief simplexes and belief subspace

4.2 Value functions over subspaces

A value functionVn over belief spaceB is a mapping from the belief spaceB to real
line. Conceptually, for anyb in B, Vn(b) is the maximum rewards the agent can receive
in n steps if it starts fromb. Value function over subspaceis defined similarly. An-step
value function over simplex�(B; a; z) is a mapping from the simplex. We denote it byV �(B;a;z)n . Conceptually, for a belief stateb in subspace�(B; a; z), V �(B;a;z)n (b) is the

304



maximum rewards the agent can receive if it starts fromb. An n-step value functionV �(B;A;Z)n (b) can be defined similarly and its domain is restricted to�(B;A;Z).
Value functionVn can be represented by a setVn of jSj-dimensional vectors. IfVn

is restricted to a simplex�(B; a; z), it is a value functionV �(B;a;z)n over the simplex. It
preserves the PLC property and can be represented by a set of vectors. For informative
POMDPs, the restriction will result in a representational advantage. Specifically, for a
pair [a; z], since the beliefs over states outsideSaz are zero, we need to allocate onlyjSaz j components for a vector. Typically, a value function is represented by a great
number of vectors. If one represents the same value function over a simplex, it would
lead to tremendous savings because the vectors are of smaller dimensions.

Given a collectionfV�(B;a;z)n g in which each setV�(B;a;z)n is associated with an
underlying setSaz , defining a value functionV�(B;A;Z)n over subspace�(B;A;Z) ex-
hibits a little bit difficulty. This is because the underlying setSaz contains different
states for different[a; z] pairs. It makes no sense if one defines the value function by
computing the inner product of a vector and a belief state because possiblythe dimen-
sion of the vector differs from that of the belief state. We defineV�(B;A;Z)n this way: for
anyb in �(B;A;Z), V�(B;A;Z)n (b) = V�(B;a;z)n (b) (2)

where[a; z] is a pair such thatb 2 �(B; a; z). The setV�(B;A;Z)n can be regarded as a
two-dimensional array of sets over simplexes. When it needs to determine avalue for a
belief state, one (1) identifies a simplex containing it and (2) computes the value using
the corresponding set of vectors. Obviously, the setV�(B;A;Z)n represents value functionV �(B;A;Z)n .

4.3 DP update over subspace

In this subsection, we show how to conduct implicit DP update over belief subspace.
The problem is cast as: given an arrayV�(B;A;Z)n representingV �(B;A;Z)n over subspace�(B;A;Z), how to compute an arrayV�(B;A;Z)n+1 ?

To compute the setV�(B;A;Z)n+1 , we construct one setV�(B;a0;z0)n+1 for any possible pair[a0; z0]. Before doing so, we recall how DP update over belief space constructs a vector
in setTVn.

DP updateTVn computes a setVn+1 from a current setVn. It is known that each
vector inVn+1 can be defined by a pair of action and a mapping from the set of ob-
servations to the setVn. Let us denote the action bya and the mapping by�. For an
observationz, we use�z to denote the mapped vector inVn. Given an actiona and a
mapping�, the vector, denoted by�a;�, is defined as follows: for eachs in S,�a;�(s) = r(s; a) + �Xz Xs0 P (s0js; a)P (zjs0; a)�z(s0):
By enumerating all possible combinations of actions and mappings, one candefine
different vectors. All these vectors form a setVn+1, i.e.,f�a;�ja 2 A; � : Z ! Vng. It
turns out that this set represents value functionVn+1.

305



We move forward to define a vector inV�(B;a0;z0)n+1 given an arrayV�(B;A;Z)n . Similar

to the case in DP updateTVn, a vector in setV�(B;a0;z0)n+1 can be defined by a pair of
actiona and a mapping� but with two important modifications. First, the mapping� is
from set of observations to the arrayV�(B;A;Z)n . Moreover, for an observationz, �z is a
vector inV�(B;a;z)n . Second, the vector only need to be defined over the setSa0z0 . To be
precise, given a pair[a0; z0], an actiona and a mapping�, a vector, denoted by�a;�, can
be defined as follows:

for eachs in Sa0z0 ,�a;�(s) = r(s; a) + �Xz Xs02Saz P (s0js; a)P (zjs0; a)�z(s0):
A couple of remarks are in order for the above definition. First,�a;� has onlyjSa0z0 j

components. For states outsideSa0z0 , it is unnecessary to allocate space for them. Sec-
ond, given the actiona and observationz, when we define the component�a;�(s), we
only need to account for next states inSaz. This is true because for other states the
probabilities of observingz are zero. It is important to note that anjSa0z0 j-dimensional
vector�a;� is constructed by making use ofjZj vectors: these vectors are of different
dimensions because they come from different representing sets over simplexes.

If we enumerate all possible combinations of actions and mappings above, we can
define various vectors. These vectors form a setf�a;�ja 2 A; � : Z ! V�(B;A;Z)n & 8z; �z 2 V�(B;a;z)n g:
The set is denoted byV�(B;a0;z0)n+1 . The following lemma reveals the relation between the

set and value functionV �(B;a0;z0)n+1 .

Lemma 1. For any pair [a; z], the setV�(B;a;z)n+1 represents value functionV �(B;a;z)n+1
over simplex�(B; a; z). ut

For now, we are able to construct a setV�(B;a;z)n+1 for a pair [a; z]. A complete DP
update over�(B;A;Z) needs to construct such sets for all possible pairs of actions and
observations. After these sets are constructed, they are pooled together to form an arrayV�(B;A;Z)n+1 . It induces a value function by (2). It can be proved that the arrayV�(B;A;Z)n+1
represents value functionV �(B;A;Z)n+1 over the set�(B;A;Z). The following theorem

means thatV �(B;A;Z)n+1 defines the same value function asVn+1 over the set�(B;A;Z).
Theorem 1. For anyb in �(B;A;Z), V �(B;A;Z)n+1 (b) = Vn+1(b). ut

As a corollary of the above theorem, we remark that, ifb is a belief state in the
intersection of two simplexes�(B; a1; z1) and�(B; a2; z2) for two pairs[a1; z1] and[a2; z2], V �(B;a1;z1)n+1 (b) = V �(B;a2;z2)n+1 (b).

306



4.4 Complexity analysis

DP updateTVn improves values for belief spaceB, while DP update of computingV�(B;A;Z)n+1 from V�(B;A;Z)n improves values for subspace�(B;A;Z). Since the sub-
space is much smaller thanB in an informative POMDP, one expects:(1)fewer vectors
are in need to represent a value function over a subspace;(2)since keeping useful vectors
needs solve linear programs, this would lead to computational gains in time cost. Our
empirical studies confirmed these two expectations.

4.5 Value iteration over subspace

Value iteration over subspace starts with a value functionV�(B;A;Z)0 . Each set in it is
initialized to contain a zero-vector ofjSaz j-dimension.

As value iteration continues, the Bellman Residual becomes smaller between two
consecutive value functions over�(B;A;Z). When the residual over�(B;A;Z) falls
below a predetermined threshold, it is also the case for the residual over any simplex.
This suggest that the stopping criterion depend on residuals over simplexes. When the
quantitymaxa;z maxb2�(B;a;z) jV�(B;a;z)n+1 (b) � V�(B;a;z)n (b)j, the maximal difference
between two consecutive value functions over all simplexes, falls below a threshold�,
value iteration should terminate.

When value iteration terminates, it outputs the arrayV�(B;A;Z)n . A value functionV
over the entire belief space can be defined by one step lookahead operator as follows:V (b) = maxa fr(b; a) +Xz P (zjb; a)V�(B;a;z)n (�(b; a; z))g 8 b 2 B: (3)

The value functionV defined is said to beV�(B;A;Z)n -greedy.
The hope is that ifV�(B;A;Z)n is a good value function over�(B;A;Z), so isV�(B;A;Z)n -greedy value function. The following theorem shows how the threshold �

impacts the quality of value functionV�(B;A;Z)n andV�(B;A;Z)n -greedy value function.

Theorem 2. If � � �(1 � �)=(2�jZj) and value iteration over�(B;A;Z) outputsV�(B;A;Z)n , thenV�(B;A;Z)n -greedy value function is�-optimal over the entire belief
space. ut
This theorem is important for two reasons. First, although value iteration over subspace
computes a value function over a subset of belief space,�-optimal value function over
the entire belief space can be obtained by one step lookahead operator. Second, due to
the availability of�-optimal value function overB, the agent can use it to select action
for any belief state inB. This is true for any initial belief states. Although�(B;A;Z)
consists of all belief states the agent can encounter after receiving any observation, the
initial belief state does not necessarily belong to this set. The theorem implies that theV�(B;A;Z)n -greedy value function can be used to guide the agent to select near optimal
action for any initial belief state.

Finally, we note that to guarantee the�-optimality, the threshold� (set to�(1 ��)=(2�jZj)) in value iteration over subspace is smaller than that over belief space.

307



This stopping criterion is said to bestrict one. If� is set to be�(1� �)=(2�) for value
iteration over subspace, the condition is theloose stopping criterion. In our experiments,
we use the loose stopping criterion.

5 Experiments

Experiments have been designed to test the performances of value iteration algorithms
with and without exploiting the informative characteristics. Here wereport results on a
3x3 grid world problem in Figure 2. It has nine states and the location8(marked by�) is
the goal state. The grid is divided by three rows and three columns. There are three lo-
cations along any row or column. The agent can perform one of four nominal-direction
moving actions or a declaring success action. After performing a moving action, the
agent reaches a neighboring location with probability 0.80 and stays at thesame loca-
tion with probability 0.20. Reasonable constraints are imposed to moving actions. For
instance, if the agent is in location 0 and moves north, it stays at the same location. A
declare-success action does not change the agent’s location. After performing any ac-
tion, the agent is informed of the column number with certainty. As such, the problem
has three observations: col-0, col-1 and col-2. A move action incurs a costof -1. If the
agent declares success in location 8, it receives a reward of 10;If it does so in other
locations, it receives a cost of -2.

E

N

S
W

*

0 3

4

5

1

2

7

6

Columns: 0,1,2.R
ow

s
:0,1,2

Fig. 2. A 3x3 grid world

This POMDP is informative. If value iteration is conducted without exploiting infor-
mativeness, one need to improve values over spaceB(= fbjP8i=0 b(si) = 1:0g. Since
the observations are column numbers and independent of actions, DP updateover sub-
space need to account for three simplexes:Bj = fbjP3j;3j+1;3j+2 b(sj) = 1:0g for
j=0,1,2 wherej is the column number.

Our experiments are conducted on a SUN SPARC workstation. The discount factor
is set to 0.95. The precision parameter is set to 0.000001. The quality requirement�
is set to 0.01. We use the loose stopping criterion. In our experiments, incremental
pruning [12, 5] is used to compute sets of vectors representing value functions over
belief space or subspace. For convenience, we useVI1 andVI to refer to the value
iteration algorithms with and without exploiting regularities respectively. We compare
VI andVI1 at each iteration along two dimensions: the size of set representing value
function and time cost to conduct a DP update. The results are presented in Figure 3.

308



1

10

100

1000

10000

100000

0 50 100 150 200 250si
ze

s 
of

 s
et

s 
re

pr
es

en
tin

g 
va

lu
e 

fu
nc

tio
ns

(in
 lo

g 
sc

al
e)

number of iterations

VI1: belief subspace
VI: belief space

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

0 50 100 150 200 250

C
P

U
 s

ec
on

ds
(in

 lo
g 

sc
al

e)

number of iterations

VI1: subspace
VI: space

Fig. 3. Comparative study on value iterations over belief space andbelief subspace

The first chart in the figure depicts the number of vectors in log-scale generated
at each iteration forVI andVI1. In VI, at each iteration, we collects the sizes of
sets representing value functions. InVI1, we compute three sets representing value
functions over three simplexes and report the sum of the sizes of these three sets. For
this problem, except the first iterations,VI generates significantly more vectors than
VI1. In VI, after a severe growth, the number of vectors tends to be stable. In thiscase,
value functions over belief space are represented by over 10,000 vectors. In contrary, the
number of vectors generated byVI1 is much smaller. Our experiments show that the
maximum number is below 150. AfterVI1 terminates, the value function is represented
by only 28 vectors.

Due to the big difference between numbers of vectors generated byVI1 andVI,
VI1 is significantly efficient thanVI. This is demonstrated in the second chart in Fig-
ure 3. Note that CPU times in the figure are drawn in log-scale. WhenVI1 terminates
after 207 iterations, it takes around 2,700 seconds. On average, one DP update takes
less than 13 seconds. ForVI, it never terminates within reasonable time limit. By our
data, it takes 1,052,590 seconds for first 25 iterations. On average, each iteration takes
around 42,000 seconds. Comparing withVI1, we see thatVI1 is drastically efficient.

6 Integrating Point-based Improvement

In this section, we integrate a point-based improving procedure into value iteration over
subspace and report our experiments on a larger POMDP problem.

6.1 Point-based improvement

The standard DP updateTV is difficult because it has to account for infinite number of
belief states. However, given a setV and a belief stateb, computing the vector in the setTV atb is much easier. This can be accomplished by using a so-calledbackup operator.

Given a setV of vectors, a point-based procedure heuristically generates a finite set
of belief points and backs up on the set to obtain a set of vectors. It is designed to have

309



this property: the value function represented by the set of backup vectorsis better than
the input setV . Because the set of belief states are generated heuristically, point-based
improvements is much cheaper than DP improvements.

A point-based value iteration algorithm interleaves standard DP update with multi-
ple steps of point-based improvements. The standard DP update ensures that the output
value function is�-optimal when value iteration terminates.

6.2 Backup operator

In value iteration over subspace, DP update computesV�(B;A;Z)n+1 from V�(B;A;Z)n . To

do so, it computes the setV�(B;a0;z0)n+1 for each[a0; z0] pair. It is conceivable that this is
still not so easy because�(B; a0; z0) usually consists of infinite number of belief states.

Consequently, it is necessary to design a point based procedure to improveV�(B;a0;z0)n
before it is fed to DP update over subspace�(B; a0; z0). We can generate heuristically a
finite set of belief states in the simplex and back up on this set to obtain aset of vectors.
The key problem is, given a setV�(B;A;Z)n and a belief stateb in �(B; a0; z0), how to

compute a vector in the setV�(B;a0;z0)n+1 ? We can define a backup operator in this context.
The backup vector can be built by three steps as follows.

1. For each actiona and each observationz, find the vector inV�(B;a;z)n that has
maximum inner product with�(b; a; z). Denote it by�a;z.

2. For each actiona, construct a vector�a by: for eachs in the setSa0z0 ,�a(s) = r(s; a) + Xz2Z Xs02Saz P (s0; zjs; a)�a;z(s0)
whereP (s0; zjs; a) equals toP (s0js; a)P (zjs; a).

3. Find the vector, among the�a’s, that has maximum inner product withb. Denote it
by �.

It can be proven that� is a vector inV�(B;a0;z0)n+1 . With the backup operator, before

the setV�(B;a;z)n is fed to DP update over subspace, it is improved by multiple steps of
point-based procedure. After these preliminary steps, the improved setsare fed to DP
update over subspace. As such, we expect that the number of iterations can be reduced
as value iteration converges.

6.3 Experiments

The problem is an extended version of the 3x3 grid world. It is illustrated in Figure 4.
It has 35 columns. The goal location is 104, marked by� in the figure. The agent is
informed of its column number. So the problem has 105 states, 35 observations and 5
actions. The transition and observation models are similar to those in3x3 grid world.

For simplicity, we usePB-VI1 andVI1 to refer to the algorithms conducting DP
over subspace with and without integration of point-based procedure. Due to space

310



*

0 3 6 9

2

1
102
103

Columns: 0...34

Fig. 4. A 3x35 grid world

limit, we report only on the time cost of DP update inVI1 andPB-VI1. For conve-
nience, the time reported for a DP update ofPB-VI1 consists of two portions: the time
for multiple point-based improvements and the time for a DP update over subspace.
The results are collected in Figure 5. Note that the time axis is drawn in log-scale.

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40

C
P

U
 s

ec
on

ds
(in

 lo
g 

sc
al

e)

number of iterations

PB-VI1: subspace+pb
VI1: subspace only

Fig. 5. Comparative study on value iteration over subspace with/o point-based improving

We see thatVI1 stand-alone is still insufficient to solve the problem. It takes little
time in first 15 iterations but the DP time grows later on. For instance, for the 20th
iteration, it takes 2,500 CPU seconds and for 27th iteration, it takes 9,000 seconds. It is
believed thatVI can by no means solve this problem.

The situation changes when the point-based procedure is integrated.PB-VI1 con-
verges in 425 seconds after 36 DP updates (plus point-based improvements)over belief
subspace. On average, each iteration takes less than 15 seconds. It is much faster than
VI1. In addition,VI1 needs to run 207 iterations to converge for 3x3 grid world (men-
tioned in previous section). Taking this as a reference, we also note that the point-based
procedure is still efficient in cutting down the number of iterations for VI1 to converge.

7 Related Work and Future Directions

Our concept of informative POMDPs is very similar to that of regional observable
POMDPs in [12]. Both of them assume that any observation restricts theworld into a

311



small set of states. In [12], a regional observable POMDP is proposed to approximate an
original POMDP and value iterations for regional observable POMDPs are conducted
over the entire belief space. Our work focuses on accelerating value iterations for such
POMDP class by restricting them over a subset of belief space.

The approach we use to exclude belief states from being considered works much like
that in reachability analysis (e.g., see [6, 3]). In fully observable MDP, this technique is
used to restrict value iteration over a small subset of state space. Even although value
iteration is restricted into a subspace for informative POMDPs, we show that value
function of good quality over entire belief space can be obtained from valuefunctions
over its subset. In addition, as mentioned in Subsection 4.5, the valuefunction generated
by value iteration over subspace is guaranteed to be�-optimality without much effort.

Acknowledgments

This work has been supported by Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. HKUST658 / 95E).

References

1. Astrom, K. J.(1965). Optimal control of Markov decision processes with incomplete state
estimation.Journal of Mathematical Analysis and Applications, 10, 403-406.

2. Bertsekas, D. P. and Gallagher, R. G.(1995).Data Networks. Prentice Hall., Englewood Cliffs,
N. J..

3. Boutilier, C., Brafman, R. I. and Geib, C. (1998). Structured reachability analysis for Markov
decision processes. InProceedings of UAI-98.

4. Cassandra, A. R.(1998).Exact and approximate algorithms for partially observableMarkov
decision processes. PhD Thesis, Department of Computer Science, Brown University.

5. Cassandra, A. R., Littman, M. L. and Zhang, N. L.(1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes.Proceedings of Thirteenth
Conference on Uncertainty in Artificial Intelligence, 54-61.

6. Dean, T., Kaelbling, L. P., Kirman, J. and Nicholson, A. (1995). Planning under time con-
straints in stochastic domain.Artificial Intelligence, volume 76, number 1-2, Pages 35-74.

7. Choi, S.P.M., Yeung, D. Y. and Zhang, N.L.An environment model for non-stationary rein-
forcement learning. Advances in Neural Information Processing Systems 12(NIPS-99), 987-
993.

8. Hansen, E. A. (1998).Finite-memory controls of partially observable systems.PhD thesis,
Depart of Computer Science, University of Massachusetts atAmherst.

9. Hauskrecht, M.(2000). Value-function approximations for partially observable Markov deci-
sion processes.Journal of Artificial Intelligence Research, 13, 33-94.

10. Papadimitriou, C. H. and Tsitsiklis, J. N.(1987). The complexity of Markov decision pro-
cesses.Mathematics of Operations Research, Vol. 12, No. 3, 441-450.

11. Sondik, E. J. (1971). The optimal control of partially observable decision processes. Ph D
thesis, Stanford University, Stanford, California, USA.

12. Zhang, N. L. and Liu, W. (1997). A model approximation scheme for planning in stochastic
domains.Journal of Artificial Intelligence Research, 7, 199-230.

13. Zhang, N. L. and Zhang, W. (2001). Speeding up the convergence of value iteration in par-
tially observable Markov decision processes.Journal of Artificial Intelligence Research, Vol.
14, 29-51.

312


