
Improved Integer Programming Models andHeuristic Search for AI PlanningYannis DimopoulosDepartment of Computer ScienceUniversity of CyprusCY-1678, Nicosia, Cyprusyannis@cs.ucy.ac.cyAbstract. Motivated by the requirements of many real-life applications,recent research in AI planning has shown a growing interest in tacklingproblems that involve numeric constraints and complex optimization ob-jectives. Applying Integer Programming (IP) to such domains seems tohave a signi�cant potential, since it can naturally accommodate theirrepresentational requirements. In this paper we explore the area of ap-plying IP to AI planning in two di�erent directions.First, we improve the domain-independent IP formulation of Vossen etal., by an extended exploitation of mutual exclusion relations betweenthe operators, and other information derivable by state of the art domainanalysis tools. This information may reduce the number of variables ofan IP model and tighten its constraints. Second, we link IP methods torecent work in heuristic search for planning, by introducing a variant ofFF's enforced hill-climbing algorithm that uses IP models as its under-lying representation. In addition to extending the delete lists heuristicto parallel planning and the more expressive language of IP, we alsointroduce a new heuristic based on the linear relaxation.1 IntroductionMany recent successful approaches to AI planning, including planning graphs [2],propositional satis�ability [11] and heuristic search [3], are essentially restrictedto planning domains representable in propositional logic. It seems however thatmany practical applications are beyond this representational framework, as theyrequire expressing features like resources, numeric constraints, costs associatedwith actions, and complex objectives. Integer Programming (IP), and its under-lying language of linear inequalities, seem to meet many of these requirements,at least from the representation perspective.The study of the relevance of IP techniques to AI planning has only recentlystarted to receive some attention. The LPSAT engine [16] integrates propositionalsatis�ability with an incremental Simplex algorithm; Lplan [6] uses the linear re-laxation as a heuristic in a partial-order causal-link planner; ILP-PLAN [12] usesIP models for solving problems with resources, actions costs and complex objec-tive functions; Bockmayr and Dimopoulos [5] show how IP models can be used to
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incorporate strong forms of domain knowledge and represent compactly numericconstraints; �nally, Vossen et al. [15] introduce a strong, domain-independent,method for translating STRIPS planning into IP models.The IP models intend to enhance previous approaches to AI planning, likeBLACKBOX or GRAPHPLAN , that essentially view planning as a constraint satisfac-tion problem. All these methods provide optimality guarantees for the solutionsthey generate, usually with respect to plan length. Recently, [13] and [3] intro-duced a new promising approach to AI planning that is based on heuristic search.Planners of this family, eg. [4, 10, 14], automatically extract heuristic functionsfrom a planning problem speci�cation and use it to guide the search for a solutionin the state space. These planners do not provide any optimality guarantees, un-less they employ admissible heuristics combined with optimal search algorithms,as eg. in [9].In this paper we extend previous work on using IP in AI planning in twodi�erent directions. First, we improve the IP formulation of [15]. Second, we linkIP methods to recent work in heuristic search for planning.In the �rst part of the paper we describe an improved formulation of STRIPSplanning, that exploits more fully the mutual exclusion relations between boththe operators and the 
uents, than this is done in [15]. Mutex information canstrongly in
uence the way a planning problem is translated into inequalities, asit can yield formulations with fewer variables and constraints. Moreover, richerforms of information that can be derived automatically by domain analysis tools[7,8], can further tighten the IP formulation of a planning domain.In the second part of the paper we present a variant of FF's [10] enforced hill-climbing algorithm that uses the IP models as its underlying representationallanguage and is capable of generating parallel plans. Moreover, we introduce anew method for heuristic evaluation, that is based on solving the linear relax-ation of the IP models, and compare it with the IP formulation of the deletelists relaxation method of FF.As one may expect, FF clearly outperforms the new heuristic methods in termof running speed. This can be attributed partly to the fact that FF �nds totally-ordered plans, while the new algorithms generate parallel plans. Moreover, whileFF and similar planners, utilize highly optimized special-purpose techniques tospeed-up heuristic evaluation, we rely on general purpose algorithms like Simplexand branch and bound. Nevertheless, generality has the advantage of extendedexpressiveness, as our approach can handle any domain representable in the lan-guage of linear inequalities. Moreover, we reiterate that the new algorithms gen-erate parallel plans, a feature that can increase their usability in domains thatare inherently parallel. This should be contrasted with most heuristic searchbased planners that generate totally-ordered plans, with the exception of recentwork by Haslum and Ge�ner [9]. Additionally, the IP models can easily accom-modate declarative domain knowledge and exploit it in the heuristic evaluation.Finally, IP formulations, combined with the linear relaxation heuristic allow usto implement a variety of strategies that o�er a tradeo� between search timeand solution quality.
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The paper is organized as follows. Section 2 presents very brie
y the IPformulation of [15] and then introduces the improved models. In section 3 wediscuss new heuristic search methods based on the IP models. In section 4 wepresent and discuss some experimental results with the new IP formulation andthe heuristic search algorithms, and in section 5 we conclude.2 IP Models for Planning ProblemsInteger Programming is a more general representation language than proposi-tional logic. In order to represent a general linear inequality exponentially manyclauses (in the number of variables) may be needed. Integer programming com-bines propositional logic with arithmetic and therefore allows for more compactformulations. On the other hand, any propositional clause x1_ : : :_xk _ �xk+1 _: : :_ �xk+l can be easily represented as a linear inequality x1+ : : :+ xk � xk+1�: : :� xk+l � 1� l in 0-1 variables. However, such a straightforward translationusually leads to poor performance. Problem solving with IP techniques oftenrequires a di�erent translation of a problem into linear inequalities. Deriving astrong model for the problem to be solved is a fundamental issue for successfullyapplying IP.As it is shown in [15] similar observations hold for AI planning. Instead ofsimply translating SAT encoding into linear inequalities, [15] presented a dif-ferent, substantially stronger, domain-independent IP formulation of planningproblems. A brief presentation of this approach follows (see [15] for details).2.1 Domain Independent ModelingAny STRIPS planning problem can be represented by a set of variables dividedinto action and state change variables. For each action a in the domain, weintroduce an action variable ya;i which assumes the value true if a is executed atperiod i, and false otherwise. For each 
uent f we de�ne four variables, namelyxaddf;i , xpre�addf;i , xpre�delf;i , xmaintainf;i . Variable xmaintainf;i encodes 'no-op' actions,while the other variables are de�ned as follows (symbol = denotes set di�erence).Xa2pref =delf ya;i � xpre�addf;i , ya;i � xpre�addf;i 8a 2 pref=delfXa2addf =pref ya;i � xaddf;i , ya;i � xaddf;i 8a 2 addf=prefXa2pref\delf ya;i = xpre�delf;iInformally, xaddf;i = 1 i� an action is executed at time point i that has f as anadd e�ect but not as a precondition. Similarly, xpre�addf;i = 1 i� an action isexecuted at time point i that has f as a precondition but does not delete it, andxpre�delf;i = 1 if this action has f both as a precondition and a delete e�ect.The constraints below prohibit parallel execution of mutually exclusive actions.
315



xaddf;i + xmaintainf;i + xpre�delf;i � 1xpre�addf;i + xmaintainf;i + xpre�delf;i � 1The explanatory frame axioms are encoded asxpre�addf;i + xmaintainf;i + xpre�delf;i � xaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1while the initial state constraints are represented by setting xaddf;0 to 1 if f is truein the initial state and 0 otherwise. Finally, if i 2 1; ::; t, for each goal f we addthe constraint xaddf;t + xmaintainf;t + xpre�addf;t � 1.2.2 Exploiting Domain StructureThe domain independent models of planning problems described above can besubstantially improved by exploiting properties of the speci�c planning domainat hand. In particular, by analyzing in greater detail than in [15] the mutualexclusion relations between the operators and the 
uents of a domain, we may beable to reduce the number of state-change variables and tighten the constraintsof the IP model. We assume the availability of suitable domain analysis toolscapable of identifying these relations, as those described eg. in [7, 8]. We describe�rst, two improvements that aim at reducing the number of variables of the IPmodel.{ For each 
uent f such that Xa2addf =pref ya;i � 1, de�ne xaddf;i as xaddf;i =Xa2addf =pref ya;i. This is a simple modi�cation that allows us to substituteout variable xaddf;i . Similar observations hold for the xpre�addf;i variables.{ Let f be a 
uent such that ya1 ;i + ya2 ;i � 1 holds for every pair of actionsa1 2 pref=delf and a2 2 addf=pref . Then merge xpre�addf;i and xmaintainf;isubstituting out variable xpre�addf;i . With this modi�cation we can omit allconstraints that refer to xpre�addf;i but we need to include constraints of theform ya;i � xmaintainf;i for all a 2 pref=delf that re
ect the new, extended,meaning of the xmaintainf;i variables.The �rst improvement is straightforward, while the second deserves somefurther discussion. Since every a1 2 pref=delf is mutually exclusive with everya2 2 addf=pref , the variables xpre�addf;i and xaddf;i , are also exclusive. Instead ofadding an additional constraint, we omit variable xpre�addf;i and \transfer" its rolein the model to the corresponding variable xmaintainf;i . Note that while exclusionconstraints of the form xpre�addf;i + xmaintainf;i + xpre�delf;i � 1 are dropped, theconstraints xaddf;i + xmaintainf;i + xpre�delf;i � 1 remain in the formulation, markingxaddf;i and xmaintainf;i (and therefore the deleted xpre�addf;i ) as mutually exclusive.
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We now discuss some techniques that can further tighten the IP model of aplanning domain.Our method is based on the derivation of single-valuedness andXOR constraints as described in [8]. We restrict our discussion to binary 
uents.A single valuedness constraint is a constraint of the form (f(y; �z); C(y)) statingthat for every value of variable y that satis�es constraint C(y) there can be onlyone value for (the \starred") variable �z. An XOR constraint is a constraint ofthe form (XOR f1(y; z); f2(y; u); C(y)) stating that for every state and for everyvalue of y satisfying C(y) either f1(y; z) or f2(y; u) must be true (for some valuesof z and u) but not both.{ Let f(y; z) be a binary 
uent for which the single-valuedness constraint(f(y; �z); C(y)) holds. Then, for each y that satis�es C(y), replace the set ofconstraints xaddf;i + xmaintainf;i + xpre�delf;i � 1 that refer to each possible valueof z, with a single constraintXz xaddf;i +Xz xmaintainf;i +Xz xpre�delf;i � 1whereXz denotes the sum over the domain of the second parameter of the
uent f , namely z.Going one step further we can exploit the XOR constraints and modify themutual exclusion constraints as follows.{ Let f1(y; �z) and f2(y; �u) be two single-valued 
uents on their second argu-ments, for which the constraint (XOR f1(y; z); f2(y; u); C(y)) holds. Then,replace all mutual exclusion constraints on f1 and f2 that refer to somespeci�c object satisfying C(y) with the constraintXz xaddf1;i +Xz xmaintainf1;i +Xz xpre�delf1;i +Xu xaddf2;i +Xu xmaintainf2;i +Xu xpre�delf2;i � 1Moreover, if the model does not contain any of the variables xpre�addf1;i andxpre�addf2;i (meaning that all actions that have f1 or f2 as a precondition, alsohave it as a delete e�ect), we can replace � in the above constraint with anequality.The following simpli�cation relates to the frame axioms.{ Let f be a 
uent such that every action that adds it, has f as its sole adde�ect. Then, if f is true at time i� 1 we can safely add the constraintxaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1 � xpre�addf;i + xmaintainf;i + xpre�delf;iwhich combined with the corresponding explanatory frame axiom, namely
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xpre�addf;i + xmaintainf;i + xpre�delf;i � xaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1gives rise to an equality of the formxpre�addf;i + xmaintainf;i + xpre�delf;i = xaddf;i�1 + xmaintainf;i�1 + xpre�addf;i�1To see that the above transformation is valid, note that if a 
uent f is true attime i � 1 (meaning that one of the xaddf;i�1, xmaintainf;i�1 , xpre�addf;i�1 is true), and allactions that add f have no other add e�ects, then assigning false to xaddf;i , doesnot have unwanted complications. In fact, if we adopt the above simpli�cation,xaddf;i will necessarily be assigned false, if f is true at time i � 1 and f does nothave an associated variable xpre�addf;i or this variable is assigned the value false.We note that the above transformation of the frame axioms into equalities canbe extended to more general cases, but we do not discuss this issue further.Example: Consider the rocket domain with the usual load and unload oper-ators for packages and fly for airplanes. We note that all actions that add infor packages are mutually exclusive, therefore the 
uent variables xaddin;i can besubstituted out and replaced by Xa2addin=prein ya;i, where a is a load action thatadds the corresponding in proposition. Similar constraints hold for at for bothplanes and packages, hence all corresponding xaddf;i can be omitted from the for-mulation. Now consider the variable xpre�addat;i corresponding to the 
uent at thatrefers to airplanes. Note that every action ai 2 preat=delat (ie. load and unloadactions) is mutually exclusive with every action aj 2 addat=preat (ie. 
y actions)and therefore we can merge xpre�addat;i with xmaintainat;i , by omitting all xpre�addat;iand adding the constraints yld;i � xmaintainat;i and yun;i � xmaintainat;i for the corre-sponding load (denoted as yld;i ) and unload (yun;i) actions.Moreover the single-valuedness of in(x; �y), where x refers to packages and yto planes, will tighten the mutual exclusion constraintXL yun;i + xmaintainin;i +XL yld;i � 1 into the stronger constraintXPl XL yun;i +XPl xmaintainin;i +XPl XL yld;i � 1wherePPl denotes sum over all planes andPL, sum over all locations. A similarconstraint can be derived for 
uent at that refers to packages being at locations.Since 
uents in and at are related with a XOR constraint (meaning that, at eachtime, a package must be in some plane, or at some location but not both) wecan combine the two constraints and deriveXPl XL yun;i +XPl xmaintainin;i +XPl xmaintainat;i +XPl XL yld;i = 1Finally, since the only operator that adds at for a package and a location isunload, and at is the only add e�ect of this operator, the corresponding frame
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axioms can be converted into equalities. Similar observations hold for the otherpropositions of the domain.In the next section, when we introduce the constraint relaxation heuristic,we will need IP models for domains with operators that do not contain deletee�ects. For this special case we use a straightforward translation of propositionalsatis�ability planning theories into linear inequalities.3 Heuristic SearchThe above modi�cations in the IP formulation of planning problems, can sub-stantially improve performance. However, as it happens with other approachesthat generate optimal plans, in many domains, IP models do not scale well.In this section, we attempt to address this issue in a 
exible way, by bringingtogether IP modeling and heuristic search. Heuristic search methods derive aheuristic function from the problem speci�cation and use it to guide the searchin the state space. The heuristic function h for a problem P is derived by con-sidering a relaxed problem P 0.We consider two di�erent relaxations of a planning problem. The �rst, whichwe call the constraint relaxation (CL) approach, was introduced in [3] and modi-�ed in FF [10]. Here the relaxed problem is obtained from the original by ignoringthe delete e�ects of the operators. In the second approach, which we call lin-ear relaxation (LR) approach, the relaxed problem is obtained from the originalproblem by dropping the integrality constraint from the integer variables.The heuristic function we use is the same as in FF. Let O1; O2; :::; Om be thesets of actions selected (action selection can be a fractional number greater than0, if the LR approach is used) in the solution of the relaxed problem at time i.Variable m, called the length invariant, equals the number of time steps neededso that the relaxed problem becomes solvable (ie., the relaxation with m�1 timesteps is infeasible). We de�ne our heuristic function as h(S) =Pi=1;:::;m jOij.The search method we use in our approach is a variant of the enforced hill-climbing introduced in FF. It can be described brie
y as follows.AlgorithmMEHC(step,nd-limit,cutoff )i:=0; solved:=false;while not solvedi:=i+1; Solve the relaxed problem using i time steps;if feasible then solved:=true;endwhilem:=i; /*Length invariant m used in the heuristic function*/Set obj to the value of the objective function and current plan to empty;S :=Initial State; h(S) = obj;while h(S) 6= 0 doCall EBFS(m,step,nd-limit,cutoff) in order tobreadth-�rst search for a state S0 with h(S0) < h(S);if (no such state is found) then report failure and stop;
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Add the selected actions to current plan, set S := S0 and h(S) := h(S0);endwhileAlgorithm MEHC di�ers from FF in the way it performs the search for thesuccessor state at each of its iterations. The new search method is implementedby procedure EBFS, which is presented below.For a planning problem P , let Pt denote the set of constraints in the IPformulation of P over the time interval t. Moreover, let P lrt denote the set ofconstraints obtained if the integrality constraints of Pt are dropped. Finally, letP crt denote the set of constraints, over the time interval t, of the IP model ofthe problem obtained from P by dropping the delete list of the operators. Then,procedure EBFS below implements the breadth-�rst search for a state with abetter heuristic value, where P 0t stands for any of P lrt and P crt depending on themethod we employ.procedure EBFS(m,step,nd-limit,cutoff)i=step;while (i<cutoff+step)set branch and bound node limit to nd-limit, andsolve min(Xa2A Xj2[i+1;m] ya;j) subject toP[0;i] [ P 0[i+1;m][ fXa2A Xj2[i+1;m] ya;j < h(S)g;if (feasible) then return solution else i:=i+1;endwhileNote that the set of constraints P[0;i] allows for parallel action execution, andtherefore, the successor of a state S can be any state that can be reached fromS by executing a set of parallel actions. Hence, the algorithm generates parallelplans.Procedure EBFS uses branch and bound in order to perform the search forthe successor state, and therefore its theoretical time complexity is determinedmainly by the number of integer variables of the problem it solves. If the linearrelaxation heuristic is used, each iteration of EBFS has time complexity which is,in the worst case, exponential in the number of variables of P[0;i]. In the case ofthe constraint relaxation heuristic, this complexity is higher, as it is exponentialin the number of variables of P[0;i] [ P cr[i+1;m]. However, our experimentationrevealed that, in many domains, the set of constraints P lrt is much harder tosatisfy than the corresponding set P crt . Consequently, the constraint relaxationheuristic can outperform the linear relaxation one in terms of running speed.Moreover, the use of branch and bound in EBFS has some interesting im-plications. For instance, in the case of the constraint relaxation approach, thealgorithm can branch on any of the variables of P[0;i] [ P cr[i+1;m], interleaving inthis way the selection of the successor state with its evaluation. Furthermore,the objective function, which minimizes the number of actions, can provide sub-stantial guidance in the search of a low cost successor state.
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The new algorithm is parametric to the values of step, nd-limit, and cuto�.Parameter nd-limit de�nes the node limit of the branch and bound search algo-rithm. Parameter step de�nes the minimum distance (number of parallel steps)of the successor state from the current state, while cuto� de�nes the maximumsuch distance. Parameters step and nd-limit allow us to implement a variety ofsearch strategies that trade-o� solution quality for performance. Higher valuesfor nd-limit may generate successor states with better heuristic values, whilehigher values for step usually lead to more informed choices in the selection ofthe successor state. Therefore, higher values for these parameters usually yieldbetter plans, while lower values better run times.4 Experimental ResultsWe run some initial experiments with the new IP formulation and the heuristicsearch method on a variety of planning domains. The models were generated byhand, using the algebraic modeling system PLAM (ProLog and Algebraic Mod-eling) [1] and following the steps described in section 2. In all the experimentsCPLEX 6.6 was used. All variables were declared integer. The setting was the fol-lowing. At each node of the branch and bound dual simplex with \steepest-edgepricing" was used. Probing was set to 1, leading to some simpli�cations of themodels, as well as clique cuts derivation. The variable selection strategy was setto \pseudo-reduced costs", and the node selection strategy to best-bound search.All experiments were run on a Sun Ultra-250 with 512 MB RAM.Table 1 compares the performance of the IP formulation of [15] (column OIP)and the improved formulation discussed in section 2 (column IIP) on blocks worldand rocket domain problems. The objective function in both domains was set tominimize the number of actions. In the rocket domain, some 
ight minimizationexperiments were also run, and are marked with the problem name su�x fl-minin Table 1. The entries under \First" refer to the run time and number of nodesexplored until the �rst solution was found. For the blocks world problems theentries under \Optimal" refer to solving these problems to optimality (the timeneeded to prove optimality is included). The same entries for the, more di�cult,rocket problems refer to �nding a solution with cost that is provably not morethan 10% higher than the cost of the optimal solution. The data of Table 1 wereobtained using, in each domain and for each formulation, the cut generationstrategy that seems to perform best. In the blocks world domain the defaultvalues were used for both formulations. In the rocket domain, di�erent Cliqueand Gomory cut generation strategies were used for the di�erent formulationsand the di�erent optimization objectives, but we do not discuss this issue further.Both domains allow for parallel actions. The largest problem in the blocksworld domain, bw3, involves 13 blocks, has plan length 9 and the optimal solutionhas 19 actions. The IP formulation for this domain is strong, leading to smallintegrality gaps and, consequently, good performance. In some moderately sizedproblems, the �rst solution was obtained by simply rounding the values of thevariables obtained after solving the linear relaxation.
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First OptimalOIP IIP OIP IIPProblem time nodes time nodes time nodes time nodesbw1 93 5 25 0 93 5 28 11bw2 310 0 108 0 310 0 108 0bw3 7072 21 876 23 - - 1277 50rocket1 98 371 13 56 631 2554 92 287rocket2 109 297 10 28 1521 4237 132 260rocket3 - - 408 459 - - 1885 1251rocket4 7478 2522 461 456 - - 1886 993rocket1-fl-min 1828 1734 19 14 3775 5417 59 422rocket2-fl-min 591 384 80 320 3602 4754 82 360rocket3-fl-min - - 236 260 - - 1685 4791rocket4-fl-min 3391 372 210 150 - - 2083 4067Table 1. Performance comparison of di�erent IP formulations on action and 
ight(marked with the name su�x fl-min) minimization problems. For each problem wegive run time and number of nodes in the branch and bound tree. Times in seconds. Adash denotes that no solution was found within about 2 hours (8000 sec) of CPU time.In the rocket domain, the largest problem, rocket4, involves 16 packages, 5locations and 3 planes. The optimal parallel plan length is 7, and the optimalsolution contains 41 actions. Here the IP formulation is weaker. The integralitygap is larger, and closes relatively slow, after many iterations. Nevertheless, inmost cases, the new formulation is substantially stronger.Table 2 shows some representative results from experiments with the IP basedheuristic methods on the parallel rocket domain. The CR columns refer to theconstraint relaxation heuristic, while the LR columns to the linear relaxationone. The FF column shows the number of actions in the plan generated by FF,which solves all problems in a few seconds.LR CR FFProblem pac pl loc time len actions time len actions actionsrocket4 16 3 5 29 9 45 25 13 46 53rocket5 16 3 5 62 9 47 36 14 45 41rocket6 16 3 5 33 9 43 31 13 49 52rocket7-1 21 3 6 445 11 57 27 11 56 67rocket7-2 21 3 6 427 12rocket7-3 21 3 6 286 12rocket8 27 4 7 1598 11 75 214 13 90 80Table 2. Performance comparison of the heuristic search algorithms. For each problemwe give the number of packages (pac), planes (pl) and locations (loc), solution time inseconds (time), parallel plan length (len) and number of actions in the plan (actions).
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In all problems the relaxation based algorithm was run with the step andcuto� parameters set to 1. For the smaller problems, rocket4 to rocket6, thend-limit parameter of the linear relaxation based algorithm was set to in�nity,ie. at each iteration the corresponding problem was solved to optimality. How-ever, for larger problems, like rocket7 and rocket8, when the linear relaxationheuristic is used, the number of explored nodes has to be limited in order to gainacceptable e�ciency. The 3 entries of Table 2 pre�xed with rocket7, correspondto solutions of the same problem with di�erent node bounds. Row rocket7-1refers to solving the problem without limiting the number of explored nodes,while rows rocket7-2 and rocket7-3 correspond to a limit of 1000 and 500nodes respectively. For problem rocket8 the node limit was set to 500. In theproblems we considered, restricting the number of nodes a�ects only the �rst twoiterations of the algorithm, as in the subsequent iterations the optimal solutionis found after exploring a few nodes. More speci�cally, in most problems, the�rst two iterations make up more than 60% of the total solution time.In most of the problems it seems that the linear relaxation heuristic o�ers areasonably good trade-o� between search time and solution quality. For instance,if we compare the solution time of the direct IP formulation of problem rocket4in Table 1, with the time needed for solving the same problem with the linearrelaxation heuristic algorithm in Table 2, we note a decrease from 461 secs to 29secs. This speed-up comes with an increase of the plan length from 7 to 9.It is interesting to compare the characteristics of the linear and constraintrelaxationmethods. The constraint relaxation heuristic almost always runs fasterthan the linear relaxation one. But as far as parallel plan length is concerned,constraint relaxation is quite unstable, and in many cases (eg. problems rocket5and rocket8 in Table 2) generates plans that underutilize the available resources(planes) and, for this reason, are longer.5 Conclusions and discussionThe results presented in [15], suggest that careful modeling can make IP e�ectivein solving classical STRIPS problems. This has important practical implications,since many problems can be represented as a set of STRIPS operators togetherwith some additional complex constraints. Solving such problems e�ectively,requires reasonable performance on their STRIPS part.In this paper we presented some improvements of the IP formulation of [15]that exploit more fully the structure of the planning domains. The new transla-tion method bene�ts from recent work in automated domain analysis, but alsorecent advances in Integer Programming. Indeed, advanced features of state-of-the-art IP solvers, such as preprocessing, probing, and constraint derivation,most notably in the form of Gomory and Clique cuts, have positive e�ect onthe performance of the models. Our current work focuses on further improvingthe IP formulation of planning problems, and combining it with strong forms ofdomain knowledge. More extensive experimentation, to be reported in a longerversion of this paper, gives encouraging �rst results.
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The enforced hill-climbing algorithm that we described in the second part ofthe paper, can be understood as an attempt towards combining IP models withheuristic search. This is done in a way di�erent than in the Lplan system [6],which uses the linear relaxation of an IP formulation, which is di�erent thanours, as a heuristic in a partial-order causal-link planner.Our intention is to develop algorithms that improve e�ciency at an accept-able cost in solution quality. In parallel domains, which is our main focus, thedegree of parallelism of the generated plan is an integral part of solution quality.It seems that the linear relaxation heuristic performs better than the constraintrelaxation in terms of solution quality, but it is slower. We currently work onimproving its performance.Obviously, the algorithm we presented is neither complete nor optimal. Fu-ture research will focus on investigating whether it is feasible to employ IPmodels in heuristic search algorithms that satisfy both properties.References1. P. Barth and A. Bockmayr. Modelling discrete optimisation problems in constraintlogic programming. Annals of Operations Research, 81:467{496, 1998.2. A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. IJCAI-95,pp. 1636-1642, 1995.3. B. Bonet, G. Loerincs and H. Ge�ner. A fast and robust action selection mechanismfor planning. AAAI-97, pp. 714-719, 1997.4. B. Bonet and H. Ge�ner. Planning as heuristic search: New Results. ECP-99, pp.360-372, 1999.5. A. Bockmayr and Y. Dimopoulos. Integer Programs and Valid Inequalities forPlanning Problems. ECP-99, pp. 239-251, 1999.6. T. Bylander. A Linear Programming Heuristic for Optimal Planning. AAAI-97,pp. 694-699, 1997.7. M. Fox and D. Long. The Automatic Inference of State Invariants in TIM. Journalof AI Research, 9, pp. 367-421, 1998.8. A. Gerevini and L. Schubert. Discovering state constraints in DISCOPLAN: Some newresults. AAAI-00, pp. 761-767, 2000.9. P. Haslum and H. Ge�ner. Admissible Heuristics for Optimal Planning. AIPS-00,pp. 140-149, 2000.10. J. Ho�mann and B. Nebel. The FF Planning System: Fast Plan GenerationThrough Heuristic Search. Journal of AI Research, Vol. 4, pp. 253-302, 2001.11. H. Kautz and B. Selman. Unifying SAT-based and Graph-based Planning. IJCAI-99, pp. 318-325, 1999.12. H. Kautz and J. Walser. State-space Planning by Integer Optimization. AAAI-99,pp. 526-533, 1999.13. D. McDermott. A Heuristic Estimator for Means-Ends Analysis in Planning. AIPS-96, pp. 142-149, 1996.14. I. Refanidis and I. Vlahavas. GRT: A Domain Independent Heuristic for STRIPSWorlds based on Greedy Regression Tables. ECP-99, pp. 346-358, 1999.15. T. Vossen, M. Ball, A. Lotem, and D. Nau. On the Use of Integer ProgrammingModels in AI Planning. IJCAI-99, pp. 304-309, 1999.16. S. Wolfman and D S. Weld. The LPSAT Engine and Its Application to ResourcePlanning. IJCAI-99, pp. 310-317, 1999.
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