
RIFO Revisited: Detecting Relaxed IrrelevanceJ�org Ho�mann and Bernhard NebelInstitute for Computer ScienceAlbert Ludwigs UniversityGeorges-K�ohler-Allee, Geb. 5279110 Freiburg, Germanyho�mann@informatik.uni-freiburg.deAbstract. RIFO, as has been proposed by Nebel et al. [8], is a methodthat can automatically detect irrelevant information in planning tasks. Theidea is to remove such irrelevant information as a pre-process to planning.While RIFO has been shown to be useful in a number of domains, its maindisadvantage is that it is not completeness preserving. Furthermore, thepre-process often takes more running time than nowadays state-of-the-artplanners, like FF, need for solving the entire planning task.We introduce the notion of relaxed irrelevance, concerning actions which arenever needed within the relaxation that heuristic planners like FF and HSPuse for computing their heuristic values. The idea is to speed up the heuris-tic functions by reducing the action sets considered within the relaxation.Starting from a su�cient condition for relaxed irrelevance, we introducetwo preprocessing methods for �ltering action sets. The �rst preprocessingmethod is proven to be completeness-preserving, and is empirically shown toterminate fast on most of our testing examples. The second method is fast onall our testing examples, and is empirically safe. Both methods have drasticpruning impacts in some domains, speeding up FF's heuristic function, andin e�ect the planning process.1 IntroductionRIFO, as has been proposed by Nebel et al. [8], is a method that can automaticallydetect irrelevant information in planning tasks. A piece of information can be con-sidered irrelevant if it is not necessary for generating a solution plan. The idea isto remove such irrelevant information as a pre-process in the hope to speed up theplanning process. While RIFO has been shown to be useful for speeding up GRAPH-PLAN in a number of domains, it does not guarantee that the removed informationis really irrelevant. In e�ect, RIFO is not completeness preserving. Furthermore, thepre-process itself can take a lot of running time. While RIFO can be proven to ter-minate in polynomial time, it|or at least its implementation within IPP4.0 [7]|ison a lot of planning tasks not competitive with nowadays state-of-the-art planners.In our experiments on a large range of tasks from di�erent domains, we found thatin most examples RIFO needs more running time to �nish the pre-process than FFneeds for solving the entire task.In this paper, we present a new approach towards de�ning and detecting ir-relevance. We explore the idea of relaxed irrelevance, which concerns pieces of in-formation, precisely STRIPS actions, that are not needed within the relaxationthat state-of-the-art heuristic planners like FF [4] and HSP [2] use for computingtheir heuristic values. Those planners evaluate each search state S by estimatingthe solution length from S under the relaxation that all delete lists are ignored.The main bottleneck in FF and HSP is the heuristic evaluation of states, so it isworthwhile trying to improve on the speed of such evaluations. Our idea is to speed
325

up the heuristic functions by reducing the action sets considered within the relax-ation. Actions that are relaxed irrelevant need never be considered. We de�ne thenotion of legal generation paths, and prove that an action is relaxed irrelevant if itdoes not start such a path. Deciding about legal generation paths is still NP-hard,so we introduce two approximation techniques. Both can be used as preprocessingmethods for �ltering the action set to be considered within the relaxation. The �rstpreprocessing method includes all actions that start a legal generation path, andcan therefore safely be applied to the relaxation. The pre-process terminates faston most of our testing examples in the sense that it is orders of magnitude fasterthan FF. The second approximation method is fast on all our testing examples, andwhile it is not provably completeness preserving, it is empirically safe: from a largetesting suite, no single example task got unsolvable because of the �ltering process.We introduce our theoretical investigations and algorithmic techniques withinthe STRIPS framework, and summarise how they are extended to deal with condi-tional e�ects. Both action �ltering methods can in principle be used as a pre-processto either FF or HSP|or rather as a pre-process to any planner that uses the samerelaxation|and both methods have drastic pruning impacts in some domains. Wehave implemented the methods as a pre-process to FF, and show that they signif-icantly speed up FF's heuristic function, and in e�ect the plan generation process,in those cases where the pruning impact is high.The next section gives the necessary background in terms of STRIPS notationsand heuristic forward state space planning as done by FF and HSP. Section 3 de�nesand investigates our notions of relaxed irrelevance and legal generation paths.1Section 4 explains two ways of approximating legal generation paths, yielding theabove described two action �ltering methods. Section 5 summarises how our analysisis extended to ADL domains, and Section 6 describes the experiments we made forevaluating the approach. Section 7 explains two lines of work that we are currentlyexploring. Section 8 concludes.2 BackgroundWe introduce our theoretical observations and our algorithms in a propositionalSTRIPS framework, where planning tasks are triples (O; I;G) comprising the actionset, the initial state, and the goal state, actions are triples o = (pre(o); add(o); del(o)),and the result of applying an action o to a state S with pre(o) � S is Result(S; o) =(S [add(o)) n del(o). Plans, or solutions, are sequences P of actions for whichG � Result(I; P) holds. A plan P = ho1; : : : ; oni is called minimal, if no singleaction can be left out of the sequence without loosing the solution property, i.e., ifho1; : : : ; oi�1; oi+1; : : : ; oni is not a solution for any oi. The length of a plan is thenumber of actions in the sequence. A plan for a task P is optimal if it has minimallength among all plans for P . Obviously, optimal plans are minimal.FF is based on the general principle of heuristic forward state space search, ashas �rst been implemented in HSP1.0. The idea is to search in the space of statesthat are reachable from the initial state, trying to minimise a heuristic value that iscomputed to each considered state. The heuristic evaluation in both FF and HSPis based on the following relaxation.De�nition 1. Given a planning task P = (O; I;G). The relaxation P 0 of P isde�ned as P 0 = (O0; I;G), withO0 = f(pre(o); add(o); ;) j (pre(o); add(o); del(o)) 2 Og1 We only sketch our proofs. The complete proofs can be found in a longer version of thepaper, available as a technical report [5].
326

In words, a planning task is relaxed by ignoring all delete lists. When either FFor HSP face a search state S, they estimate the length of a relaxed solution startingin S, i.e., they estimate the solution length of the task (O0; S;G). In HSP, this isdone by computing certain weight values for all facts, where the weight of a factis an estimate of how di�cult it is to achieve that fact from S. Computing theseweight values involves a �xpoint computation that iteratively applies all actions untilno more changes occur [2]. In FF, the solution length to (O0; S;G) is estimated byextracting an explicit solution in a GRAPHPLAN-style manner [1, 4]. The techniqueis based on building a relaxed version of GRAPHPLAN's planning graph, whichinvolves, like HSP's method, repeated application of all actions.The main bottleneck in HSP, i.e., the main source of running time consumed,is the heuristic evaluation of states [2]. The same applies to FF. While heuristicevaluation is implemented e�ciently in both systems, usually no more than a fewhundred state evaluations can take place in a second (for FF, Section 6 providesaveraged running times per state evaluation on a large range of domains). In somehuge planning tasks, we have observed that a single evaluation in FF can take upto half a second running time. This is due to the large number of actions that thereare in instantiated planning tasks. With ten-thousands of actions to be considered,FF's process of building a relaxed planning graph, and HSP's process of computinga weight �xpoint, must be costly no matter how e�cient the implementation is.Our idea, consequently, is to reduce the number of actions that the planners needto consider within the relaxation, i.e., to compute as a pre-process a set Ojr ofactions that are considered relevant for the relaxation. During search, one can thenestimate solution lengths to the tasks (Oj0r ; S;G) as opposed to using the wholeaction set in the tasks (O0; S;G).Of course, the set Ojr can not be chosen arbitrarily small. If important actionsare missed out, then the task (Oj0r ; S;G) can become unsolvable for a state S thoughit would be solvable with the original action set. In other words, one runs the riskof loosing relaxed completeness. If the task (Oj0r ; S;G) is unsolvable, which bothHSP's and FF's algorithmic methods will detect, then the systems set the heuristicvalue of S to 1, excluding the state from the search space. While this is normallyjusti�ed|if a state can not be solved even when ignoring delete lists, then thatstate is unsolvable|it can lead to incompleteness if solving (Oj0r; S;G) only failedbecause Ojr does not contain some important action(s).2 The rest of the paper isinspired by a notion of relevance that maintains relaxed completeness.3 Relaxed IrrelevanceWe consider an action relaxed irrelevant if it never appears in an optimal relaxedsolution. Clearly, such actions can be ignored within the relaxation without loos-ing completeness. Unfortunately, deciding about relaxed irrelevance is as hard asplanning itself.De�nition 2. Let (O; I;G) be a planning task. An action o 2 O is relaxed irrele-vant if o is not part of any optimal relaxed solution from any reachable state.De�nition 3. Let RELAXED-IRRELEVANCE denote the following problem:Given a planning task (O; I;G) and an action o 2 O, is o relaxed irrelevant?2 One might argue that this could be �xed by setting the heuristic value of S to a largeinteger instead of 1. While this would regain completeness, it would also make theadequacy of the heuristic questionable: If a large number of states have the same highheuristic evaluation only because Ojr is too restrictive, then the heuristic is not veryinformative about the real structure of the search space.
327

Theorem 1. Deciding RELAXED-IRRELEVANCE is PSPACE-hard.Proof Sketch: By a polynomial reduction from PLANSAT, the decision problemof whether there exists a solution plan for a given arbitrary STRIPS planning task[3]: First rename all atoms in the original task. Then put original o into the renamedaction set, plus two arti�cial actions: one requiring the renamed goal to be solved,deleting all renamed atoms, and adding o's precondition, the other needing o's adds,and achieving the renamed goal. o is needed for an optimal relaxed solution in themodi�ed task if and only if the original task is solvable.3.1 A Su�cient ConditionWe now derive a su�cient condition for relaxed irrelevance. The following de�nitionforms the heart of our investigation.De�nition 4. Let P = (O; I;G) be a planning task. The generation graph to thetask is de�ned by the node set O [foGg, with oG := (G; ;; ;), and the edge setf(o; o0) j add(o) \ pre(o0) 6= ;gWe refer to paths P = ho1; : : : ; on = oGi in this graph as generation paths. We calladd(oi) \ pre(oi+1) the connecting facts at position i. P is legal if at each positionthere is at least one connecting fact that is not contained in the preconditions of theprevious actions, i.e., if for 1 � i � n� 1:(add(oi) \ pre(oi+1)) n [1�j�i pre(oj) 6= ;The generation graph to a task intuitively represents all ways in which facts canbe achieved. A generation path is a sequence of actions that support each other,and that end up making at least one goal true. We will see in the following thatthe only generation paths that are adequate in minimal relaxed solutions are thosegeneration paths that are legal. Precisely, we will show the following.Theorem 2. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni aminimal relaxed solution to S. Then for all oi there exists a legal generation pathPi starting with oi.With that, we immediately have our su�cient condition.Corollary 1. Let (O; I;G) be a planning task, o 2 O. If there is no legal generationpath P starting with o, then o is not part of any minimal relaxed solution from anystate. In particular, o is then relaxed irrelevant.Semantically, De�nition 4 can be seen as a modi�cation of the base techniquethat is used in RIFO. The relation between the techniques gives a nice picture ofwhat is happening. Briey, it can be explained as follows. To create an expectation ofwhat is relevant for solving a planning task, RIFO builds a so-called fact-generationtree. This is an AND- OR-tree that is built by backchaining from the goals. Theroot node is an AND-node corresponding to the goals. Other AND-nodes corre-spond to an action's preconditions, and the OR-nodes are single atoms that canalternatively be achieved by di�erent actions. Once this tree is generated, RIFOapplies a number of simple heuristics to select the information from the tree thatis likely most relevant. Now, the set of all legal generation paths can be viewed asa more restrictive version of RIFO's fact-generation tree, where an action is onlyallowed to achieve an OR-node if the intersection of the action's precondition withthe facts on the path from the OR-node to the tree root is empty. This is adequate
328

(only) for relaxed planning. While RIFO selects fractions of its tree as relevant, weselect the whole tree. This gives us completeness in the relaxation. The proof toTheorem 2 proceeds using what we call the needed facts, which are the facts forwhose achievement actions can be placed at a certain position in a relaxed solution.De�nition 5. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni arelaxed solution to S. The open facts OF (P; i) of P at position i areOF (P; i) := (G n [i<j�n add(oj)) [[i<j�n(pre(oj) n [i<k<j add(ok));and the needed facts NF (P; i) of P at position i areNF (P; i) := OF (P; i) n (S [[1�j<i add(oj))An action placed at position i in a relaxed plan P must add all needed facts ofP at position i, and in a minimal relaxed plan there is at least one needed fact ateach position.Lemma 1. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni arelaxed solution to S. Then add(oi) � NF (P; i) holds for 1 � i � n.Proof Sketch: If an action does not add a needed fact, then P is no relaxedsolution, because either some precondition ahead or some goal remains unachieved.Lemma 2. Let (O; I;G) be a planning task, S a state, and P = ho1; : : : ; oni aminimal relaxed solution to S. Then NF (P; i) 6= ; holds for 1 � i � n.Proof Sketch: If there is no needed fact at position i, then P without oi is still arelaxed solution|all facts that must be achieved are true without applying oi.Using the above two lemmata, Theorem 2 can be proven, stating that to allactions oi in a minimal relaxed solution P = ho1; : : : ; oni there is a legal generationpath Pi starting with oi.Proof Sketch: (to Theorem 2) The desired paths Pi can be constructed bystarting with oi, successively stepping onto a successor action that has a neededfact as precondition, and stopping when a goal fact is needed. With Lemma 2, thereis always at least one needed fact, and with Lemma 1, those facts are added. Theresulting action sequence is obviously a generation path, and it is legal because factsare not yet true at the position where they are needed.Unfortunately, deciding about the su�cient condition given by Corollary 1 isstill NP-hard.De�nition 6. Let LEGAL-GENERATION-PATH denote the following problem:Given a planning task (O; I;G) and an action o 2 O, is there a legal generationpath starting with o?Theorem 3. Deciding LEGAL-GENERATION-PATH is NP-complete.Proof Sketch: Membership follows by a simple guess-and-check argument. Hard-ness can be proven by a polynomial reduction from 3SAT. Introduce one action foreach literal in the clauses, and one action for each variable. Additionally, introducea starting action s. The preconditions and add lists can be arranged such that thefollowing holds: Firstly, a generation path starting with s must visit all clauses atleast once, and afterwards pass through all variables. Secondly, passing a variablelegally requires that the path has not visited the respective variable and its nega-tion. A legal generation path starting in s thus de�nes a satisfying truth assignmentvia the literals visited in the clauses, and vice versa.
329

4 Approximation TechniquesWe will now introduce two polynomial-time approximations of legal generationpaths, �ltering action sets for relaxed planning. The �rst method includes all ac-tions that start a legal path, and is therefore complete in the relaxation. As wewill see in the next section, the method terminates fast in almost all of our testingexamples. The second method does not give any completeness guarantees, but willbe shown to be empirically safe, and to terminate extremely fast on all examples inour testing suite.4.1 A Su�cient ApproximationLet us �rst introduce a notation for the set of all actions that start a legal generationpath. With Corollary 1, we can restrict the actions considered by an FF or HSPstyle heuristic function to that set without loosing completeness.De�nition 7. Let P = (O; I;G) be a planning task. The legal action set to P isOjl := fo 2 O j 9 P 2 O� : hoi � P is a legal generation path g.Our su�cient approximation collects together all actions starting generationpaths that ful�ll a weaker notion of legality. Reconsider De�nition 4.De�nition 8. Let P = (O; I;G) be a planning task. A generation path P =ho1; : : : ; oni is initially legal if (add(oi) \ pre(oi+1)) n pre(o1) 6= ; for 1 � i � n� 1.The initially legal action set Ojil to P is de�ned using the following �xpoint operator� : 2O 7! 2O.� (Ojr) := fo 2 O j 9 P 2 Oj�r : hoi � P is an initially legal generation path gWe set Ojil := S1i=0 � i(;).In words, we obtain the initially legal action set by computing a �xpoint over theactions that start an initially legal generation path. A generation path is initiallylegal when between any two actions there is a connecting fact that is not containedin the precondition of the �rst action. Clearly, legal generation paths|where thereare connecting facts that are not contained in the precondition of any previousaction|ful�ll this property.Proposition 1. Let P = (O; I;G) be a planning task. The initially legal action setis a superset of the legal action set, i.e., Ojil � Ojl holds.The de�nition of Ojil translates directly into the �xpoint computation depictedin Figure 1. Our implementation is straightforward. In each iteration of the �xpointprocess, check for all not yet selected actions o whether there is a path to the goals,using only edges that are not excluded by o's preconditions.We have also implemented two other su�cient approximations of Ojl. One ofthose weakens Ojil by dropping the condition that the action sequences P must con-sist of Ojil members. The other method strengthens Ojil by incrementally buildinga graph of edges that start already selected paths. The required action sequencesP must then traverse only edges that are in the graph already. In our experiments,both methods showed signi�cantly worse runtime behaviour than the above Ojilcomputation. The �ltered action sets were, however, the same for all three meth-ods in most of the cases. We therefore chose to concentrate on Ojil as a su�cientapproximation.
330

Ojil := ;repeatFixpoint := truefor o 2 O n Ojil doif there is an initially legal path from o to oGconsisting out of actions in Ojil thenOjil := Ojil [fogFixpoint := falseendifendforuntil FixpointFig. 1. Fixpoint computation of actions starting initially legal generation paths: A su�-cient approximation of legal generation paths.4.2 An Insu�cient but Fast ApproximationLike the computation of initially legal paths, our second approximation techniqueperforms a �xpoint computation. Unlike the former computation, the method allowsonly edges (o; o0) in the paths that are legal with respect to o. What's more, eachaction o is associated with at most one single edge that can be traversed from o.We call the resulting action set the set of approximative legal actions Ojal. Have alook at the pseudo code in Figure 2.Ojal := foGg, e := ;, k := 0repeatFixpoint := truefor o 2 O n Ojal doif there is an edge (o; o0), o0 2 Ojal such thatthe path ho; e0(o0); e1(o0); : : : ; ek(o0) = oGi is initially legal thenOjal := Ojal [foge := e [f(o; o0)gFixpoint := falseendifendfork := k + 1until FixpointFig. 2. Fixpoint computation of actions starting approximative legal generation paths: Aninsu�cient but fast approximation of legal generation paths.The algorithm depicted in Figure 2 iteratively includes new actions into Ojaluntil a �xpoint is reached. The key feature of the algorithm is the function e : O 7!O, which is represented in the �gure as a set of (o; e(o)) pairs. The function startsas the empty set of such pairs, i.e., e is initially unde�ned for the whole action set.If an action o is included into Ojal due to an edge (o; o0), then that edge is includedinto the de�nition of e. Initially, the only member of Ojal is oG, so in iterationk = 0 the only edges that can be included are direct connections to the goals. Inany later iteration k, e de�nes a tree of depth k where the root node is oG, andeach node|the actions for which e is de�ned|occurs exactly once. For the not yetselected actions o it is then checked whether they have an edge connecting themto a tree node o0 such that the path ho; e0(o0); e1(o0); : : : ; ek(o0) = oGi is initiallylegal. Note here that ho; e0(o0); e1(o0); : : : ; ek(o0)i is just the concatenation of the
331

edge (o; o0) with the path from o0 to the tree root. If that path is initially legal, theno and the edge (o; o0) are included into the tree.3 While allowing only a single edgefor each node may sound way to restrictive, the method turned out to be, as said,surprisingly safe in our testing examples.5 Extension to Conditional E�ectsWe have extended our theoretical analysis and approximation algorithms to dealwith conditional e�ects. Because FF compiles away all ADL constructs except theconditional e�ects [4], this enabled us to deal with planning domains speci�ed inthe ADL language [9]. In the following, we briey summarise the extensions madeto the de�nitions and algorithms introduced in Sections 3 and 4. For more details,we refer the interested reader to our technical report [5].An e�ect is relaxed irrelevant if it can be ignored in all optimal relaxed solutionsfrom all reachable states, i.e., if all optimal relaxed plans are still relaxed planswithout that e�ect. Relaxed irrelevant e�ects can be detected by looking at the setof all e�ects in a task as a set of STRIPS actions STRIPS(O), where each e�ect of anaction o corresponds to an action that has as preconditions pre(o) plus the e�ect'sconditions. The parallel to Theorem 2 is that, if an e�ect can not be ignored in aminimal relaxed solution from some state, then the e�ect starts a legal generationpath in STRIPS(O). This can be proven by a natural extension of the needed factsnotion.Extending the �ltering methods from Section 4 thus comes down to implement-ing them on the set STRIPS(O). If an e�ect does not start an initially or approx-imative legal generation path in STRIPS(O), then the e�ect is removed from therespective action in the sense that the e�ect is not considered within the relaxation.If all e�ects of an action are removed, then the whole action is ignored.6 Empirical EvaluationWe evaluated our approach by running a number of large scale experiments. We used20 benchmark planning domains, including all examples from the AIPS-1998 andAIPS-2000 competitions. The domains were Assembly, two Blocksworlds (three-and four-operator representation), Briefcaseworld, Bulldozer, Freecell, Fridge, Grid,Gripper,Hanoi, Logistics,Miconic-ADL,Miconic-SIMPLE,Miconic-STRIPS,Movie,Mprime, Mystery, Schedule, Tsp, and Tyreworld. In each of these domains, we gen-erated instances by using randomised generation software.4 We ran experiments forevaluating1. RIFO's runtime behaviour when compared to FF,2. the runtime behaviour and pruning impact of Ojil and Ojal,3. and the empirical safety of Ojal.For each single experiment, we set up a large testing suite containing up to 200instances from each domain. The testing suites di�ered in terms of the size of theinstances that we generated.In the �rst experiment, we ran the RIFO implementation within IPP4.0 versusFF on a suite of 681 instances that were small enough for the IPP4.0 instantiation3 For optimisation, one obviously only needs to look at actions o0 that are leafs of thecurrent tree.4 Descriptions of the randomisation strategies and the source code of all genera-tors are publicly available at http://www.informatik.uni-freiburg.de/~ ho�mann/�-domains.html.
332

routine to cope with.5 Test runs were given 300 seconds time and 400 M Bytesmemory on a Sun machine running at 163 MHz. We show the number of instanceshandled successfully, and the average running time per domain. For FF, we countas successfully handled those instances were a plan was found. For RIFO, successon an instance means termination of the pre-process within the given time andmemory bounds. We count only those such instances for which we know they aresolvable|those were FF found a plan. Times are averaged over those instancesthat both implementations handled successfully. Running time for RIFO does notinclude IPP's instantiation time. See the data in Figure 3.success running timedomain RIFO FF RIFO FFAssembly 33 33 1.08 9.16Blocksworld-3ops 21 21 4.45 2.90Blocksworld-4ops 21 21 0.91 0.07Briefcaseworld 20 20 1.86 1.12Bulldozer 17 17 1.97 4.54Freecell 33 50 21.90 0.06Fridge 22 22 0.23 0.22Grid 22 35 43.77 7.72Gripper 25 25 0.45 0.31Hanoi 8 8 0.34 4.79Logistics 35 35 46.80 1.18Miconic-ADL 22 40 14.03 3.77Miconic-SIMPLE 25 25 0.64 0.54Miconic-STRIPS 25 25 0.64 0.37Movie 30 30 0.00 0.00Mprime 48 61 16.47 1.19Mystery 23 36 27.16 12.51Schedule 15 28 28.34 14.06Tsp 25 25 4.90 0.12Tyreworld 20 20 6.03 0.48Fig. 3. Instances handled successfully, and average running times for RIFO and FF per do-main. The successfully handled instances for FF are those for which a plan was found. Thesuccessfully handled instances for RIFO are those solvable ones where RIFO terminatedwithin the given time and memory bounds.In 3 of the 20 domains shown (Assembly, Bulldozer and Hanoi) does RIFOterminate faster than FF solves the tasks. In 10 domains, RIFO's average runningtime is orders of magnitude higher than that of FF. In some domains, RIFO exhaustsresources on a number of instances that FF manages to solve. We conclude thatRIFO is, as a pre-process, not competitive with FF, at least in its implementationwithin IPP4.0.In our second experiment, we evaluated the Ojil and Ojal methods in terms ofruntime behaviour and pruning impact. Test runs were given 300 seconds and 200M Bytes memory on a Sun machine running at 300 MHz. We used a total of 2334large instances generated to be of a size challenging for FF, but still within its rangeof solvability within the given resources. On each task, we ran three implementa-tions: FF-v2.2 [4], and two versions of the same code were Ojil respectively Ojalwere computed as a pre-process. In the latter two versions, FF's heuristic functionwas changed to consider only those e�ects contained in the �ltered action set. Wemeasured the overhead produced by the �ltering methods, the total running times,the time taken for state evaluations, and the number of e�ects in the completerespectively �ltered action sets. See the data in Figure 4.5 In some domains, like Freecell, the routine can handle only comparatively small instanceswhich is, we think, due to the implementation: this is intended to deal with full scaleADL constructs [6], and fails to e�ciently handle the simple STRIPS special case.
333

overhead total time single evaluation number of e�ectsdomain Ojil Ojal FF +Ojil +Ojal FF +Ojil +Ojal O Ojil OjalAssembly 0.01 0.00 12.83 12.01 11.53 1.75 1.64 1.57 426.72 358.64 358.64Blocksworld-3ops 0.59 0.08 1.62 2.24 1.61 3.41 3.47 3.21 1854.62 1854.62 1819.09Blocksworld-4ops 0.04 0.00 1.04 1.08 0.99 0.76 0.76 0.72 290.06 290.06 286.94Briefcaseworld 0.04 0.01 5.51 1.10 1.01 4.26 0.82 0.77 4106.50 670.00 670.00Bulldozer 0.02 0.01 6.89 7.00 6.67 1.27 1.29 1.23 599.22 599.22 599.17Freecell 11.14 0.53 17.47 28.77 17.33 8.19 8.26 7.87 4725.37 4668.17 4668.17Fridge 0.00 0.00 1.71 1.72 1.70 0.96 0.97 0.95 302.22 302.22 302.22Grid 76.12 0.54 11.57 87.90 11.93 7.95 8.09 7.89 6424.35 6424.35 6417.28Gripper 0.03 0.01 0.33 0.36 0.27 1.38 1.39 1.11 478.00 478.00 359.00Hanoi 0.00 0.00 4.73 4.80 4.58 0.83 0.84 0.80 244.50 244.50 244.50Logistics 2.24 0.22 83.57 45.51 43.52 37.45 19.39 19.40 19904.53 15347.80 15347.80Miconic-ADL 1.09 0.29 13.91 13.48 12.23 12.72 11.33 10.92 2988.20 2700.52 2700.52Miconic-SIMPLE 0.17 0.02 0.52 0.69 0.51 2.14 2.15 2.04 1504.00 1504.00 1504.00Miconic-STRIPS 0.16 0.02 0.39 0.55 0.38 1.92 1.94 1.82 1504.00 1504.00 1504.00Movie 0.00 0.00 0.00 0.00 0.00 0.33 0.23 0.17 7.00 7.00 7.00Mprime 60.20 0.79 5.40 65.66 6.13 16.38 16.54 16.18 12138.00 12136.97 12136.32Mystery 12.87 1.05 20.11 33.26 21.14 15.59 15.80 15.57 14644.20 14644.20 14641.38Schedule 0.48 0.01 52.31 55.56 54.52 10.86 7.07 6.99 3049.84 917.43 916.82Tsp 0.01 0.09 0.13 0.14 0.22 2.09 2.11 2.13 4390.00 4390.00 4390.00Tyreworld 1.34 0.08 23.23 13.27 7.07 19.31 9.92 5.81 7105.50 4479.00 3646.00Fig. 4. Average overhead for pre-processing, average total running time, average runningtime per state evaluation, and average number of e�ects, shown per planning domain and�ltering method used. Times are in seconds except for state evaluations, where millisecondsare speci�ed.All measured values were averaged over those instances were all three methodssucceeded in �nding a plan (we tried inserting default values in the other cases, butfound that this generally obfuscated the results more than it helped understandingthem). In 12 domains, the solved instances were exactly the same across all methodsanyway. In another 3 domains, di�erences occurred only in very few instances (1- 2 out of 90 - 181). In Grid and Mprime, computing Ojil sometimes exhaustedresources (in Grid, 41 of 179 cases, in Mprime, 51 of 196 cases). In Assembly andLogistics, the speed-up produced by the �ltering methods helped FF to solve somemore instances (165 instead of 159 in Assembly, 87 instead of 75 in Logistics). InSchedule, original FF solved 85 instances instead of 74 solved with Ojil or Ojal on.We will come back to the Schedule domain later.Let us �rst focus on the overheads produced. Compare the �rst two columnswith the third column, showing average solving time for FF. The overhead for Ojilis neglectible (i.e., below 0:2 seconds on average) in 11 of our domains, and orders ofmagnitude smaller than FF's average time in another 4 domains. In the 3-operatorBlocksworld, the overhead is a third of FF 's time, and below a second anyway. Inthe remaining four domains, the pre-process can hurt: In Freecell and Mystery, ittakes almost as much time as FF, and in Grid and Mprime it can take much longertime (we will later describe an approach to automatic recognition of the cases werethe pre-process takes a lot of time). The overhead for Ojal is neglectible in 14 of thedomains, and still a lot smaller than FF's running time in the other cases.Concerning the impact that the �ltering methods have on the number of e�ectsin the action set, the speed of the heuristic function, and the total running time,it is easiest to start by looking at the rightmost three columns in Figure 4. Themethods do not prune any e�ects in 6 of our domains, and prune very few e�ects inanother 7 domains. Moderately many e�ects are pruned in the Assembly, Gripperand Miconic-ADL domains. In the Briefcaseworld, Logistics, Schedule and Tyre-world domains, the pruning is drastic.6 As a consequence, the average time taken6 In the Briefcaseworld, for example, amongst other things all actions are thrown out thattake objects out of the briefcase|taking objects out of the briefcase is not necessarywithin the relaxation, where keeping them inside never hurts.
334

for a single state evaluation (total evaluation time divided by number of evaluatedstates) is, when using the �ltering methods, signi�cantly lower in the four domainswith drastic pruning, and slightly lower in the three domains with moderate prun-ing. Look at the respective columns, specifying the average state evaluation time inmilliseconds. In Briefcaseworld, Logistics and Tyreworld, the faster heuristic func-tions translate directly into improved total running time. In Schedule, there seemsto be some interaction between the �ltering methods and FF's internal algorithmictechniques: though the heuristic function is faster, total running time gets worse.This is because FF evaluates, with the �ltered action sets, more states before �nd-ing the goal. An explanation for this might be FF's helpful actions heuristic, whichbiases the actions selected to those that could also be selected by the heuristic func-tion [4]. For Ojal, it might also be that some states become unsolvable|though wedid not �nd such a case in the experiment described below.We �nally consider the safety of the Ojal �ltering method with respect to com-pleteness in the relaxation. The method is empirically safe in the sense that, fromthe 2334 examples used in the above described experiment, only 11 Schedule in-stances could not be solved with the method on though they could be solved withoriginal FF. The failures were only due to the runtime restrictions we applied inthe experiment: given slightly more time, FF with Ojal �ltering could solve those 11instances. In addition to this result, we ran the following experiment. We generateda total of 2099 instances from our 20 domains, small enough to build an explicitrepresentation of the state space. To each instance, we looked at all reachable states,and veri�ed whether the goal was reachable when ignoring delete lists, using thewhole action set O, or the �ltered action set Ojal. In 19 of our 20 domains, all statessolvable with O were still solvable with Ojal. Only in Grid did we �nd states thatbecame unsolvable. This occurred in 19 of 100 instances. In all those instances, thestates becoming unsolvable were less than 1% of the state space.7 Current WorkOur current results reveal two drawbacks of the presented approach:1. Ojil �ltering sometimes hurts in the sense that it can take a lot of running time.2. While Ojil is provably and Ojal empirically safe, both methods have strongpruning impacts only in a few domains.We address these di�culties in two lines of work that we are currently pursuing.One idea to avoid the �rst problem is estimate the runtime that would be necessaryfor computing Ojil. One can then skip the pre-process if it appears to be too costly.Ojil is computed by the repeated search for legal generation paths, which is morecostly the more edges there are in the generation graph. An upper approximationto the number of edges is:Xf2F jfo 2 O j f 2 add(o)gj � jfo 2 O j f 2 pre(o)gjHere, F denotes the set of all logical atoms that appear in the actions O. Ifjpre(o) \ add(o0)j � 1 for all o; o0 2 O, then the approximation is exact. We havecomputed, for the 2334 large instances from the second experiment described in theprevious section, the above upper limit, as well as the real number of edges in thegeneration graph. In 8 domains, the values are the same across all instances. In theremaining domains, the values are close. There seems to be a close correspondenceto the running time consumed by the Ojil computation: the averaged approximationvalues are between 3 and 11 millions in those four domains were Ojil takes a lot of
335

computation time, and below one million in all other domains. It remains to estab-lish an exact criterion that uses this correspondence for deciding about whether tocompute Ojil or not.Addressing the second problem, lack of strong pruning impacts in many do-mains, appears to us to be a much harder task. If one wants to obtain strongerpruning impacts, there does not seem to be a way around sacri�cing empirical, letalone theoretical safety. We are currently experimenting with combining our tech-niques and RIFO's information selection heuristics. We have implemented some �rststrategies. As expected, the pruning impact became more drastic in some examples.However|as we also expected|a lot of states became unsolvable for the heuristic.Often all paths to the goal were interrupted by such a state, rendering the wholeplanning task unsolvable for FF.8 Conclusion and OutlookWe have presented a new approach towards de�ning irrelevance in planning tasks,concerning actions that are not necessary within the relaxation used in the heuristicfunctions of state-of-the-art heuristic planners like HSP and FF. We have deriveda su�cient condition for relaxed irrelevance, and we have presented two approxi-mation methods that can be used for �ltering action sets. One of those methods,Ojil computation, has been proven to be complete within the relaxation, the othermethod, Ojal computation, has been shown to be empirically safe. The methodshave drastic pruning impacts in some domains, speeding up FF's heuristic function,and in e�ect the planning process (except in Schedule, where there appears to besome interaction with FF's internal techniques). Computing Ojal never hurts in thesense that the required overhead is neglectible in most of the cases, and alwayssmall compared to FF's running time. Computing Ojil does not hurt in 16 of our20 domains. We have outlined an approach how the other cases might be recognis-able automatically. The challenge remains to �nd �ltering methods that are stillempirically safe in most of the cases, but have stronger pruning impacts.References1. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.Arti�cial Intelligence, 90(1-2):279{298, 1997.2. Blai Bonet and H�ector Ge�ner. Planning as heuristic search. Arti�cial Intelligence,2001. Forthcoming.3. Tom Bylander. The computational complexity of propositional STRIPS planning. Ar-ti�cial Intelligence, 69(1{2):165{204, 1994.4. J�org Ho�mann and Bernhard Nebel. The FF planning system: Fast plan generationthrough heuristic search. Journal of Arti�cial Intelligence Research, 14:253{302, 2001.5. J�org Ho�mann and Bernhard Nebel. RIFO revisited: Detecting relaxed irrelevance.Technical Report 153, Albert-Ludwigs-Universit�at, Institut f�ur Informatik, Freiburg,Germany, 2001. Available from http://www.informatik.uni-freiburg.de/tr/20016. Jana Koehler and J�org Ho�mann. On the instantiation of ADL operators involvingarbitrary �rst-order formulas. In Proc. ECAI-00 Workshop on New Results in Planning,Scheduling and Design, 2000.7. Jana Koehler, Bernhard Nebel, J�org Ho�mann, and Yannis Dimopoulos. Extendingplanning graphs to an ADL subset. In Proc. ECP-97, pages 273{285, Toulouse, France,September 1997. Springer-Verlag.8. Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler. Ignoring irrelevant facts andoperators in plan generation. In Proc. ECP-97, pages 338{350, Toulouse, France,September 1997. Springer-Verlag.9. Edwin P.D. Pednault. ADL: Exploring the middle ground between STRIPS and thesituation calculus. In Proc. KR-89, pages 324{331, Toronto, ON, May 1989. MorganKaufmann.
336

