RIFO Revisited: Detecting Relaxed Irrelevance

Jorg Hoffmann and Bernhard Nebel

Institute for Computer Science
Albert Ludwigs University
Georges-Kdohler-Allee, Geb. 52
79110 Freiburg, Germany
hoffmann@informatik.uni-freiburg.de

Abstract. RIFO, as has been proposed by Nebel et al. [8], is a method
that can automatically detect irrelevant information in planning tasks. The
idea is to remove such irrelevant information as a pre-process to planning.
While RIFO has been shown to be useful in a number of domains, its main
disadvantage is that it is not completeness preserving. Furthermore, the
pre-process often takes more running time than nowadays state-of-the-art
planners, like FF, need for solving the entire planning task.

We introduce the notion of relaxed irrelevance, concerning actions which are
never needed within the relaxation that heuristic planners like FF and HSP
use for computing their heuristic values. The idea is to speed up the heuris-
tic functions by reducing the action sets considered within the relaxation.
Starting from a sufficient condition for relaxed irrelevance, we introduce
two preprocessing methods for filtering action sets. The first preprocessing
method is proven to be completeness-preserving, and is empirically shown to
terminate fast on most of our testing examples. The second method is fast on
all our testing examples, and is empirically safe. Both methods have drastic
pruning impacts in some domains, speeding up FF’s heuristic function, and
in effect the planning process.

1 Introduction

RIFO, as has been proposed by Nebel et al. [8], is a method that can automatically
detect irrelevant information in planning tasks. A piece of information can be con-
sidered irrelevant if it is not necessary for generating a solution plan. The idea is
to remove such irrelevant information as a pre-process in the hope to speed up the
planning process. While RIFO has been shown to be useful for speeding up GRAPH-
PLAN in a number of domains, it does not guarantee that the removed information
is really irrelevant. In effect, RIFO is not completeness preserving. Furthermore, the
pre-process itself can take a lot of running time. While RIFO can be proven to ter-
minate in polynomial time, it—or at least its implementation within IPP4.0 [7]—is
on a lot of planning tasks not competitive with nowadays state-of-the-art planners.
In our experiments on a large range of tasks from different domains, we found that
in most examples RIFO needs more running time to finish the pre-process than FF
needs for solving the entire task.

In this paper, we present a new approach towards defining and detecting ir-
relevance. We explore the idea of relazed irrelevance, which concerns pieces of in-
formation, precisely STRIPS actions, that are not needed within the relaxation
that state-of-the-art heuristic planners like FF [4] and HSP [2] use for computing
their heuristic values. Those planners evaluate each search state S by estimating
the solution length from S under the relaxation that all delete lists are ignored.
The main bottleneck in FF and HSP is the heuristic evaluation of states, so it is
worthwhile trying to improve on the speed of such evaluations. Our idea is to speed

325

326

up the heuristic functions by reducing the action sets considered within the relax-
ation. Actions that are relaxed irrelevant need never be considered. We define the
notion of legal generation paths, and prove that an action is relaxed irrelevant if it
does not start such a path. Deciding about legal generation paths is still NP-hard,
so we introduce two approximation techniques. Both can be used as preprocessing
methods for filtering the action set to be considered within the relaxation. The first
preprocessing method includes all actions that start a legal generation path, and
can therefore safely be applied to the relaxation. The pre-process terminates fast
on most of our testing examples in the sense that it is orders of magnitude faster
than FF. The second approximation method is fast on all our testing examples, and
while it is not provably completeness preserving, it is empirically safe: from a large
testing suite, no single example task got unsolvable because of the filtering process.

We introduce our theoretical investigations and algorithmic techniques within
the STRIPS framework, and summarise how they are extended to deal with condi-
tional effects. Both action filtering methods can in principle be used as a pre-process
to either FF or HSP—or rather as a pre-process to any planner that uses the same
relaxation—and both methods have drastic pruning impacts in some domains. We
have implemented the methods as a pre-process to FF, and show that they signif-
icantly speed up FF’s heuristic function, and in effect the plan generation process,
in those cases where the pruning impact is high.

The next section gives the necessary background in terms of STRIPS notations
and heuristic forward state space planning as done by FF and HSP. Section 3 defines
and investigates our notions of relaxed irrelevance and legal generation paths.!
Section 4 explains two ways of approximating legal generation paths, yielding the
above described two action filtering methods. Section 5 summarises how our analysis
is extended to ADL domains, and Section 6 describes the experiments we made for
evaluating the approach. Section 7 explains two lines of work that we are currently
exploring. Section 8 concludes.

2 Background

We introduce our theoretical observations and our algorithms in a propositional
STRIPS framework, where planning tasks are triples (O, Z, G) comprising the action
set, the initial state, and the goal state, actions are triples o = (pre(o), add (o), del(0)),
and the result of applying an action o to a state S with pre(o) C S is Result(S,0) =
(S U add(o)) \ del(o). Plans, or solutions, are sequences P of actions for which
G C Result(Z,P) holds. A plan P = (o01,...,0,) is called minimal, if no single
action can be left out of the sequence without loosing the solution property, i.e., if
(01,.-+,0i—1,0i+1,---,0n) 18 nOt a solution for any o;. The length of a plan is the
number of actions in the sequence. A plan for a task P is optimal if it has minimal
length among all plans for P. Obviously, optimal plans are minimal.

FF is based on the general principle of heuristic forward state space search, as
has first been implemented in HSP1.0. The idea is to search in the space of states
that are reachable from the initial state, trying to minimise a heuristic value that is
computed to each considered state. The heuristic evaluation in both FF and HSP
is based on the following relaxation.

Definition 1. Given a planning task P = (0,Z,G). The relaxation P’ of P is
defined as P' = (0',Z,G), with

O' = {(pre(o), add(0),0) | (pre(0), add(0), del(0)) € O}

1 'We only sketch our proofs. The complete proofs can be found in a longer version of the
paper, available as a technical report [5].

In words, a planning task is relaxed by ignoring all delete lists. When either FF
or HSP face a search state S, they estimate the length of a relaxed solution starting
in S, i.e., they estimate the solution length of the task (O0',S,G). In HSP, this is
done by computing certain weight values for all facts, where the weight of a fact
is an estimate of how difficult it is to achieve that fact from S. Computing these
weight values involves a fixpoint computation that iteratively applies all actions until
no more changes occur [2]. In FF, the solution length to (O, S, G) is estimated by
extracting an explicit solution in a GRAPHPLAN-style manner [1,4]. The technique
is based on building a relaxed version of GRAPHPLAN’s planning graph, which
involves, like HSP’s method, repeated application of all actions.

The main bottleneck in HSP, i.e., the main source of running time consumed,
is the heuristic evaluation of states [2]. The same applies to FF. While heuristic
evaluation is implemented efficiently in both systems, usually no more than a few
hundred state evaluations can take place in a second (for FF, Section 6 provides
averaged running times per state evaluation on a large range of domains). In some
huge planning tasks, we have observed that a single evaluation in FF can take up
to half a second running time. This is due to the large number of actions that there
are in instantiated planning tasks. With ten-thousands of actions to be considered,
FE’s process of building a relaxed planning graph, and HSP’s process of computing
a weight fixpoint, must be costly no matter how efficient the implementation is.
Our idea, consequently, is to reduce the number of actions that the planners need
to consider within the relaxation, i.e., to compute as a pre-process a set O|, of
actions that are considered relevant for the relaxation. During search, one can then
estimate solution lengths to the tasks (O|.,S,G) as opposed to using the whole
action set in the tasks (O', S, G).

Of course, the set O|, can not be chosen arbitrarily small. If important actions
are missed out, then the task (O]’, S, G) can become unsolvable for a state S though
it would be solvable with the original action set. In other words, one runs the risk
of loosing relaxed completeness. If the task (O|,,S,G) is unsolvable, which both
HSP’s and FF’s algorithmic methods will detect, then the systems set the heuristic
value of S to oo, excluding the state from the search space. While this is normally
justified—if a state can not be solved even when ignoring delete lists, then that
state is unsolvable—it can lead to incompleteness if solving (O|.., S,G) only failed
because 0|, does not contain some important action(s).? The rest of the paper is
inspired by a notion of relevance that maintains relaxed completeness.

3 Relaxed Irrelevance

We consider an action relaxed irrelevant if it never appears in an optimal relaxed
solution. Clearly, such actions can be ignored within the relaxation without loos-
ing completeness. Unfortunately, deciding about relaxed irrelevance is as hard as
planning itself.

Definition 2. Let (O,Z,G) be a planning task. An action o € O is relaxed irrele-
vant if o is not part of any optimal relaxed solution from any reachable state.

Definition 3. Let RELAXED-IRRELEVANCE denote the following problem:
Given a planning task (O,Z,G) and an action o € O, is o relaxed irrelevant?

2 One might argue that this could be fixed by setting the heuristic value of S to a large
integer instead of co. While this would regain completeness, it would also make the
adequacy of the heuristic questionable: If a large number of states have the same high
heuristic evaluation only because O|, is too restrictive, then the heuristic is not very
informative about the real structure of the search space.

327

328

Theorem 1. Deciding RELAXED-IRRELEVANCE is PSPACE-hard.

Proof Sketch: By a polynomial reduction from PLANSAT, the decision problem
of whether there exists a solution plan for a given arbitrary STRIPS planning task
[3]: First rename all atoms in the original task. Then put original o into the renamed
action set, plus two artificial actions: one requiring the renamed goal to be solved,
deleting all renamed atoms, and adding o’s precondition, the other needing o’s adds,
and achieving the renamed goal. o is needed for an optimal relaxed solution in the
modified task if and only if the original task is solvable. u

3.1 A Sufficient Condition

We now derive a sufficient condition for relaxed irrelevance. The following definition
forms the heart of our investigation.

Definition 4. Let P = (O,Z,G) be a planning task. The generation graph to the
task is defined by the node set O U {og}, with og := (G,0,0), and the edge set

{(0,0") | add(o) N pre(o’) # 0}

We refer to paths P = (01, ...,0, = 0g) in this graph as generation paths. We call
add(o;) N pre(o;+1) the connecting facts at position i. P is legal if at each position
there is at least one connecting fact that is not contained in the preconditions of the
previous actions, i.e., if for 1 <i<n-—1:

(add(0;) N pre(oir1)) \ | pre(o;) # 0

1<j<i

The generation graph to a task intuitively represents all ways in which facts can
be achieved. A generation path is a sequence of actions that support each other,
and that end up making at least one goal true. We will see in the following that
the only generation paths that are adequate in minimal relaxed solutions are those
generation paths that are legal. Precisely, we will show the following.

Theorem 2. Let (0,Z,G) be a planning task, S a state, and P = (01,...,0,) a
minimal relaxed solution to S. Then for all o; there exists a legal generation path
P; starting with o;.

With that, we immediately have our sufficient condition.

Corollary 1. Let (O0,Z,G) be a planning task, o € O. If there is no legal generation
path P starting with o, then o is not part of any minimal relaxed solution from any
state. In particular, o is then relaxed irrelevant.

Semantically, Definition 4 can be seen as a modification of the base technique
that is used in RIFO. The relation between the techniques gives a nice picture of
what is happening. Briefly, it can be explained as follows. To create an expectation of
what is relevant for solving a planning task, RIFO builds a so-called fact-generation
tree. This is an AND- OR-tree that is built by backchaining from the goals. The
root node is an AND-node corresponding to the goals. Other AND-nodes corre-
spond to an action’s preconditions, and the OR-nodes are single atoms that can
alternatively be achieved by different actions. Once this tree is generated, RIFO
applies a number of simple heuristics to select the information from the tree that
is likely most relevant. Now, the set of all legal generation paths can be viewed as
a more restrictive version of RIFO’s fact-generation tree, where an action is only
allowed to achieve an OR-node if the intersection of the action’s precondition with
the facts on the path from the OR-node to the tree root is empty. This is adequate

(only) for relaxed planning. While RIFO selects fractions of its tree as relevant, we
select the whole tree. This gives us completeness in the relaxation. The proof to
Theorem 2 proceeds using what we call the needed facts, which are the facts for
whose achievement actions can be placed at a certain position in a relaxed solution.

Definition 5. Let (0,Z,G) be a planning task, S a state, and P = (01,...,0,) a
relazed solution to S. The open facts OF (P,i) of P at position ¢ are

OF(Pi):= G\ |J addoy)u | (pre(o)\ |J add(or)),

i<j<n i<j<n i<k<j
and the needed facts NF(P,i) of P at position ¢ are
NF(P,i):= OF(P,i)\ (SU | add(o)))

1<j<i
An action placed at position 7 in a relaxed plan P must add all needed facts of
P at position 4, and in a minimal relaxed plan there is at least one needed fact at
each position.

Lemma 1. Let (O,Z,G) be a planning task, S a state, and P = (01,...,0,) a
relazed solution to S. Then add(o;) D NF(P,i) holds for 1 <i < n.

Proof Sketch: If an action does not add a needed fact, then P is no relaxed

solution, because either some precondition ahead or some goal remains unachieved.
|

Lemma 2. Let (O,Z,G) be a planning task, S a state, and P = {(01,...,0,) a
minimal relazed solution to S. Then NF(P,i) # 0 holds for 1 <i <n.

Proof Sketch: If there is no needed fact at position ¢, then P without o; is still a
relaxed solution—all facts that must be achieved are true without applying o;. ®

Using the above two lemmata, Theorem 2 can be proven, stating that to all
actions o; in a minimal relaxed solution P = (oy,...,0,) there is a legal generation
path P; starting with o;.

Proof Sketch: (to Theorem 2) The desired paths P; can be constructed by
starting with o;, successively stepping onto a successor action that has a needed
fact as precondition, and stopping when a goal fact is needed. With Lemma 2, there
is always at least one needed fact, and with Lemma 1, those facts are added. The
resulting action sequence is obviously a generation path, and it is legal because facts
are not yet true at the position where they are needed. u

Unfortunately, deciding about the sufficient condition given by Corollary 1 is
still NP-hard.

Definition 6. Let LEGAL-GENERATION-PATH denote the following problem:
Given a planning task (O, Z,G) and an action o € O, is there a legal generation
path starting with o?

Theorem 3. Deciding LEGAL-GENERATION-PATH is NP-complete.

Proof Sketch: Membership follows by a simple guess-and-check argument. Hard-
ness can be proven by a polynomial reduction from 3SAT. Introduce one action for
each literal in the clauses, and one action for each variable. Additionally, introduce
a starting action s. The preconditions and add lists can be arranged such that the
following holds: Firstly, a generation path starting with s must visit all clauses at
least once, and afterwards pass through all variables. Secondly, passing a variable
legally requires that the path has not visited the respective variable and its nega-
tion. A legal generation path starting in s thus defines a satisfying truth assignment
via the literals visited in the clauses, and vice versa. u

329

330

4 Approximation Techniques

We will now introduce two polynomial-time approximations of legal generation
paths, filtering action sets for relaxed planning. The first method includes all ac-
tions that start a legal path, and is therefore complete in the relaxation. As we
will see in the next section, the method terminates fast in almost all of our testing
examples. The second method does not give any completeness guarantees, but will
be shown to be empirically safe, and to terminate extremely fast on all examples in
our testing suite.

4.1 A Sufficient Approximation

Let us first introduce a notation for the set of all actions that start a legal generation
path. With Corollary 1, we can restrict the actions considered by an FF or HSP
style heuristic function to that set without loosing completeness.

Definition 7. Let P = (O,Z,G) be a planning task. The legal action set to P is
Oli:={o€O|3PeO*:(o)oP is a legal generation path }.

Our sufficient approximation collects together all actions starting generation
paths that fulfill a weaker notion of legality. Reconsider Definition 4.

Definition 8. Let P = (0,Z,G) be a planning task. A generation path P =
(01,...,0y) is initially legal if (add(o;) N pre(oi+1)) \ pre(or) #0 for 1 <i<n—1.
The initially legal action set O|y to P is defined using the following fixpoint operator
2929,

r(0l;) :={o€ O3 P €O|;: (o) P is an initially legal generation path }
We set Oy := Uzo I()F

In words, we obtain the initially legal action set by computing a fixpoint over the
actions that start an initially legal generation path. A generation path is initially
legal when between any two actions there is a connecting fact that is not contained
in the precondition of the first action. Clearly, legal generation paths—where there
are connecting facts that are not contained in the precondition of any previous
action—fulfill this property.

Proposition 1. Let P = (0,Z,G) be a planning task. The initially legal action set
is a superset of the legal action set, i.e., Oly 2 Ol holds.

The definition of O|; translates directly into the fixpoint computation depicted
in Figure 1. Our implementation is straightforward. In each iteration of the fixpoint
process, check for all not yet selected actions o whether there is a path to the goals,
using only edges that are not excluded by o’s preconditions.

We have also implemented two other sufficient approximations of O|;. One of
those weakens O|;; by dropping the condition that the action sequences P must con-
sist of O]y members. The other method strengthens O|; by incrementally building
a graph of edges that start already selected paths. The required action sequences
P must then traverse only edges that are in the graph already. In our experiments,
both methods showed significantly worse runtime behaviour than the above O|;
computation. The filtered action sets were, however, the same for all three meth-
ods in most of the cases. We therefore chose to concentrate on O|; as a sufficient
approximation.

Ola =10
repeat
Fixpoint := TRUE
for o € O\ O|; do
if there is an initially legal path from o to o
consisting out of actions in O|; then
O|i1 = O|i1 @] {0}
Fixpoint := FALSE
endif
endfor
until Fixpoint

Fig. 1. Fixpoint computation of actions starting initially legal generation paths: A suffi-
cient approximation of legal generation paths.

4.2 An Insufficient but Fast Approximation

Like the computation of initially legal paths, our second approximation technique
performs a fixpoint computation. Unlike the former computation, the method allows
only edges (0,0') in the paths that are legal with respect to 0. What’s more, each
action o is associated with at most one single edge that can be traversed from o.
We call the resulting action set the set of approzimative legal actions O|,;. Have a
look at the pseudo code in Figure 2.

Olat :i={oc}, e :=0,k:=0
repeat
Fixpoint := TRUE
for o € O\ O|u do
if there is an edge (0,0'), 0 € O|q; such that
the path (0,e°(0'), el (0'),...,e*(0') = 0¢) is initially legal then
O|a1 = O|a1 @] {0}

e:=eU{(0,0")}
Fixpoint := FALSE
endif
endfor
k=k+1

until Fixpoint

Fig. 2. Fixpoint computation of actions starting approximative legal generation paths: An
insufficient but fast approximation of legal generation paths.

The algorithm depicted in Figure 2 iteratively includes new actions into O|y
until a fixpoint is reached. The key feature of the algorithm is the function e : O
O, which is represented in the figure as a set of (0,e(0)) pairs. The function starts
as the empty set of such pairs, i.e., e is initially undefined for the whole action set.
If an action o is included into O|4 due to an edge (o, 0'), then that edge is included
into the definition of e. Initially, the only member of O|4 is og, so in iteration
k = 0 the only edges that can be included are direct connections to the goals. In
any later iteration k, e defines a tree of depth k where the root node is og, and
each node—the actions for which e is defined—occurs exactly once. For the not yet
selected actions o it is then checked whether they have an edge connecting them
to a tree node o' such that the path (0,e°(0'),e!(0'),...,e*(0') = og) is initially
legal. Note here that (0,e’(0'),e'(0'),...,e*(0")) is just the concatenation of the

331

332

edge (0,0") with the path from o' to the tree root. If that path is initially legal, then
o and the edge (0,0') are included into the tree.®> While allowing only a single edge
for each node may sound way to restrictive, the method turned out to be, as said,
surprisingly safe in our testing examples.

5 Extension to Conditional Effects

We have extended our theoretical analysis and approximation algorithms to deal
with conditional effects. Because FF compiles away all ADL constructs except the
conditional effects [4], this enabled us to deal with planning domains specified in
the ADL language [9]. In the following, we briefly summarise the extensions made
to the definitions and algorithms introduced in Sections 3 and 4. For more details,
we refer the interested reader to our technical report [5].

An effect is relaxed irrelevant if it can be ignored in all optimal relaxed solutions
from all reachable states, i.e., if all optimal relaxed plans are still relaxed plans
without that effect. Relaxed irrelevant effects can be detected by looking at the set
of all effects in a task as a set of STRIPS actions STRIPS(O), where each effect of an
action o corresponds to an action that has as preconditions pre(o) plus the effect’s
conditions. The parallel to Theorem 2 is that, if an effect can not be ignored in a
minimal relaxed solution from some state, then the effect starts a legal generation
path in STRIPS(O). This can be proven by a natural extension of the needed facts
notion.

Extending the filtering methods from Section 4 thus comes down to implement-
ing them on the set STRIPS(QO). If an effect does not start an initially or approx-
imative legal generation path in STRIPS(O), then the effect is removed from the
respective action in the sense that the effect is not considered within the relaxation.
If all effects of an action are removed, then the whole action is ignored.

6 Empirical Evaluation

We evaluated our approach by running a number of large scale experiments. We used

20 benchmark planning domains, including all examples from the AIPS-1998 and

ATPS-2000 competitions. The domains were Assembly, two Blocksworlds (three-

and four-operator representation), Briefcaseworld, Bulldozer, Freecell, Fridge, Grid,

Gripper, Hanoi, Logistics, Miconic-ADL, Miconic-SIMPLE, Miconic-STRIPS, Movie,
Mprime, Mystery, Schedule, Tsp, and Tyreworld. In each of these domains, we gen-

erated instances by using randomised generation software.* We ran experiments for

evaluating

1. RIFO’s runtime behaviour when compared to FF,
2. the runtime behaviour and pruning impact of O|; and O,
3. and the empirical safety of O|,;.

For each single experiment, we set up a large testing suite containing up to 200
instances from each domain. The testing suites differed in terms of the size of the
instances that we generated.

In the first experiment, we ran the RIFO implementation within IPP4.0 versus
FF on a suite of 681 instances that were small enough for the IPP4.0 instantiation

3 For optimisation, one obviously only needs to look at actions o’ that are leafs of the
current tree.

* Descriptions of the randomisation strategies and the source code of all genera-
tors are publicly available at http://www.informatik.uni-freiburg.de/~ hoffmann/ff-
domains.html.

routine to cope with.® Test runs were given 300 seconds time and 400 M Bytes
memory on a Sun machine running at 163 MHz. We show the number of instances
handled successfully, and the average running time per domain. For FF, we count
as successfully handled those instances were a plan was found. For RIFO, success
on an instance means termination of the pre-process within the given time and
memory bounds. We count only those such instances for which we know they are
solvable—those were FF found a plan. Times are averaged over those instances
that both implementations handled successfully. Running time for RIFO does not
include IPP’s instantiation time. See the data in Figure 3.

success running time
domain RIFO | FF RIFO | FF

Assembly 33 33 1.08 9.16
Blocksworld-3ops 21 21 4.45 2.90
Blocksworld-4ops 21 21 0.91 0.07
Briefcaseworld 20 20 1.86 1.12
Bulldozer 17 17 1.97 4.54
Freecell 33 50 21.90 0.06
Fridge 22 22 0.23 0.22
Grid 22 35 43.77 7.72
Gripper 25 25 0.45 0.31
Hanoi 8 8 0.34 4.79
Logistics 35 35 46.80 1.18
Miconic-ADL 22 40 14.03 3.77
Miconic-SIMPLE 25 25 0.64 0.54
Miconic-STRIPS 25 25 0.64 0.37
Movie 30 30 0.00 0.00
Mprime 48 61 16.47 1.19
Mystery 23 36 27.16| 12.51
Schedule 15 28 28.34| 14.06
Tsp 25 25 4.90 0.12
Tyreworld 20 20 6.03 0.48

Fig. 3. Instances handled successfully, and average running times for RIFO and FF per do-
main. The successfully handled instances for FF are those for which a plan was found. The
successfully handled instances for RIFO are those solvable ones where RIFO terminated
within the given time and memory bounds.

In 3 of the 20 domains shown (Assembly, Bulldozer and Hanoi) does RIFO
terminate faster than FF solves the tasks. In 10 domains, RIFO’s average running
time is orders of magnitude higher than that of FF. In some domains, RIFO exhausts
resources on a number of instances that FF manages to solve. We conclude that
RIFO is, as a pre-process, not competitive with FF, at least in its implementation
within IPP4.0.

In our second experiment, we evaluated the O|; and O|, methods in terms of
runtime behaviour and pruning impact. Test runs were given 300 seconds and 200
M Bytes memory on a Sun machine running at 300 MHz. We used a total of 2334
large instances generated to be of a size challenging for FF, but still within its range
of solvability within the given resources. On each task, we ran three implementa-
tions: FF-v2.2 [4], and two versions of the same code were O|; respectively O|q
were computed as a pre-process. In the latter two versions, FF’s heuristic function
was changed to consider only those effects contained in the filtered action set. We
measured the overhead produced by the filtering methods, the total running times,
the time taken for state evaluations, and the number of effects in the complete
respectively filtered action sets. See the data in Figure 4.

® In some domains, like Freecell, the routine can handle only comparatively small instances
which is, we think, due to the implementation: this is intended to deal with full scale
ADL constructs [6], and fails to efficiently handle the simple STRIPS special case.

333

334

overhead total time single evaluation number of effects

Olit |Olat|| FF |+0[it|+0]at|| FF |4+0]u|4+O0|m O | Ola | Ola
Assembly 0.01]|0.00(|12.83| 12.01| 11.53|| 1.75| 1.64| 1.57 426.72 358.64| 358.64
Blocksworld-3ops|| 0.59|0.08(| 1.62| 2.24| 1.61|| 3.41| 3.47| 3.21|| 1854.62| 1854.62| 1819.09
Blocksworld-4ops|| 0.04|0.00(| 1.04| 1.08| 0.99|| 0.76| 0.76/ 0.72 290.06 290.06 286.94
Briefcaseworld 0.04|{0.01f| 5.51| 1.10| 1.01|| 4.26] 0.82| 0.77|| 4106.50| 670.00| 670.00

domain

Bulldozer 0.02|0.01|| 6.89| 7.00| 6.67| 1.27| 1.29| 1.23 599.22| 599.22| 599.17
Freecell 11.14|0.53||17.47| 28.77| 17.33|| 8.19| 8.26| 7.87|| 4725.37| 4668.17| 4668.17
Fridge 0.00(0.00|| 1.71| 1.72] 1.70]| 0.96] 0.97| 0.95 302.22| 302.22| 302.22
Grid 76.12|0.54(|11.57| 87.90| 11.93|| 7.95| 8.09| 7.89(6424.35| 6424.35| 6417.28
Gripper 0.03|0.01|| 0.33| 0.36| 0.27]| 1.38| 1.39] 1.11 478.00{ 478.00| 359.00
Hanoi 0.00(0.00|| 4.73| 4.80| 4.58|| 0.83| 0.84| 0.80 244.50| 244.50| 244.50
Logistics 2.24|0.22||83.57| 45.51| 43.52||37.45| 19.39| 19.40]{19904.53|15347.80|{15347.80
Miconic-ADL 1.09]0.29(|13.91] 13.48| 12.23|(12.72]| 11.33| 10.92|| 2988.20| 2700.52| 2700.52

Miconic-SIMPLE(| 0.17(0.02|| 0.52| 0.69| 0.51| 2.14| 2.15| 2.04|| 1504.00| 1504.00| 1504.00
Miconic-STRIPS || 0.16[0.02|| 0.39| 0.55| 0.38| 1.92] 1.94| 1.82|| 1504.00| 1504.00| 1504.00

Movie 0.00(0.00{| 0.00(0.00| 0.00|f 0.33] 0.23| 0.17 7.00 7.00 7.00
Mprime 60.20|0.79|| 5.40| 65.66| 6.13(|16.38| 16.54| 16.18(|12138.00|12136.97|12136.32
Mystery 12.87|1.05||20.11| 33.26| 21.14||15.59| 15.80| 15.57||14644.20|14644.20|14641.38
Schedule 0.48|0.01|[52.31| 55.56| 54.52|{10.86| 7.07| 6.99|| 3049.84| 917.43| 916.82
Tsp 0.01[0.09|| 0.13| 0.14| 0.22]] 2.09| 2.11| 2.13]| 4390.00| 4390.00| 4390.00
Tyreworld 1.34]|0.08(|23.23| 13.27| 7.07([19.31] 9.92| 5.81|| 7105.50| 4479.00| 3646.00

Fig. 4. Average overhead for pre-processing, average total running time, average running
time per state evaluation, and average number of effects, shown per planning domain and
filtering method used. Times are in seconds except for state evaluations, where milliseconds
are specified.

All measured values were averaged over those instances were all three methods
succeeded in finding a plan (we tried inserting default values in the other cases, but
found that this generally obfuscated the results more than it helped understanding
them). In 12 domains, the solved instances were exactly the same across all methods
anyway. In another 3 domains, differences occurred only in very few instances (1
- 2 out of 90 - 181). In Grid and Mprime, computing O|; sometimes exhausted
resources (in Grid, 41 of 179 cases, in Mprime, 51 of 196 cases). In Assembly and
Logistics, the speed-up produced by the filtering methods helped FF to solve some
more instances (165 instead of 159 in Assembly, 87 instead of 75 in Logistics). In
Schedule, original FF solved 85 instances instead of 74 solved with O|; or O|4 on.
We will come back to the Schedule domain later.

Let us first focus on the overheads produced. Compare the first two columns
with the third column, showing average solving time for FF. The overhead for O|;
is neglectible (i.e., below 0.2 seconds on average) in 11 of our domains, and orders of
magnitude smaller than FF’s average time in another 4 domains. In the 3-operator
Blocksworld, the overhead is a third of FF’s time, and below a second anyway. In
the remaining four domains, the pre-process can hurt: In Freecell and Mystery, it
takes almost as much time as FF, and in Grid and Mprime it can take much longer
time (we will later describe an approach to automatic recognition of the cases were
the pre-process takes a lot of time). The overhead for 0|, is neglectible in 14 of the
domains, and still a lot smaller than FF’s running time in the other cases.

Concerning the impact that the filtering methods have on the number of effects
in the action set, the speed of the heuristic function, and the total running time,
it is easiest to start by looking at the rightmost three columns in Figure 4. The
methods do not prune any effects in 6 of our domains, and prune very few effects in
another 7 domains. Moderately many effects are pruned in the Assembly, Gripper
and Miconic-ADL domains. In the Briefcaseworld, Logistics, Schedule and Tyre-
world domains, the pruning is drastic.® As a consequence, the average time taken

6 In the Briefcaseworld, for example, amongst other things all actions are thrown out that
take objects out of the briefcase—taking objects out of the briefcase is not necessary
within the relaxation, where keeping them inside never hurts.

for a single state evaluation (total evaluation time divided by number of evaluated
states) is, when using the filtering methods, significantly lower in the four domains
with drastic pruning, and slightly lower in the three domains with moderate prun-
ing. Look at the respective columns, specifying the average state evaluation time in
milliseconds. In Briefcaseworld, Logistics and Tyreworld, the faster heuristic func-
tions translate directly into improved total running time. In Schedule, there seems
to be some interaction between the filtering methods and FF’s internal algorithmic
techniques: though the heuristic function is faster, total running time gets worse.
This is because FF evaluates, with the filtered action sets, more states before find-
ing the goal. An explanation for this might be FF’s helpful actions heuristic, which
biases the actions selected to those that could also be selected by the heuristic func-
tion [4]. For O], it might also be that some states become unsolvable—though we
did not find such a case in the experiment described below.

We finally consider the safety of the O|y; filtering method with respect to com-
pleteness in the relaxation. The method is empirically safe in the sense that, from
the 2334 examples used in the above described experiment, only 11 Schedule in-
stances could not be solved with the method on though they could be solved with
original FF. The failures were only due to the runtime restrictions we applied in
the experiment: given slightly more time, FF with O|; filtering could solve those 11
instances. In addition to this result, we ran the following experiment. We generated
a total of 2099 instances from our 20 domains, small enough to build an explicit
representation of the state space. To each instance, we looked at all reachable states,
and verified whether the goal was reachable when ignoring delete lists, using the
whole action set O, or the filtered action set O|y;. In 19 of our 20 domains, all states
solvable with O were still solvable with O|q. Only in Grid did we find states that
became unsolvable. This occurred in 19 of 100 instances. In all those instances, the
states becoming unsolvable were less than 1% of the state space.

7 Current Work

Our current results reveal two drawbacks of the presented approach:

1. OJ; filtering sometimes hurts in the sense that it can take a lot of running time.
2. While O|; is provably and Ol, empirically safe, both methods have strong
pruning impacts only in a few domains.

We address these difficulties in two lines of work that we are currently pursuing.
One idea to avoid the first problem is estimate the runtime that would be necessary
for computing O|;;. One can then skip the pre-process if it appears to be too costly.
O|q is computed by the repeated search for legal generation paths, which is more
costly the more edges there are in the generation graph. An upper approximation
to the number of edges is:

Y o€ 0| feadd(o)}|x|{o€ O] f € pre(o)}]

feF

Here, F' denotes the set of all logical atoms that appear in the actions O. If
|pre(o) Nadd(o')| < 1 for all 0,0’ € O, then the approximation is exact. We have
computed, for the 2334 large instances from the second experiment described in the
previous section, the above upper limit, as well as the real number of edges in the
generation graph. In 8 domains, the values are the same across all instances. In the
remaining domains, the values are close. There seems to be a close correspondence
to the running time consumed by the O|; computation: the averaged approximation
values are between 3 and 11 millions in those four domains were O|; takes a lot of

335

336

computation time, and below one million in all other domains. It remains to estab-
lish an exact criterion that uses this correspondence for deciding about whether to
compute O|; or not.

Addressing the second problem, lack of strong pruning impacts in many do-
mains, appears to us to be a much harder task. If one wants to obtain stronger
pruning impacts, there does not seem to be a way around sacrificing empirical, let
alone theoretical safety. We are currently experimenting with combining our tech-
niques and RIFO’s information selection heuristics. We have implemented some first
strategies. As expected, the pruning impact became more drastic in some examples.
However—as we also expected—a lot of states became unsolvable for the heuristic.
Often all paths to the goal were interrupted by such a state, rendering the whole
planning task unsolvable for FF.

8 Conclusion and Outlook

We have presented a new approach towards defining irrelevance in planning tasks,
concerning actions that are not necessary within the relaxation used in the heuristic
functions of state-of-the-art heuristic planners like HSP and FF. We have derived
a sufficient condition for relaxed irrelevance, and we have presented two approxi-
mation methods that can be used for filtering action sets. One of those methods,
O|i computation, has been proven to be complete within the relaxation, the other
method, O|,; computation, has been shown to be empirically safe. The methods
have drastic pruning impacts in some domains, speeding up FF’s heuristic function,
and in effect the planning process (except in Schedule, where there appears to be
some interaction with FF’s internal techniques). Computing O|,; never hurts in the
sense that the required overhead is neglectible in most of the cases, and always
small compared to FF’s running time. Computing O|; does not hurt in 16 of our
20 domains. We have outlined an approach how the other cases might be recognis-
able automatically. The challenge remains to find filtering methods that are still
empirically safe in most of the cases, but have stronger pruning impacts.

References

1. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):279-298, 1997.

2. Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,
2001. Forthcoming.

3. Tom Bylander. The computational complexity of propositional STRIPS planning. Ar-
tificial Intelligence, 69(1-2):165-204, 1994.

4. Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001.

5. Jorg Hoffmann and Bernhard Nebel. RIFO revisited: Detecting relaxed irrelevance.
Technical Report 153, Albert-Ludwigs-Universitat, Institut fiir Informatik, Freiburg,
Germany, 2001. Available from http://www.informatik.uni-freiburg.de/tr/2001

6. Jana Koehler and Jérg Hoffmann. On the instantiation of ADL operators involving
arbitrary first-order formulas. In Proc. ECAI-00 Workshop on New Results in Planning,
Scheduling and Design, 2000.

7. Jana Koehler, Bernhard Nebel, Jorg Hoffmann, and Yannis Dimopoulos. Extending
planning graphs to an ADL subset. In Proc. ECP-97, pages 273-285, Toulouse, France,
September 1997. Springer-Verlag.

8. Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler. Ignoring irrelevant facts and
operators in plan generation. In Proc. ECP-97, pages 338-350, Toulouse, France,
September 1997. Springer-Verlag.

9. Edwin P.D. Pednault. ADL: Exploring the middle ground between STRIPS and the
situation calculus. In Proc. KR-89, pages 324-331, Toronto, ON, May 1989. Morgan
Kaufmann.

