
A Forward Sear
h Planning Algorithm with aGoal Ordering Heuristi
Igor Razgon and Ronen I. BrafmanComputer S
ien
e DepartmentBen-Gurion University, 84105, Israelfirazgon,brafmang�
s.bgu.a
.ilAbstra
t. Forward 
haining is a popular strategy for solving 
lassi
alplanning problems and a number of re
ent su

essful planners exploit it.To su

eed, a forward 
haining algorithm must 
arefully sele
t its nexta
tion. In this paper, we introdu
e a forward 
haining algorithm thatsele
ts its next a
tion using heuristi
s that 
ombine ba
kward regressionand goal ordering te
hniques. Ba
kward regression helps the algorithmfo
us on a
tions that are relevant to the a
hievement of the goal. Goalordering te
hniques strengthens this �ltering property, for
ing the for-ward sear
h pro
ess to 
onsider a
tions that are relevant at the 
urrentstage of the sear
h pro
ess. One of the key features of our planner isits dynami
 appli
ation of goal ordering te
hniques: we apply them onthe main goal as well as on all the derived sub-goals. We 
ompare theperforman
e of our planner with ff { the winner of the AIPS'00 plan-ning 
ompetition { on a number of well-known and novel domains. Weshow that our planner is 
ompetitive with ff, outperforming it on more
omplex domains in whi
h sub-goals are typi
ally non-trivial.List of keywords: forward 
haining, ba
kward regression, goal ordering,relaxed problem1 Introdu
tionForward 
haining is a popular strategy for solving 
lassi
al planning problems.Early planning systems, su
h as GPS [12℄, used forward 
haining but were qui
klyover
ome by regression-based methods su
h as partial-order planning [17℄ and,more re
ently,Graphplan [2℄. These methods were viewed as more informed, orfo
used. However, with the aid of appropriate heuristi
 fun
tions, re
ent forward-
haining algorithms [3, 6℄ have been able to outperform other planners on manydomains.To su

eed, a forward-
haining planner must be informed in its sele
tion ofa
tions. Ideally, the a
tion 
hosen at the 
urrent state must bring us 
loser tothe goal state. To a
hieve this goal, re
ent forward-
haining planners use new,improved heuristi
 fun
tions in whi
h regression te
hniques play an importantrole. The idea of ba
kward regression through forward 
haining was �rst expli
-itly stated by M
Dermott [13℄. It was impli
itly used in GPS and ff [6℄ and in its
25



more general form in Graphplan and its des
endants [2, 9, 11℄ (as a polynomialstru
ture 
onstru
ted in a dire
tion opposite to the main sear
h dire
tion). Itwas used also in [1℄ for relevan
e 
omputation.In this paper we extend regression-based relevan
e �ltering te
hniques witha dynami
 goal-ordering heuristi
s. This results in a planning algorithm { ro(Regression + Goal-Ordering) { that has a better 
han
e of 
hoosing a
tions thatare relevant and timely. The ba
kward regression heuristi
s used in our planneris somewhat similar to the one used in GPS. That is, we 
onstru
t a sequen
e ofsubgoals, where the �rst subgoal is the main goal and the last subgoal is satis�edin the 
urrent state. The di�eren
e between ro and previous algorithms is inthe way this subgoal sequen
e is generated. More spe
i�
ally, given the 
urrentsubgoal in the 
onstru
ted sequen
e, the next subgoal is 
omputed as follows:we sele
t the proposition that we believe should be a
hieved �rst in the 
urrentsubgoal { we use a goal ordering heuristi
s to make this sele
tion. Then, wesele
t an a
tion that has this proposition as an add-e�e
t. Finally, we add thepre
onditions of this 
hosen a
tion to the beginning of the 
onstru
ted sequen
e.Thus, we have a 
ombination of a ba
kward regression method with a goalordering te
hnique, where the ordering is 
omputed dynami
ally for all subgoalsof the sequen
e of goals generated by the ba
kward regression pro
ess.The 
ombination of ba
kward regression with goal ordering is based on thefollowing intuition: One of the main goals of ba
kward sear
h in the 
ontext offorward 
haining algorithm is to avoid 
onsidering irrelevant a
tions. [1℄. How-ever, when a relevant a
tion is inserted in an inappropriate pla
e in the plan,we either obtain a plan that is longer than ne
essary or we must perform ex-pensive ba
ktra
king. By ordering subgoals, we strengthen the �ltering propertyof ba
kward regression and redu
e the need for ba
ktra
king be
ause we for
ethe forward 
haining pro
ess to 
onsider a
tions that are relevant at the 
urrentstage of the sear
h pro
ess.Typi
ally, goal ordering is done for the original goal only, and prior to theinitiation of sear
h { it is stati
 in nature. Next, the problem is divided intosmaller subproblems, ea
h of whi
h 
an be solved separately [12, 10℄. Dynami
ordering of propositions is often seen in CSP problems. It was used in the 
ontextof Graphplan's ba
kward sear
h, viewed as a CSP problem, in [8℄. This paperis among the �rst to use dynami
 goal ordering in the planning pro
ess, and theparti
ular dynami
 goal ordering approa
h we introdu
e here is the main novel
ontribution of this paper.The rest of this paper is organized as follows: Se
tion 2 provides a short re-view of related work. Se
tion 3 des
ribes the proposed algorithm. In Se
tion 4we provide an empiri
al 
omparison between our planner and the winner of theAIPS 2000 planning 
ompetition, ff [6℄. The main 
on
lusion of our experimen-tal analysis is that ro is 
ompetitive with ff, outperforming it on domains inwhi
h the subproblems obtained after ordering the top level goal are non-trivial.Finally, Se
tion 5 
on
ludes this paper.
26



2 Related WorkIn this se
tion we provide a short review of forward sear
h algorithms and goalordering methods and their use in planning. This will help provide some of thene
essary ba
kground and will pla
e this work in its proper 
ontext.2.1 Re
ent forward sear
h algorithmshsp The hsp algorithm [3℄ is a forward 
haining algorithm without ba
ktra
k.Ea
h step, the a
tion leading to the state with minimal approximated dis-tan
e to the goal is 
hosen. This distan
e is approximated by solving a relaxedproblem in whi
h the delete e�e
ts of all a
tions were removed. Given this re-laxed problem, we approximate the distan
e from the 
urrent state 
ur to astate s using the sum (or maximum) of the weights of the propositions thathold in s. The weight of a proposition p is 0 if it belongs to 
ur. Otherwise,weight(p) = minall a
ts a
hieving p 1 + dist(pre
ond(a
t)), i.e., one more thanthe minimal distan
e of the set of pre
onditions of a
tions that a
hieve p.ff ff (Fast Forward) [6℄ is a forward sear
h algorithm that sele
ts an a
tionat ea
h step using an approximated distan
e measure. The distan
e from the
urrent state to the goal is approximated by the plan length for a
hieving the goalin a relaxed problem indu
ed by the 
urrent problem. ff uses Graphplan tosolve the relaxed problem. Be
ause the relaxed problem does not have del-e�e
ts,there are no mutually ex
lusive pairs of propositions and a
tions in the problem.Therefore, it 
an be solved in polynomial time. To make the measure near-optimal, various heuristi
s for de
reasing the length of the extra
ted solutionare applied.The algorithm applies breadth-�rst sear
h from the 
urrent state s until it�nds a state s0 that has a stri
tly better value. The ordering te
hnique from [10℄,des
ribed below, is applied to make ff more e�e
tive. ff won the AIPS 2000planning 
ompetition.2.2 Goal ordering methodsThere has been mu
h work on goal ordering methods and their use in planning.Most of this work addresses the following four questions1. How to order two propositions? [7, 10, 8℄2. How to derive a total order on propositions given an ordering on all pairs ofpropositions? [10℄3. How to use a total order on goal propositions in planning? [12, 10, 8℄4. How to in
orporate propositions that are not in the top-level goal into thegoal order? [14℄
27



For our purpose, the �rst and the third questions are the most relevant.An interesting 
lassi�
ation of methods determining the order between twogiven propositions is introdu
ed in [7℄. A

ording to it, we may 
on
lude thatp < q if at least one of the following 
onditions holds.1. Goal subsumption. To a
hieve q we must a
hieve p2. Goal 
lobbering.When a
hieving p we destroy q if it existed in some pre-vious state. An example of goal 
lobbering is the pair of propositions on(1; 2)and on(2; 3) in the Blo
ksWorld problem. on(2; 3) has to be a
hieved beforeon(1; 2), be
ause on(1; 2) is destroyed in the pro
ess of a
hieving on(2; 3)3. Pre
ondition violation. A
hievement of q makes a
hievement of p impos-sible (dead-end).Two 
riteria for ordering propositions based on the prin
iple of goal 
lob-bering are given in [10℄. A modi�ed version of the �rst of them is used is theproposed algorithm and des
ribed in detail in the next se
tion.A widespread method for using a goal ordering in planning is to iterativelyapply the planning algorithm to a
hieve in
reasing subsets of the goal. For ex-ample if we have a goal ordering(p1; :::; pn), then �rst we try to a
hieve a state s1in whi
h fp1g holds, starting at the initial state. Next, we try to a
hieve fp1; p2gstarting at s1, et
. The last plan a
hieves the required goal from s1; : : : ; sn�1.By 
on
atenating the resulting plans, we get a 
omplete plan.3 Algorithm des
ription.We now pro
eed to des
ribe the ro planning algorithm. In Se
tion 3.1 we de-s
ribe the algorithm and its a
tion sele
tion heuristi
. In Se
tion 3.2 we providemore details on some of the subroutines used during a
tion sele
tion. In Se
tion3.3, we dis
uss some optimization implemented in the 
urrent version of ro.Finally, in Se
tion 3.4., we demonstrate the work of RO on a running example.3.1 The Proposed Algorithm and its A
tion Sele
tion Heuristi
ro is a forward 
haining planner with 
hronologi
al ba
ktra
king. It re
eives adomain des
ription as input and an integer n denoting sear
h-depth limit (thedefault value of n is 2000).The �rst step of ro is to 
ompute some data that will be useful duringthe sear
h pro
ess. In parti
ular ro 
onstru
ts an approximated set of pairs ofmutually ex
lusive propositions. It is known that exa
t 
omputation of all mutualex
lusive pairs of pre
onditions is not less hard than the planning problem [2℄.Therefore, only approximation algorithms are a

eptable in this 
ase. RO obtainsan approximate set of mutual ex
lusive pairs as the 
omplement of a set ofrea
hable pairs whi
h is found by a modi�
ation of Rea
hable-2 algorithm [4℄.Next, a standard depth-�rst sear
h with 
hronologi
al ba
ktra
king is per-formed (Figure 1). (Note, that to obtain the desired plan, we have to run this
28



fun
tion on the initial state and the empty plan). The heart of this algorithm isthe heuristi
 sele
tion of a
tion that will be appended to the 
urrent plan (line5). This heuristi
s is based on ba
kward sear
h without ba
ktra
ks (ba
kwardregression). The depth of this regression phase, MaxDeep,is a parameter of theplanner (the default value of MaxDeep is 50). The 
ode of this pro
edure isgiven in Figure 2.As we 
an see from the 
ode in Figure 2, this pro
edure builds a sequen
eof subgoals, starting with the main (i.e., original) goal as its �rst element. Atea
h iteration, the 
urrent (last) subgoal in this sequen
e is pro
essed as follows:its propositions are ordered (line 2) and the minimal proposition that is notsatis�ed in the 
urrent state (the required proposition) is sele
ted (line 3).Next, an a
tion a
hieving this proposition is 
hosen (line 4). If this a
tion isfeasible in the 
urrent state, it is returned. Otherwise, the set of pre
onditionsof this a
tion is appended to the subgoal sequen
e be
oming the new 
urrentsubgoal, and the pro
ess is repeated.We see that ro 
ombines goal ordering and ba
kward regression te
hniques:ea
h time a new subgoal is sele
ted, its propositions are ordered, and this order-ing is used to sele
t the next a
tion for the regression pro
ess. This 
ombinationis the main novel 
ontribution of this work.ComputeP lan(CurState;n; CurP lan)1. For i = 1 to Num Feasible Do //Num Feasible is the number of a
tions feasible inthe 
urrent state2. Begin3. If Goal � CurState then return CurP lan4. If n = 0 then return FAIL5. a
t := Ba
kwardReg(CurGoal;MaxDeep) //this fun
tion 
hooses an a
tion whi
hwas not 
hosen before6. NewCurState := apply(CurState;a
t)7. NewCurP lan := append(CurP lan; a
t)8. Answer = ComputeP lan(NewCurState; n� 1; NewCurP lan)9. If Answer is not FAIL then return (Answer)10. End11. Return FAIL Fig. 1. The main algorithm3.2 Auxiliary pro
edures for the proposed forward sear
h heuristi
sIn this se
tion, we des
ribe two auxiliary pro
edures (lines 2 and 4 of theBa
kwardReg fun
tion). The �rst orders the propositions of a given subgoal.The se
ond �nds an a
tion a
hieving the given proposition and satisfying someadditional 
onstraints.Goal ordering is based on a number of 
riteria. The main 
riterion is a mod-i�ed version of the Graphplan 
riterion from [10℄. This 
riterion is mentioned
29



Ba
kwardReg(CurGoal;MaxDeep)1. If MaxDeep = 0 Choose randomly an a
tion feasible in the 
urrent step that was not
hosen before, and return it2. Order propositions of CurGoal by order of their a
hievement3. Let CurProp be the proposition of the CurGoal, whi
h is minimal inCurGoal n CurState4. Choose an a
tion a
t a
hieving CurProp that was not 
hosen before in the CurState.5. If it is not possible to 
hoose su
h an a
tion, then 
hoose randomly an a
tion feasiblein the 
urrent step that was not 
hosen before, and return it6. If a
t is feasible in the 
urrent state then return a
t7. Let NewCurGoal be the set of pre
onditions of a
t8. Return(Ba
kwardReg(NewCurGoal;MaxDeep� 1))Fig. 2. The Main Heuristi
 of the Algorithm
in 2.2. It states that for two propositions p and q, p must be a
hieved beforeq if every a
tion a
hieving p 
on
i
ts with q. The modi�ed version used herestates that p must be a
hieved before q if the per
ent of a
tions 
on
i
ting withq among a
tions a
hieving p is more than the per
ent of a
tions 
on
i
ting withp among a
tions a
hieving q.Thus, if for two given propositions p and q the \
han
e"that q will be de-stroyed while a
hieving p is higher than the \
han
e" that p will be destroyedwhile a
hieving q, it is preferable to a
hieve p before q. The original versionof this 
riterion was derived from analysis of problems su
h as Blo
ksWorld,HanoiTower and so on, where it is dire
tly appli
able. The proposed modi�
a-tion of this method extends its appli
ability. For example it is appli
able formany Logisti
s-like problem.Intuitively, the a
tion sele
tion fun
tion uses the following rule: Sele
t ana
tion that 
an be the last a
tion in a plan a
hieving the required propositionfrom the 
urrent state. In parti
ular, the a
tion sele
tion fun
tion performs threesteps. First, it 
omputes the relevant set whi
h 
ontains the required proposi-tion and all propositions that are mutually ex
lusive with it. The non-relevantset is determined as the 
omplement of the relevant set. Next, it builds a tran-sition graph whose nodes 
orrespond to the elements of the relevant set. Thisgraph 
ontains an edge (a; b) for ea
h a
tion with a pre
ondition a and an add-e�e
t b. Finally, it sele
ts an a
tion 
orresponding to the last edge in a pathfrom a proposition that is true in the 
urrent state to the required proposi-tion. If there is no su
h path, it returns FAIL. If there are few su
h paths, it
hooses a path with the minimal number of non-relevant pre
onditions of the
orresponding a
tions (in order to �nd a path as 
lose as possible to a "real"plan).

30



3.3 OptimizationsThe a
tual implementation of ro introdu
es a number of optimizations to theabove algorithm. We des
ribe them next.The �rst feature is a more 
ompli
ated ba
ktra
k 
ondition. There are basi-
ally two 
onditions that 
an trigger ba
ktra
king: either the plan ex
eeds some�xed length or a state has been visited twi
e. However, the �rst ba
ktra
k mustbe triggered by the �rst 
ondition. The state we ba
ktra
k to is determined asfollows: If no state appears more than on
e (i.e., we ba
ktra
ked be
ause of planlength), we simply ba
ktra
k one step. If a state appears twi
e in the 
urrentstate sequen
e, we ba
ktra
k to the state prior to se
ond appearan
e of the�rst repeated state. For example, suppose our maximal plan length is 6, thestate sequen
e is (A;C;B;B;C;D), and we have not ba
ktra
ked before. In thissequen
e, both B and C appear twi
e. However, B is the �rst state to o

urtwi
e. Therefore, we ba
ktra
k to before the se
ond appearan
e of B. Thus, thenew sequen
e, after ba
ktra
king, is (A;C;B). From this point on, we ba
ktra
kwhenever the 
urrent state appears earlier in the sequen
e, even if plan lengthis smaller than the maximal length.The se
ond optimization is the memoization of the sequen
e of subgoalsgenerated by the main heuristi
s. Instead of re
omputing the whole subgoalsequen
e in ea
h appli
ation of the sear
h heuristi
, we use the subgoal sequen
ethat was 
onstru
ted in the previous appli
ation (if su
h a sequen
e exists). Themodi�ed algorithm eliminates from the tail of the subgoal sequen
e all subgoalsthat were a
hieved in the past, and 
ontinues 
onstru
tion from the resultingsequen
e.This memoization method has two advantages. First, it saves time by avoid-ing the 
omputation of the full subgoal sequen
e. Se
ond, and more importantly,is that it maintains a 
onne
tion between subsequent appli
ations of the sear
hheuristi
s. This way, ea
h appli
ation of the sear
h heuristi
 appli
ation buildson top of the results of the previous appli
ation and avoids a

idental destru
-tion of these results. The running example in the next se
tion demonstrates theusefulness of this approa
h.3.4 A Running ExampleConsider a well-known instan
e of the Blo
ksWorld domain 
alled the SussmanAnomaly. It is an instan
e with three blo
ks, its initial state is fon(3; 1); on �table(1); 
lear(3); on�table(2); 
lear(2)g and the goal is fon(1; 2); on(2; 3)g. Note,there is only a single rea
hable state that satis�es the goal 
riteria. In this state,the proposition on�table(3) holds. However, on�table(3) is not stated expli
itlyin the goal. This raises a diÆ
ulty for algorithms that employ goal ordering be-
ause they are strongly a�e
ted by intera
tions between a
tions in the goal. Forexample, in our 
ase, the propositions of the goal have to be ordered as follows(on(2; 3); on(1; 2)). However, before a
hieving on(2; 3), it is ne
essary to a
hieveon� table(3).
31



Let us run RO on this instan
e. We 
onsider the simplest version of theBlo
ksWorld domain with two a
tions only: one for moving a blo
k from thetable on top of another blo
k, and one for moving a blo
k to the table. Belowwe show the result of ea
h appli
ation of the sear
h heuristi
s.First appli
ation.The 
urrent state is the initial state, i.e. fon(3; 1)on� table(1); 
lear(3); on�table(2); 
lear(2)g, the subgoal sequen
e is not 
onstru
ted yet, so it needs to be
onstru
ted from s
rat
h. Its �rst subgoal is the main goal whi
h is ordered as(on(2; 3); on(1; 2)). The required proposition of this level is on(2; 3), RO sele
tsa
tion put � on(2; 3) to a
hieve this proposition. This a
tion is feasible in the
urrent state and it is returned, so the �rst appli
ation is �nished here. Note,that the �rst appli
ation of the sear
h heuristi
s sele
ts a wrong a
tion!Se
ond appli
ation. The 
urrent state is fon(2; 3); on(3; 1); on�table(1); 
lear(2)g.The only subgoals in the subgoal sequen
e are (on(2; 3); on(1; 2)). RO 
hoosesthe required proposition to be on(1; 2) and sele
ts a
tion put � on(1; 2) toa
hieve this proposition. As we 
an see, this a
tion is not feasible in the 
ur-rent state and so the subgoal sequen
e is extended. Now, it 
ontains boththe main goal and the pre
onditions of a
tion put � on(1; 2), namely, it is((on(2; 3); on(1; 2))(
lear(1); 
lear(2))). Note, that the ordering of the se
ondsubgoal is 
hosen randomly and it does not matter here. Now, the required propo-sition is 
lear(1). The a
tion sele
tion heuristi
 
hooses a
tion take� out(3; 1).This a
tion is also not feasible and this fa
t leads us to further extend the subgoalsequen
e. The next ordered subgoal in this sequen
e will be (on(3; 1); 
lear(3))(again, the order of the propositions does not matter here). The new requiredproposition will be 
lear(3). To a
hieve this proposition, RO sele
ts a
tiontake � out(2; 3), whi
h is returned, be
ause it is feasible in the 
urrent state.Note that in spite of the fa
t that after an appli
ation of this a
tion we arriveat a state that appeared before, ba
ktra
king is not performed be
ause the �rstba
ktra
k o

urs only on
e we ex
eed the maximal plan length { and this didnot o

ur, yet.Third appli
ation. The new 
urrent state is the initial state! However, wehave learned something in the pro
ess, and this is re
e
ted in the sequen
e ofsubgoals we now have: ((on(2; 3); on(1; 2))(
lear(1); 
lear(2))). (The last subgoalwas eliminated be
ause it was fully a
hieved). This information was not availablewhen we started our sear
h. In fa
t, the new required proposition is 
lear(1), aproposition that does not appear in the original goal. Be
ause we have 
hosenit as the required proposition, we will not repeat past mistakes. The algorithmsele
ts a
tion take� out(3; 1) to a
hieve this proposition. This a
tion is feasiblein the 
urrent state, therefore, it is returned.During the fourth and the �fth appli
ation, the algorithm a
hieves the maingoal in a straightforward way: it puts blo
k 2 on blo
k 3 and then blo
k 1 onblo
k 2.The resulting plan is : (put� on(2; 3); take� out(2; 3); take� out(3; 1); put�on(2; 3); put� on(1; 2))
32



Obviously, this plan is not optimal. The �rst two appli
ations were spent
onstru
ting a subgoal sequen
e whi
h then for
ed RO to sele
t the right a
tions.This feature of RO frequently leads to non-optimal plans. However, we believethat the resulting non-optimal plan usually 
ontains a near-optimal plan as asubsequen
e. Therefore, we 
an run a plan re�nement algorithm [1℄ on the outputof RO and obtain a near optimal plan. In some 
ases, this may be a more e�e
tiveapproa
h for obtaining a near optimal plan.4 Experimental AnalysisTo determine the e�e
tiveness of ro, we performed a number of experiments
omparing its performan
e to the ff planner { the winner of the AIPS 2000planning 
ompetition. These results are des
ribed and analyzed in this se
tion.All experiments were 
ondu
ted on a SUN Ultra4 with 1.1GB RAM. Ea
hresult is given in the form A=B where A is the running time for the giveninstan
e, and B is the length of the returned plan. The input language is arestri
ted version of PDDL without 
onditional e�e
ts.The main 
on
lusion of our experimental analysis is that ro is 
ompetitivewith ff, outperforming it on domains in whi
h the subproblems obtained afterordering the top level goal are non-trivial.4.1 Classi
al DomainsIn this subse
tion we 
onsider well known 
lassi
al domains, su
h as the Blo
ksWorld,the Hanoi Tower, and two versions of the Logisti
s. The results are presented inthe table below. Blo
ksWorld Hanoi Towersize ro ff size ro ff10 0.4/12 0.08/12 6 0.2/63 0.12/6315 2/18 0.14/17 7 0.3/127 0.3/12720 7/27 0.4/26 8 0.6/255 1.3/25525 19.9/36 1.01/35 9 1.3/511 3.61/51130 46.5/44 2.64/44 10 2.9/1023 23.06/1023Usual Logisti
s Logisti
s With Car Transportationsize ro ff size ro ff10 0.8/105 0.65/95 10 0.7/109 0.47/8020 8.5/210 10.5/191 20 7.3/239 8.83/16530 63.4/287 100/312 30 31.2/349 57.29/25040 127.9/419 248.3/383 40 92.7/479 234.17/33550 314.3/522 806.3/479 50 226.3/583 813/420Table 1. Blo
ksWorld Running ResultsWe 
an see that ro is not 
ompetitive with ff on the Blo
ksWorld. Thisstems from the simple nature of the subproblems obtained after goal ordering in
33



this domain whi
h make the additional 
omputational e�ort of ro redundant inthis 
ase.However, for some problems harder than Blo
ksWorld, this 
omputationale�ort is worthwhile. One su
h example is the HanoiTower domain. On this do-main, ff outperforms ro for small problem sizes (less than 7 dis
s). But whenthe number of dis
s is larger than 7, ro outperforms ff, with the di�eren
ein
reasing as the domain size in
reases.The last example in this part is the Logisti
s domain. We 
onsider two ver-sions of this problem. The �rst one is the 
lassi
 domain. The se
ond one is aslight modi�
ation of the �rst, where airplanes 
an load and unload 
ars.An instan
e of the Logisti
s is mainly 
hara
terized by the initial and �naldistributions of pa
kages among 
ities. If the number of 
ities is small relativeto the number of pa
kages or if the majority of pa
kages have the same initialand �nal lo
ations, ff outperforms ro. However, when pa
kages are distributedamong many 
ities and their �nal lo
ations are also di�erent, ro outperformsff. Table 1 
ontains running times for both version on the Logisti
s domain. Inall the examples we used, ea
h 
ity 
ontained exa
tly one pa
kage and the initialand �nal lo
ation of ea
h pa
kage was di�erent. In addition, ea
h instan
e of these
ond version 
ontains a single 
ar only.4.2 Modi�ed Classi
al DomainsIn addition to 
lassi
al domains, we 
onsidered two novel domains whi
h 
ombinefeatures of existing domains.Combination of the Logisti
s with the Blo
ksWorld The �rst su
h do-main 
ombines aspe
ts of the Logisti
s and Blo
ksWorld domains. Suppose wehave n lo
ations and m obje
ts pla
ed in these lo
ations. A proposition at(i; k)means that obje
t i is at lo
ation k. If obje
t i 
an move from lo
ation l to lo
a-tion k, this fa
t is expressed as moves(i; k; l). We assume the graph of moves tobe undire
ted for ea
h obje
t, that is, moves(i; k; l) implies moves(i; l; k). Ob-je
ts 
an transport ea
h other. Propositions transports(i; k) and in(i; k) meanthat the obje
t i 
an transport the obje
t k and that the obje
t i is within theobje
t k respe
tively. For this domain, we assume that the transport graph is aDAG. The transport graph is de�ned as follows: the nodes are the obje
ts andan edge (a; b) appears in it i� the obje
t a 
an transport the obje
t b.The Blo
ksWorld features of this domain are expressed by the fa
t that we
an put one obje
t on another. The proposition expressing Blo
ksWorld-likerelations are 
lear(i), at(i; k) and on(i; k). Note, that at(i; k) means that theobje
t i is \on the table" at the lo
ation k. This type of proposition plays therole of the 
onne
ting link between these two 
ombined domains.The set of a
tions in this domain is the union of the a
tions in the Logisti
sand the Blo
ksWorld domain with a few small modi�
ations. In parti
ular, anobje
t 
an be loaded into another obje
t or moved between lo
ations only if itis "
lear" and "on ground"; also we 
an put one obje
t into another only if theyare in the same lo
ation and not within another obje
t.
34



This domain has an interesting property that neither the Logisti
s nor theBlo
ksWorld have: Top level goals intera
t with intermediate goals. An obje
t,whi
h is in intermediate level of a tower at some lo
ation, may be required fortransportation of another obje
t. To do so, we must remove all the obje
ts abovethis obje
t.To try planners on this domain, we 
onstru
ted a simple set of examples, inwhi
h the planner have to build towers of blo
ks in a few di�erent lo
ation, andthe moving 
ubes must be in bottom pla
es of these towers. ff behaves badlyon this set: it runs more than hour on an example with 11 
ubes. However mu
hlarger examples of this domain are tra
table for ro. For example, it orders 21
ubes in 50 se
onds and produ
es plan of length 628 steps.A Modi�ed Hanoi Tower A se
ond domain we 
onsider is a modi�
ation ofthe Hanoi Tower domain. In this modi�ed version the number of lo
ations isarbitrary. Initially all dis
s are in the �rst lo
ation. The task is to move them tothe last lo
ation using a number of rules. These rules are almost the same as theHanoi Tower domain rules with two ex
eptions: The �rst one is that if a dis
 ispla
ed on the �nal lo
ation it 
an't be taken ba
k from this lo
ation. The se
ondone is that all dis
s are enumerated and it is possible to put dis
 number a ondis
 number b i� b = a+ 1 or b = a+ 2. In essen
e, this domain is a simpli�edform of the FreeCell domain.The diÆ
ulty of an instan
e in this domain depends on two fa
tors: the num-ber of dis
s and the number of 
ells. The latter determines the 
onstrainednessof the instan
e (the fewer the 
ells, the more 
onstrained the instan
e is).For small number of dis
s (less than 12) ff outperforms ro independently of
onstrainedness of the pro
essed instan
e. This is the 
ase for weakly 
onstrainedinstan
es with large number of dis
s, as well. However, tightly 
onstrained in-stan
es of this domain are pra
ti
ally intra
table for ff. The table below presentsrunning results of ro for instan
es whose solution for ff takes more than oneand a half hours. The size of an instan
e is given in form A=B, where A is thenumber of dis
s, B is the number of lo
ations ex
ept for the �nal one.instan
e time/length17/5 527.3/93318/6 76/27920/7 52/16022/7 62/18524/8 120/26525/8 152/28726/9 155/24328/9 269/20730/9 550/303Table 2. Running times for the Modi�ed Hanoi Tower domain

35



5 Con
lusionsIn this paper we presented a forward sear
h planning algorithm. An implementa-tion of this algorithm was shown to be 
ompetitive with ff on domains in whi
hsubproblems obtained as a result of goal ordering are themselves non-trivial. Ouralgorithm makes a number of novel 
ontributions:{ A forward sear
h heuristi
s 
ombining ba
kward regression and goal orderingte
hniques.{ A 
omplex memoization te
hnique for reusing subgoal sequen
es.{ A novel 
ombination of the Logisti
s and the Blo
ksWorld domain.{ A better understanding of the weaknesses and strengths of ff.Referen
es1. F. Ba

hus,Y. Teb Making Forward Chaining Relevant, AIPS-98, pages 54-61,19982. A. Blum, M. Furst Fast Planning Through Planning Graph Analysis, Arti�
ialIntelligen
e, 90(1997), pages 281-300, 1997.3. B. Bonet, H. Ge�ner. Planning as Heuristi
 Sear
h: New Results, Arti�
ial Intel-ligen
e, Pro
eedings of the 5th European Conferen
e on Planning, pages 359-371,1999.4. R.I.Brafman. Rea
hability, Relevan
e, Resolution and the Planning as Satis�abilityApproa
h,In Pro
eedings of the IJCAI' 99, 1999.5. P. Haslum, H. Ge�ner. Admissible Heuristi
s for Optimal Planning, AIPS2000pages 140-149, 2000.6. J. Ho�man, B. Nebel. The ff Planning System:Fast Plan Generation ThroughExtra
tion of Subproblems, to appear in JAIR.7. J. Hullen, F. Weberskir
h. Extra
ting Goal orderings to Improve Partial-OrderPlanning, PuK99, pages 130-144, 1999.8. S. Kambhampati,R. Nigenda. Distan
e-based Goal-ordering Heuristi
s for Graph-plan, AIPS2000 pages 315-322, 2000.9. S. Kambhampati,E. Parker,E. Lambre
ht. Understanding and Extending Graph-plan, 4th European Conferen
e of Planning, pages 260-272, 1997.10. J. Koehler, J. Ho�man. On Reasonable and For
ed Goal Ordering and their Usein an Agenda-Driven Planning Algorithm, JAIR 12(2000), pages 339-386.11. J. Koehler, B. Nebel, J. Ho�man, Y. Dimopoulos. Extending Planning Graphs toADL Subset, ECP97, pages 273-285, 1997.12. R. E. Korf. Ma
ro-Operators: A Weak Method for Learning,Arit�
ial Intelligen
e,26 (1985), pages 35-77.13. D. M
Dermott. Using regression-mat
h graphs to 
ontrol sear
h in planning., Ar-ti�
ial Intelligen
e, 109(1-2), pages 111-159, 1999.14. J.Porteous,L.Sebastia. Extra
ting and Ordering Landmarks for Planning, Te
hni-
al Report, Dept. of Computer S
ien
e, University of Durham, September 2000.15. I. Razgon. A Forward Sear
h Planning Algorithm with a Goal Ordering Heuristi
,MS
 Thesis, Ben-Gurion University, Israel, 2001.16. D. Smith, M. Peot. Suspending Re
ursion in Partial Order Planning, AIPS96,191-198, 1996.17. D. Weld. An Introdu
tion to Least Commitment Planning, AI Magazine 15(4),pages 27-61, 1994.
36


