A Forward Search Planning Algorithm with a
Goal Ordering Heuristic

Igor Razgon and Ronen I. Brafman

Computer Science Department
Ben-Gurion University, 84105, Israel
{irazgon,brafman}@cs.bgu.ac.il

Abstract. Forward chaining is a popular strategy for solving classical
planning problems and a number of recent successful planners exploit it.
To succeed, a forward chaining algorithm must carefully select its next
action. In this paper, we introduce a forward chaining algorithm that
selects its next action using heuristics that combine backward regression
and goal ordering techniques. Backward regression helps the algorithm
focus on actions that are relevant to the achievement of the goal. Goal
ordering techniques strengthens this filtering property, forcing the for-
ward search process to consider actions that are relevant at the current
stage of the search process. One of the key features of our planner is
its dynamic application of goal ordering techniques: we apply them on
the main goal as well as on all the derived sub-goals. We compare the
performance of our planner with FF — the winner of the AIPS’00 plan-
ning competition — on a number of well-known and novel domains. We
show that our planner is competitive with FF, outperforming it on more
complex domains in which sub-goals are typically non-trivial.

List of keywords: forward chaining, backward regression, goal ordering,
relaxed problem

1 Introduction

Forward chaining is a popular strategy for solving classical planning problems.
Early planning systems, such as GPS [12], used forward chaining but were quickly
overcome by regression-based methods such as partial-order planning [17] and,
more recently, GRAPHPLAN [2]. These methods were viewed as more informed, or
focused. However, with the aid of appropriate heuristic functions, recent forward-
chaining algorithms [3, 6] have been able to outperform other planners on many
domains.

To succeed, a forward-chaining planner must be informed in its selection of
actions. Ideally, the action chosen at the current state must bring us closer to
the goal state. To achieve this goal, recent forward-chaining planners use new,
improved heuristic functions in which regression techniques play an important
role. The idea of backward regression through forward chaining was first explic-
itly stated by McDermott [13]. It was implicitly used in GPS and FF [6] and in its

25

26

more general form in GRAPHPLAN and its descendants [2,9, 11] (as a polynomial
structure constructed in a direction opposite to the main search direction). It
was used also in [1] for relevance computation.

In this paper we extend regression-based relevance filtering techniques with
a dynamic goal-ordering heuristics. This results in a planning algorithm — RO
(Regression + Goal-Ordering) — that has a better chance of choosing actions that
are relevant and timely. The backward regression heuristics used in our planner
is somewhat similar to the one used in GPS. That is, we construct a sequence of
subgoals, where the first subgoal is the main goal and the last subgoal is satisfied
in the current state. The difference between RO and previous algorithms is in
the way this subgoal sequence is generated. More specifically, given the current
subgoal in the constructed sequence, the next subgoal is computed as follows:
we select the proposition that we believe should be achieved first in the current
subgoal — we use a goal ordering heuristics to make this selection. Then, we
select an action that has this proposition as an add-effect. Finally, we add the
preconditions of this chosen action to the beginning of the constructed sequence.
Thus, we have a combination of a backward regression method with a goal
ordering technique, where the ordering is computed dynamically for all subgoals
of the sequence of goals generated by the backward regression process.

The combination of backward regression with goal ordering is based on the
following intuition: One of the main goals of backward search in the context of
forward chaining algorithm is to avoid considering irrelevant actions. [1]. How-
ever, when a relevant action is inserted in an inappropriate place in the plan,
we either obtain a plan that is longer than necessary or we must perform ex-
pensive backtracking. By ordering subgoals, we strengthen the filtering property
of backward regression and reduce the need for backtracking because we force
the forward chaining process to consider actions that are relevant at the current
stage of the search process.

Typically, goal ordering is done for the original goal only, and prior to the
initiation of search — it is static in nature. Next, the problem is divided into
smaller subproblems, each of which can be solved separately [12,10]. Dynamic
ordering of propositions is often seen in CSP problems. It was used in the context
of GRAPHPLAN’s backward search, viewed as a CSP problem, in [8]. This paper
is among the first to use dynamic goal ordering in the planning process, and the
particular dynamic goal ordering approach we introduce here is the main novel
contribution of this paper.

The rest of this paper is organized as follows: Section 2 provides a short re-
view of related work. Section 3 describes the proposed algorithm. In Section 4
we provide an empirical comparison between our planner and the winner of the
AIPS 2000 planning competition, FF [6]. The main conclusion of our experimen-
tal analysis is that RO is competitive with FF, outperforming it on domains in
which the subproblems obtained after ordering the top level goal are non-trivial.
Finally, Section 5 concludes this paper.

2 Related Work

In this section we provide a short review of forward search algorithms and goal
ordering methods and their use in planning. This will help provide some of the
necessary background and will place this work in its proper context.

2.1 Recent forward search algorithms

HSP The HSP algorithm [3] is a forward chaining algorithm without backtrack.
Each step, the action leading to the state with minimal approximated dis-
tance to the goal is chosen. This distance is approximated by solving a relazed
problem in which the delete effects of all actions were removed. Given this re-
laxed problem, we approximate the distance from the current state cur to a
state s using the sum (or maximum) of the weights of the propositions that
hold in s. The weight of a proposition p is 0 if it belongs to cur. Otherwise,
weight(p) = MiNa acts achieving p 1 + dist(precond(act)), i.e., one more than
the minimal distance of the set of preconditions of actions that achieve p.

FF FF (Fast Forward) [6] is a forward search algorithm that selects an action
at each step using an approximated distance measure. The distance from the
current state to the goal is approximated by the plan length for achieving the goal
in a relaxed problem induced by the current problem. FF uses GRAPHPLAN to
solve the relaxed problem. Because the relaxed problem does not have del-effects,
there are no mutually exclusive pairs of propositions and actions in the problem.
Therefore, it can be solved in polynomial time. To make the measure near-
optimal, various heuristics for decreasing the length of the extracted solution
are applied.

The algorithm applies breadth-first search from the current state s until it
finds a state s’ that has a strictly better value. The ordering technique from [10],
described below, is applied to make FF more effective. FF won the AIPS 2000
planning competition.

2.2 Goal ordering methods

There has been much work on goal ordering methods and their use in planning.
Most of this work addresses the following four questions

1. How to order two propositions? [7, 10, 8]

2. How to derive a total order on propositions given an ordering on all pairs of
propositions? [10]

3. How to use a total order on goal propositions in planning? [12, 10, 8]

4. How to incorporate propositions that are not in the top-level goal into the
goal order? [14]

27

28

For our purpose, the first and the third questions are the most relevant.

An interesting classification of methods determining the order between two
given propositions is introduced in [7]. According to it, we may conclude that
p < q if at least one of the following conditions holds.

1. Goal subsumption. To achieve ¢ we must achieve p

2. Goal clobbering. When achieving p we destroy ¢ if it existed in some pre-
vious state. An example of goal clobbering is the pair of propositions on(1,2)
and on(2, 3) in the BlocksWorld problem. on(2, 3) has to be achieved before
on(1,2), because on(1,2) is destroyed in the process of achieving on(2,3)

3. Precondition violation. Achievement of ¢ makes achievement of p impos-
sible (dead-end).

Two criteria for ordering propositions based on the principle of goal clob-
bering are given in [10]. A modified version of the first of them is used is the
proposed algorithm and described in detail in the next section.

A widespread method for using a goal ordering in planning is to iteratively
apply the planning algorithm to achieve increasing subsets of the goal. For ex-
ample if we have a goal ordering(ps, ..., pn), then first we try to achieve a state s;
in which {p; } holds, starting at the initial state. Next, we try to achieve {p;, p2}
starting at si, etc. The last plan achieves the required goal from si,...,5,_1.
By concatenating the resulting plans, we get a complete plan.

3 Algorithm description.

We now proceed to describe the RO planning algorithm. In Section 3.1 we de-
scribe the algorithm and its action selection heuristic. In Section 3.2 we provide
more details on some of the subroutines used during action selection. In Section
3.3, we discuss some optimization implemented in the current version of RO.
Finally, in Section 3.4., we demonstrate the work of RO on a running example.

3.1 The Proposed Algorithm and its Action Selection Heuristic

RO is a forward chaining planner with chronological backtracking. It receives a
domain description as input and an integer n denoting search-depth limit (the
default value of n is 2000).

The first step of RO is to compute some data that will be useful during
the search process. In particular RO constructs an approximated set of pairs of
mutually exclusive propositions. It is known that exact computation of all mutual
exclusive pairs of preconditions is not less hard than the planning problem [2].
Therefore, only approximation algorithms are acceptable in this case. RO obtains
an approximate set of mutual exclusive pairs as the complement of a set of
reachable pairs which is found by a modification of Reachable-2 algorithm [4].

Next, a standard depth-first search with chronological backtracking is per-
formed (Figure 1). (Note, that to obtain the desired plan, we have to run this

function on the initial state and the empty plan). The heart of this algorithm is
the heuristic selection of action that will be appended to the current plan (line
5). This heuristics is based on backward search without backtracks (backward
regression). The depth of this regression phase, MazDeep,is a parameter of the
planner (the default value of MaxzDeep is 50). The code of this procedure is
given in Figure 2.

As we can see from the code in Figure 2, this procedure builds a sequence
of subgoals, starting with the main (i.e., original) goal as its first element. At
each iteration, the current (last) subgoal in this sequence is processed as follows:
its propositions are ordered (line 2) and the minimal proposition that is not
satisfied in the current state (the required proposition) is selected (line 3).
Next, an action achieving this proposition is chosen (line 4). If this action is
feasible in the current state, it is returned. Otherwise, the set of preconditions
of this action is appended to the subgoal sequence becoming the new current
subgoal, and the process is repeated.

We see that RO combines goal ordering and backward regression techniques:
each time a new subgoal is selected, its propositions are ordered, and this order-
ing is used to select the next action for the regression process. This combination
is the main novel contribution of this work.

ComputePlan(CurState,n, CurPlan)

1. For i = 1 to Num_Feasible Do //Num_Feasible is the number of actions feasible in
the current state

2. Begin

3. If Goal C CurState then return CurPlan

4. If n = 0 then return FAIL

5. act := BackwardReg(CurGoal, MaxDeep) //this function chooses an action which
was not chosen before

6. NewCurState := apply(CurState,act)

7. NewCurPlan := append(CurPlan, act)

8. Answer = ComputePlan(NewCurState,n — 1, NewCurPlan)

9. If Answer is not FAIL then return (Answer)

10. End

11. Return FAIL

Fig. 1. The main algorithm

3.2 Auxiliary procedures for the proposed forward search heuristics

In this section, we describe two auxiliary procedures (lines 2 and 4 of the
BackwardReg function). The first orders the propositions of a given subgoal.
The second finds an action achieving the given proposition and satisfying some
additional constraints.

Goal ordering is based on a number of criteria. The main criterion is a mod-
ified version of the GRAPHPLAN criterion from [10]. This criterion is mentioned

29

30

BackwardReg(CurGoal, M ax Deep)

1. If MaxDeep = 0 Choose randomly an action feasible in the current step that was not
chosen before, and return it

2. Order propositions of CurGoal by order of their achievement

3. Let CurProp be the proposition of the CurGoal, which is minimal in
CurGoal \ CurState

4. Choose an action act achieving CurProp that was not chosen before in the CurState.
5. If it is not possible to choose such an action, then choose randomly an action feasible
in the current step that was not chosen before, and return it

6. If act is feasible in the current state then return act

7. Let NewCurGoal be the set of preconditions of act

8. Return(BackwardReg(NewCurGoal, MaxDeep — 1))

Fig. 2. The Main Heuristic of the Algorithm

in 2.2. It states that for two propositions p and ¢, p must be achieved before
q if every action achieving p conflicts with ¢. The modified version used here
states that p must be achieved before ¢ if the percent of actions conflicting with
q among actions achieving p is more than the percent of actions conflicting with
p among actions achieving gq.

Thus, if for two given propositions p and ¢ the “chance”that g will be de-
stroyed while achieving p is higher than the “chance” that p will be destroyed
while achieving g, it is preferable to achieve p before ¢. The original version
of this criterion was derived from analysis of problems such as BlocksWorld,
HanoiTower and so on, where it is directly applicable. The proposed modifica-
tion of this method extends its applicability. For example it is applicable for
many Logistics-like problem.

Intuitively, the action selection function uses the following rule: Select an
action that can be the last action in a plan achieving the required proposition
from the current state. In particular, the action selection function performs three
steps. First, it computes the relevant set which contains the required proposi-
tion and all propositions that are mutually exclusive with it. The non-relevant
set is determined as the complement of the relevant set. Next, it builds a tran-
sition graph whose nodes correspond to the elements of the relevant set. This
graph contains an edge (a, b) for each action with a precondition a and an add-
effect b. Finally, it selects an action corresponding to the last edge in a path
from a proposition that is true in the current state to the required proposi-
tion. If there is no such path, it returns F'AIL. If there are few such paths, it
chooses a path with the minimal number of non-relevant preconditions of the
corresponding actions (in order to find a path as close as possible to a "real”
plan).

3.3 Optimizations

The actual implementation of RO introduces a number of optimizations to the
above algorithm. We describe them next.

The first feature is a more complicated backtrack condition. There are basi-
cally two conditions that can trigger backtracking: either the plan exceeds some
fixed length or a state has been visited twice. However, the first backtrack must
be triggered by the first condition. The state we backtrack to is determined as
follows: If no state appears more than once (i.e., we backtracked because of plan
length), we simply backtrack one step. If a state appears twice in the current
state sequence, we backtrack to the state prior to second appearance of the
first repeated state. For example, suppose our maximal plan length is 6, the
state sequence is (A, C, B, B,C, D), and we have not backtracked before. In this
sequence, both B and C' appear twice. However, B is the first state to occur
twice. Therefore, we backtrack to before the second appearance of B. Thus, the
new sequence, after backtracking, is (A, C, B). From this point on, we backtrack
whenever the current state appears earlier in the sequence, even if plan length
is smaller than the maximal length.

The second optimization is the memoization of the sequence of subgoals
generated by the main heuristics. Instead of recomputing the whole subgoal
sequence in each application of the search heuristic, we use the subgoal sequence
that was constructed in the previous application (if such a sequence exists). The
modified algorithm eliminates from the tail of the subgoal sequence all subgoals
that were achieved in the past, and continues construction from the resulting
sequence.

This memoization method has two advantages. First, it saves time by avoid-
ing the computation of the full subgoal sequence. Second, and more importantly,
is that it maintains a connection between subsequent applications of the search
heuristics. This way, each application of the search heuristic application builds
on top of the results of the previous application and avoids accidental destruc-
tion of these results. The running example in the next section demonstrates the
usefulness of this approach.

3.4 A Running Example

Consider a well-known instance of the BlocksWorld domain called the Sussman
Anomaly. It is an instance with three blocks, its initial state is {on(3,1),on —
table(1), clear(3), on—table(2), clear(2)} and the goal is {on(1, 2),on(2, 3)}. Note,
there is only a single reachable state that satisfies the goal criteria. In this state,
the proposition on —table(3) holds. However, on —table(3) is not stated explicitly
in the goal. This raises a difficulty for algorithms that employ goal ordering be-
cause they are strongly affected by interactions between actions in the goal. For
example, in our case, the propositions of the goal have to be ordered as follows
(on(2,3),0n(1,2)). However, before achieving on(2, 3), it is necessary to achieve
on — table(3).

31

32

Let us run RO on this instance. We consider the simplest version of the
BlocksWorld domain with two actions only: one for moving a block from the
table on top of another block, and one for moving a block to the table. Below
we show the result of each application of the search heuristics.

First application.

The current state is the initial state, i.e. {on(3,1)on —table(1), clear(3),on —
table(2), clear(2)}, the subgoal sequence is not constructed yet, so it needs to be
constructed from scratch. Its first subgoal is the main goal which is ordered as
(on(2,3),0n(1,2)). The required proposition of this level is on(2,3), RO selects
action put — on(2,3) to achieve this proposition. This action is feasible in the
current state and it is returned, so the first application is finished here. Note,
that the first application of the search heuristics selects a wrong action!

Second application. The current state is {on(2,3), on(3, 1), on—table(1), clear(2)}.

The only subgoals in the subgoal sequence are (on(2,3),on(1,2)). RO chooses
the required proposition to be on(1,2) and selects action put — on(1,2) to
achieve this proposition. As we can see, this action is not feasible in the cur-
rent state and so the subgoal sequence is extended. Now, it contains both
the main goal and the preconditions of action put — on(1,2), namely, it is
((on(2,3),0n(1,2))(clear(1),clear(2))). Note, that the ordering of the second
subgoal is chosen randomly and it does not matter here. Now, the required propo-
sition is clear(1). The action selection heuristic chooses action take — out(3,1).
This action is also not feasible and this fact leads us to further extend the subgoal
sequence. The next ordered subgoal in this sequence will be (on(3, 1), clear(3))
(again, the order of the propositions does not matter here). The new required
proposition will be clear(3). To achieve this proposition, RO selects action
take — out(2,3), which is returned, because it is feasible in the current state.
Note that in spite of the fact that after an application of this action we arrive
at a state that appeared before, backtracking is not performed because the first
backtrack occurs only once we exceed the maximal plan length — and this did
not occur, yet.

Third application. The new current state is the initial state! However, we
have learned something in the process, and this is reflected in the sequence of
subgoals we now have: ((on(2, 3),on(1,2))(clear(1), clear(2))). (The last subgoal
was eliminated because it was fully achieved). This information was not available
when we started our search. In fact, the new required proposition is clear(1), a
proposition that does not appear in the original goal. Because we have chosen
it as the required proposition, we will not repeat past mistakes. The algorithm
selects action take — out(3,1) to achieve this proposition. This action is feasible
in the current state, therefore, it is returned.

During the fourth and the fifth application, the algorithm achieves the main
goal in a straightforward way: it puts block 2 on block 3 and then block 1 on
block 2.

The resulting plan is : (put — on(2, 3), take — out(2, 3), take — out(3, 1), put —
on(2,3), put — on(1,2))

Obviously, this plan is not optimal. The first two applications were spent
constructing a subgoal sequence which then forced RO to select the right actions.
This feature of RO frequently leads to non-optimal plans. However, we believe
that the resulting non-optimal plan usually contains a near-optimal plan as a
subsequence. Therefore, we can run a plan refinement algorithm [1] on the output
of RO and obtain a near optimal plan. In some cases, this may be a more effective
approach for obtaining a near optimal plan.

4 Experimental Analysis

To determine the effectiveness of RO, we performed a number of experiments
comparing its performance to the FF planner — the winner of the ATPS 2000
planning competition. These results are described and analyzed in this section.

All experiments were conducted on a SUN Ultrad with 1.1GB RAM. Each
result is given in the form A/B where A is the running time for the given
instance, and B is the length of the returned plan. The input language is a
restricted version of PDDL without conditional effects.

The main conclusion of our experimental analysis is that RO is competitive
with FF, outperforming it on domains in which the subproblems obtained after
ordering the top level goal are non-trivial.

4.1 Classical Domains

In this subsection we consider well known classical domains, such as the BlocksWorld,

the Hanoi Tower, and two versions of the Logistics. The results are presented in
the table below.

BlocksWorld Hanoi Tower
size RO FF size RO FF
10| 0.4/12 | 0.08/12 | 6 | 0.2/63 0.12/63
15 2/18 0.14/17 | 7 | 0.3/127 0.3/127
20 7/27 0.4/26 8 | 0.6/255 1.3/255
25| 19.9/36 | 1.01/35 | 9 | 1.3/511 3.61/511

30 | 46.5/44 | 2.64/44 |10 |2.9/1023 23.06/1023
Usual Logistics Logistics With Car Transportation

size RO FF size RO FF

10 | 0.8/105 | 0.65/95 | 10 | 0.7/109 0.47/80
20 | 8.5/210 |10.5/191 |20 | 7.3/239 8.83/165
30 [63.4/287 | 100/312 | 30 | 31.2/349 57.29/250
40 (127.9/419|248.3/383| 40 | 92.7/479 234.17/335
50 |314.3/522(806.3/479| 50 {226.3/583 813/420

Table 1. BlocksWorld Running Results

We can see that RO is not competitive with FF on the BlocksWorld. This
stems from the simple nature of the subproblems obtained after goal ordering in

33

34

this domain which make the additional computational effort of RO redundant in
this case.

However, for some problems harder than BlocksWorld, this computational
effort is worthwhile. One such example is the HanoiTower domain. On this do-
main, FF outperforms RO for small problem sizes (less than 7 discs). But when
the number of discs is larger than 7, RO outperforms FF, with the difference
increasing as the domain size increases.

The last example in this part is the Logistics domain. We consider two ver-
sions of this problem. The first one is the classic domain. The second one is a
slight modification of the first, where airplanes can load and unload cars.

An instance of the Logistics is mainly characterized by the initial and final
distributions of packages among cities. If the number of cities is small relative
to the number of packages or if the majority of packages have the same initial
and final locations, FF outperforms RO. However, when packages are distributed
among many cities and their final locations are also different, RO outperforms
FF. Table 1 contains running times for both version on the Logistics domain. In
all the examples we used, each city contained exactly one package and the initial
and final location of each package was different. In addition, each instance of the
second version contains a single car only.

4.2 Modified Classical Domains

In addition to classical domains, we considered two novel domains which combine
features of existing domains.

Combination of the Logistics with the BlocksWorld The first such do-
main combines aspects of the Logistics and BlocksWorld domains. Suppose we
have n locations and m objects placed in these locations. A proposition at(i, k)
means that object 7 is at location k. If object ¢ can move from location [to loca-
tion k, this fact is expressed as moves(i, k,1). We assume the graph of moves to
be undirected for each object, that is, moves(i, k,1) implies moves(i,l, k). Ob-
jects can transport each other. Propositions transports(i, k) and in(i, k) mean
that the object ¢ can transport the object £ and that the object ¢ is within the
object k respectively. For this domain, we assume that the transport graph is a
DAG. The transport graph is defined as follows: the nodes are the objects and
an edge (a,b) appears in it iff the object a can transport the object b.

The BlocksWorld features of this domain are expressed by the fact that we
can put one object on another. The proposition expressing BlocksWorld-like
relations are clear(i), at(i, k) and on(i, k). Note, that at(i, k) means that the
object i is “on the table” at the location k. This type of proposition plays the
role of the connecting link between these two combined domains.

The set of actions in this domain is the union of the actions in the Logistics
and the BlocksWorld domain with a few small modifications. In particular, an
object can be loaded into another object or moved between locations only if it
is "clear” and ”on_ground”; also we can put one object into another only if they
are in the same location and not within another object.

This domain has an interesting property that neither the Logistics nor the
BlocksWorld have: Top level goals interact with intermediate goals. An object,
which is in intermediate level of a tower at some location, may be required for
transportation of another object. To do so, we must remove all the objects above
this object.

To try planners on this domain, we constructed a simple set of examples, in
which the planner have to build towers of blocks in a few different location, and
the moving cubes must be in bottom places of these towers. FF behaves badly
on this set: it runs more than hour on an example with 11 cubes. However much
larger examples of this domain are tractable for RO. For example, it orders 21
cubes in 50 seconds and produces plan of length 628 steps.

A Modified Hanoi Tower A second domain we consider is a modification of
the Hanoi Tower domain. In this modified version the number of locations is
arbitrary. Initially all discs are in the first location. The task is to move them to
the last location using a number of rules. These rules are almost the same as the
Hanoi Tower domain rules with two exceptions: The first one is that if a disc is
placed on the final location it can’t be taken back from this location. The second
one is that all discs are enumerated and it is possible to put disc number a on
disc number b iff b = a + 1 or b = a + 2. In essence, this domain is a simplified
form of the FreeCell domain.

The difficulty of an instance in this domain depends on two factors: the num-
ber of discs and the number of cells. The latter determines the constrainedness
of the instance (the fewer the cells, the more constrained the instance is).

For small number of discs (less than 12) FF outperforms RO independently of
constrainedness of the processed instance. This is the case for weakly constrained
instances with large number of discs, as well. However, tightly constrained in-
stances of this domain are practically intractable for Fr. The table below presents
running results of RO for instances whose solution for FF takes more than one
and a half hours. The size of an instance is given in form A/B, where A is the
number of discs, B is the number of locations except for the final one.

instance|time/length
17/5 527.3/933
18/6 76/279
20/7 52/160
22/7 62/185
24/8 [120/265
25/8 152/287
26/9 155/243
28/9 269/207
30/9 550/303
Table 2. Running times for the Modified Hanoi Tower domain

35

36

5

Conclusions

In this paper we presented a forward search planning algorithm. An implementa-
tion of this algorithm was shown to be competitive with FF on domains in which
subproblems obtained as a result of goal ordering are themselves non-trivial. Our
algorithm makes a number of novel contributions:

— A forward search heuristics combining backward regression and goal ordering

techniques.

— A complex memoization technique for reusing subgoal sequences.
— A novel combination of the Logistics and the BlocksWorld domain.
— A better understanding of the weaknesses and strengths of Fr.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

F. Bacchus,Y. Teb Making Forward Chaining Relevant, AIPS-98, pages 54-61,
1998

A. Blum, M. Furst Fast Planning Through Planning Graph Analysis, Artificial
Intelligence, 90(1997), pages 281-300, 1997.

B. Bonet, H. Geffner. Planning as Heuristic Search: New Results, Artificial Intel-
ligence, Proceedings of the 5th European Conference on Planning, pages 359-371,
1999.

R.I.Brafman. Reachability, Relevance, Resolution and the Planning as Satisfiability
Approach,In Proceedings of the IJCAT’ 99, 1999.

P. Haslum, H. Geffner. Admissible Heuristics for Optimal Planning, AIPS2000
pages 140-149, 2000.

J. Hoffman, B. Nebel. The ¥F Planning System:Fast Plan Generation Through
Exztraction of Subproblems, to appear in JAIR.

J. Hullen, F. Weberskirch. Eztracting Goal orderings to Improve Partial-Order
Planning, PuK99, pages 130-144, 1999.

S. Kambhampati,R. Nigenda. Distance-based Goal-ordering Heuristics for Graph-
plan, ATPS2000 pages 315-322, 2000.

S. Kambhampati,E. Parker,E. Lambrecht. Understanding and Eztending Graph-
plan, 4th European Conference of Planning, pages 260-272, 1997.

J. Koehler, J. Hoffman. On Reasonable and Forced Goal Ordering and their Use
in an Agenda-Driven Planning Algorithm, JAIR 12(2000), pages 339-386.

J. Koehler, B. Nebel, J. Hoffman, Y. Dimopoulos. Extending Planning Graphs to
ADL Subset, ECP97, pages 273-285, 1997.

R. E. Korf. Macro-Operators: A Weak Method for Learning,Aritficial Intelligence,
26 (1985), pages 35-77.

D. McDermott. Using regression-match graphs to control search in planning., Ar-
tificial Intelligence, 109(1-2), pages 111-159, 1999.

J.Porteous,L.Sebastia. Eztracting and Ordering Landmarks for Planning, Techni-
cal Report, Dept. of Computer Science, University of Durham, September 2000.
I. Razgon. A Forward Search Planning Algorithm with a Goal Ordering Heuristic,
MSc Thesis, Ben-Gurion University, Israel, 2001.

D. Smith, M. Peot. Suspending Recursion in Partial Order Planning, AIPS96,
191-198, 1996.

D. Weld. An Introduction to Least Commitment Planning, Al Magazine 15(4),
pages 27-61, 1994.

