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t. Lo
al sear
h algorithms are among the most e�e
tive approa
hes forsolving the JSP, yet we have little understanding of whi
h problem features in
u-en
e sear
h 
ost in these algorithms. We study a des
riptive 
ost model of lo
alsear
h in the job-shop s
heduling problem (JSP), borrowing from the MAX-SAT
ost models. We show that several fa
tors known to in
uen
e the diÆ
ulty of lo
alsear
h in MAX-SAT dire
tly 
arry over to the general JSP, in
luding the numberof optimal solutions, ba
kbone size, the distan
e between initial solutions and thenearest optimal solution, and an analog of ba
kbone robustness. However, thesesame fa
tors only weakly in
uen
e lo
al sear
h 
ost in JSPs with work
ow, whi
hpossess stru
tured 
onstraints. While the fa
tors for the MAX-SAT 
ost modelsprovide an a

urate des
ription of lo
al sear
h 
ost in the general JSP, our resultsfor work
ow JSPs raise 
on
erns regarding the appli
ability of 
ost models derivedusing random problems to those exhibiting spe
i�
 stru
ture.1 Introdu
tionLo
al sear
h algorithms, parti
ularly those based on tabu sear
h, are among the moste�e
tive approa
hes for solving the JSP [BDP96℄. Yet, we have little understanding as towhy these algorithms work so well, and under what 
onditions. In this paper, we studydes
riptive 
ost models of lo
al sear
h in the JSP. Des
riptive 
ost models relate sear
hspa
e features to sear
h 
ost; better models a

ount for more of the varian
e in sear
h
ost a
ross di�erent problem instan
es. We examine the 
ost of tabu sear
h in the JSP by
onsidering an algorithm introdu
ed by Taillard (1994), whi
h is 
losely related to manystate-of-the-art algorithms for the JSP (e.g., [NS96℄), and is signi�
antly more amenableto analysis.Although no des
riptive 
ost models for the JSP exist, resear
hers have expendedsigni�
ant e�ort in re
ent years to produ
e relatively a

urate des
riptive 
ost models oflo
al sear
h for MAX-SAT [SGS00℄. Intuitively, we would expe
t some fa
tors present inthese models, su
h as the number of optimal solutions, to in
uen
e the diÆ
ulty of lo
alsear
h in other problems su
h as the JSP. At the same time, both the sear
h spa
e and
onstraint stru
ture of the JSP di�er in many important ways from MAX-SAT, makingthe a-priori appli
ability of these models un
lear.
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We investigate whether or not the des
riptive 
ost models for MAX-SAT 
an beleveraged in an e�ort to understand lo
al sear
h 
ost in the JSP. We demonstrate thatthe fa
tors present in the MAX-SAT 
ost models also in
uen
e lo
al sear
h 
ost in theJSP, in
luding the number of solutions [CFG+96℄, ba
kbone size [Par97℄, the distan
ebetween initial solutions and the nearest optimal solution [SGS00℄, and an analog of ba
k-bone robustness [SGS00℄. Together, these fa
tors form the basis of a relatively a

uratedes
riptive model of lo
al sear
h 
ost in the general JSP.The 
onstraints in both MAX-SAT (
lauses) and the general JSP (ma
hine pro
essingorders) are randomly generated, and in expe
tation are unstru
tured. In 
ontrast, the
onstraints in real-world problems are often stru
tured. We apply the same analysis toJSPs with work
ow, a restri
ted form of the JSP with simple, stru
tured 
onstraints.We �nd that the fa
tors present in the MAX-SAT and general JSP des
riptive 
ostmodels only weakly in
uen
e sear
h 
ost in work
ow JSPs. We 
on
lude by dis
ussingthe impli
ations of our analysis for the JSP, MAX-SAT, and lo
al sear
h in general.2 The JSP and Problem DiÆ
ultyWe 
onsider the well-known n�m stati
 JSP, in whi
h n jobs must be pro
essed exa
tlyon
e on ea
h of m ma
hines for an arbitrary, pre-spe
i�ed duration. Ea
h ma
hine 
anpro
ess only one job at a time, and on
e initiated, pro
essing 
annot be interrupted.Any job 
an start at time 0, and the obje
tive is to minimize the makespan, or themaximum 
ompletion time of any job. In the general JSP, the ma
hine pro
essing ordersare independently sampled from a uniform distribution. In the work
ow JSP, ma
hinesare typi
ally divided into two equal-sized partitions 
ontaining ma
hines 1 through m=2and m=2 + 1 through m, respe
tively, and every job must be pro
essed on all ma
hinesin the �rst partition before any ma
hine in the se
ond partition. Within ea
h partition,the ma
hine pro
essing orders are sampled from a uniform distribution.While no des
riptive 
ost models for the JSP exist, some general qualitative obser-vations regarding problem diÆ
ulty have emerged. First, independent of lo
al sear
halgorithm, we have the following trends:1. For both general and work
ow JSPs, \square" (n=m � 1) problem instan
es aresigni�
antly harder than \re
tangular" (n=m� 1) problem instan
es.2. Given �xed n and m, work
ow JSPs are substantially more diÆ
ult than generalJSPs.Se
ond, given either general or work
ow JSPs with a �xed n andm, the relative diÆ
ultyof problem instan
es appears to be algorithm-independent: e.g., a problem instan
e thatis diÆ
ult for tabu sear
h is likely to be diÆ
ult for simulated annealing. Clearly, anydes
riptive 
ost model for the JSP must be 
onsistent with ea
h of these observations.Mattfeld et al. (1999) perform a quantitative analysis of problem diÆ
ulty in the JSP,identifying signi�
ant di�eren
es in the sear
h spa
es of some well-known 50�10 generaland work
ow JSPs. Spe
i�
ally, they show that the extension of the sear
h spa
e (asmeasured by the average distan
e between random lo
al optima) is larger in work
owJSPs, suggesting a 
ause for the generally larger sear
h 
ost asso
iated with these prob-lem instan
es. Two other measures, entropy and 
orrelation length, also demonstratedquantitative di�eren
es in the sear
h spa
es of these same problems.
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While Mattfeld et al. do identify di�eren
es in the sear
h spa
es of general and work-
ow JSPs, it is un
lear whether these di�eren
es a

ount for the varian
e in lo
al sear
h
ost for di�erent problem instan
es of the same size and work
ow 
on�guration. In pre-liminary experiments, we found that while the fa
tors introdu
ed by Mattfeld et al. didin
uen
e sear
h 
ost, the in
uen
e was mu
h weaker than for the fa
tors we dis
uss inSe
tion 5. Furthermore, Mattfeld et al. did not investigate whether these same fa
torswere responsible for the relative diÆ
ulty of square versus re
tangular JSPs.3 The MAX-SAT Des
riptive Cost ModelThe MAX-SAT des
riptive 
ost model is the basis for our study. Many methods for
hara
terizing problem diÆ
ulty have found appli
ation in a wide variety of problems, forexample phase transitions and the asso
iated peak in sear
h 
ost. Given su
h universals,it is important to examine, and if possible leverage, any existing analysis on problemdiÆ
ulty. However, the literature on lo
al sear
h yields des
riptive 
ost models for onlytwo, related problems: MAX-SAT and MAX-CSP. Outside of these two examples, thedominant methods for quantifying problem diÆ
ulty are unable to a

ount for the large
ost varian
e found in di�erent problem instan
es of a given size. For example, 
orrelationlength [RS01℄ is stri
tly a fun
tion of problem size (e.g., the number of 
ities in the TSP).Intuitively, a de
rease in the number of optimal solutions should yield an in
rease inlo
al sear
h 
ost. This observation formed the basis of the �rst des
riptive 
ost modelfor MAX-SAT, in whi
h Clark et al. (1996) demonstrated a relatively strong (negative)log-log 
orrelation between the number of solutions and lo
al sear
h 
ost, with r-valuesranging anywhere from �0:77 to �0:91. However, the model failed to a

ount for thelarge 
ost varian
e in problems with very small numbers of optimal solutions, wheremodel residuals varied over three or more orders of magnitude.Singer et al. (2000) subsequently introdu
ed a des
riptive 
ost model that largely
orre
ted the de�
ien
y present in the Clark model, and went further by proposing a
ausal model for lo
al sear
h 
ost in MAX-SAT. The ba
kbone of a problem instan
eis a key 
on
ept in Singer's des
riptive 
ost model. The ba
kbone of a MAX-SAT in-stan
e 
onsists of the subset of literals that have the same truth value in all optimalsolutions[Par97℄. Singer demonstrated that the ba
kbone size does in
uen
e sear
h 
ostin MAX-SAT, showing that when the ba
kbone is small, there is a strong (negative)log-log 
orrelation (r � �0:77) between the number of optimal solutions and the lo
alsear
h 
ost. However, this 
orrelation nearly vanishes (r � �0:12) when the ba
kbone islarge [SGS00℄.Lo
al sear
h algorithms for MAX-SAT qui
kly lo
ate sub-optimal quasi-solutions,that 
ontain relatively few unsatis�ed 
lauses. These quasi-solutions form a sub-spa
ethat 
ontains all optimal solutions, and is largely inter
onne
ted; on
e a point in thissub-spa
e is identi�ed, lo
al sear
h algorithms for MAX-SAT typi
ally restri
t sear
h tothis sub-spa
e. This observation led Singer to hypothesize that the size of this sub-spa
edi
tates the overall sear
h 
ost, whi
h 
ould over
ome the inability of the number ofoptimal solutions to predi
t lo
al sear
h 
ost in problems with large ba
kbones.To test this hypothesis, Singer measured the mean Hamming distan
e (the numberof di�ering variable assignments) between the �rst quasi-solution en
ountered during
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lo
al sear
h and the nearest optimal solution, whi
h we denote dinit�opt, and 
omputedthe 
orrelation between dinit�opt and the logarithm of lo
al sear
h 
ost. The resulting
orrelations were extremely high (r � 0:95) for problems with small ba
kbones, anddegraded only slightly for problems with larger ba
kbones (r � 0:75). Consequently,dinit�opt, and not the number of optimal solutions, is the primary fa
tor in
uen
ing lo
alsear
h 
ost in MAX-SAT.Singer also posited a 
ausal explanation for the varian
e in dinit�opt a
ross di�erentMAX-SAT instan
es, whi
h is based on the notion of ba
kbone robustness. A MAX-SATinstan
e is said to have a robust ba
kbone if a substantial number of 
lauses 
an bedeleted before the ba
kbone size is redu
ed by half. Conversely, an instan
e is said tohave a fragile ba
kbone if the deletion of just a few 
lauses redu
es the ba
kbone size byhalf. Singer argues that \ba
kbone fragility approximately 
orresponds to how extensivethe quasi-solution area is" ([SGS00℄, p. 251), by noting that a fragile ba
kbone allows forlarge dinit�opt be
ause of the sudden drop in ba
kbone size, while dinit�opt is ne
essarilysmall in problem instan
es with robust ba
kbones.To 
on�rm this hypothesis, Singer measured a moderate (� �0:5) negative 
orrela-tion between ba
kbone robustness and the log of lo
al sear
h 
ost for large-ba
kbonedMAX-SAT instan
es. Surprisingly, this 
orrelation degraded as the ba
kbone size wasde
reased, leading Singer to hypothesize that \�nding the ba
kbone is less of an issueand so ba
kbone fragility, whi
h hinders this, has less of an e�e
t" ([SGS00℄, p. 254),although this 
onje
ture was not expli
itly tested.4 Algorithms, Test Problems, and MethodologyWe now brie
y des
ribe Taillard's tabu sear
h algorithm for the JSP, and introdu
e thetest problems and methodology we use to investigate des
riptive 
ost models for the JSP.4.1 Algorithm Des
riptionThe tabu sear
h algorithm we 
onsider in our analysis was introdu
ed by Taillard (1994).This was the �rst tabu sear
h algorithm for the JSP and is the basis for more advan
ed,state-of-the-art JSP algorithms su
h as that of Nowi
ki and Smutni
ki (1996). Taillard'salgorithm uses the Van Laarhoven move operator [LAL92℄, whi
h is often denoted by N1 .The N1 neighborhood is generated by swapping all adja
ent pairs of jobs on any 
riti
alpath in the 
urrent solution. As in most tabu sear
h algorithms for the JSP, re
entlyswapped pairs of jobs are prevented from being re-established for a parti
ular duration,
alled the tabu tenure; the tabu tenure is dynami
ally updated to avoid 
y
ling behav-ior. All runs are initiated from randomly generated \a
tive" solutions [GT60℄. In ea
hiteration of Taillard's algorithm, all N1 neighbors are generated, and the best non-tabumove is taken. The only long-term memory me
hanism is a simple aspiration 
riterion,whi
h over-rides the tabu status of any move that results in a solution that is better thanany en
ountered in the 
urrent run. As Taillard indi
ates ([EDT94℄, p. 110), frequen
y-based long-term memory is only ne
essary for problems that require a very large (> 1M)number of iterations, whi
h is not the 
ase for the test problems introdu
ed later in thisse
tion.
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The 
ost required to solve a given problem instan
e using Taillard's algorithm is natu-rally de�ned as the number of iterations required to lo
ate an optimal solution. However,the number of iterations is sto
hasti
 (with an approximately exponential distribution[EDT94℄), due to both the randomly generated initial solution and random tie-breakingwhen more than one 'best' move is available. Consequently, we de�ne the lo
al sear
h 
ostfor a problem instan
e as the median number of iterations required to lo
ate an optimalsolution over 1000 independent runs; with 1000 samples, the estimate of the distributionmedian is somewhat stable [Hoo98℄ [SGS00℄.For analysis purposes, the most important feature of Taillard's algorithm is the N1move operator. More advan
ed 
riti
al path move operators for the JSP, su
h as that usedin Nowi
ki and Smutni
ki's algorithm, 
an indu
e sear
h spa
es that are dis
onne
ted,su
h that it is not always possible to move between a randomly generated solution and anoptimal solution. Consequently, any algorithm using su
h a move operator is not Prob-abilisti
ally Approximately Complete (PAC) [Hoo98℄: even with in�nite run-time, thealgorithm is not guaranteed to lo
ate an optimal solution. This severely 
ompli
ates al-gorithm analysis, as it is un
lear how to de�ne the sear
h 
ost asso
iated with a probleminstan
e. However, use of a 
onne
ted move operator does not automati
ally guaranteethat an algorithm is PAC [Hoo98℄. While we have no analyti
 proof that Taillard's algo-rithm is PAC, the empiri
al eviden
e is 
ompelling: in produ
ing the results dis
ussed inSe
tions 5 and 6, Taillard's algorithm never failed to lo
ate an optimal solution.4.2 De�ning a Ba
kbone for JSPThe de�nition of a ba
kbone in any problem depends on how the solutions are repre-sented. Taillard's algorithm en
odes solutions using a disjun
tive graph, whi
h 
ontainsn(n � 1)=2 Boolean \order" variables for ea
h of the m ma
hines, ea
h of whi
h rep-resents a pre
eden
e relation between a distin
t pair of jobs on a ma
hine. We de�nethe ba
kbone of a JSP, therefore, as the set of order variables that have the same truthvalue in all optimal solutions. We de�ne the ba
kbone size as the fra
tion of the possiblemn(n� 1)=2 order variables that are �xed to the same value in all optimal solutions.4.3 Test ProblemsFor a variety of reasons, we are restri
ted to relatively small problem sizes in our exper-iments. From a te
hni
al standpoint, the fa
tors present in our des
riptive 
ost model(e.g., ba
kbone size and the distan
e between initial and optimal solutions) are fun
tionsof all optimal solutions to a problem instan
e. Generating all optimal solutions to aproblem instan
e is mu
h more expensive than merely proving optimality (the enumer-ation is expli
it, in 
ontrast to the impli
it approa
h 
hara
teristi
 of bran
h-and-boundalgorithms). Further, the number of optimal solutions in even small problem instan
esis measured in the millions, whi
h 
an easily ex
eed available memory in modern work-stations. From a pragmati
 standpoint, we 
onsider a wide range of problems in ourexperiments, 
ontrolling for ba
kbone size, work
ow 
on�guration, and problem size. Westudy over 4000 problem instan
es, 
omputing the median sear
h 
ost over 1000 inde-pendent runs for ea
h. Even for the problem sizes we 
onsider, the overall CPU timeinvested was approximately 8 CPU months on 750 MHz Pentium III workstations.
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In our experiments, we examine 6 � 4 and 6 � 6 problems, both with and withoutwork
ow partitions. Operation durations are sampled uniformly from the interval [1; 99℄.Ba
kbone size is an integral fa
tor in our des
riptive 
ost model. Unfortunately, even forthese problem sizes, it is infeasible to 
ontrol for a spe
i�
 ba
kbone size: 
omputation ofthe ba
kbone is 
onsiderably more expensive in the JSP than in MAX-SAT. Instead, we�lter for problems within �5% of a target ba
kbone sizeX , 0:0 � X � 1:0. We denote theba
kbone size of the resulting set of problems by� X . For ea
h problem size, we generated100 general and work
ow JSP instan
es at ea
h of the following ba
kbone sizes: � 0:1,� 0:3,� 0:5,� 0:7, and� 0:9. Finally, we used a 
onstraint-dire
ted s
heduling algorithmto 
ompute the optimal makespan, the ba
kbone size, and to enumerate all optimalsolutions. The spe
i�
 algorithm is do
umented in Be
k and Fox (2000), whi
h usesmin-sla
k variable and value ordering heuristi
s and edge-�nding 
onstraint propagators.5 A Des
riptive Cost Model for the General JSPA-priori, it is un
lear whether the fa
tors present in the MAX-SAT 
ost models are rele-vant to lo
al sear
h in the JSP. In MAX-SAT, the sear
h spa
e is dominated by plateausof equally-�t quasi-solutions, and the main 
hallenge for lo
al sear
h is to either �nd anexit from a plateau to an improving quasi-solution, or to es
ape the plateau by a

eptinga short sequen
e of dis-improving moves [FCS97℄. In 
ontrast, the JSP sear
h spa
e isdominated by lo
al optima with variable-sized and variable-depth attra
tor basins. Con-sequently, lo
al sear
h algorithms for the JSP spend mu
h of their time either es
apingor avoiding lo
al optima. In this se
tion, we examine the MAX-SAT 
ost models in the
ontext of Taillard's algorithm for the JSP, and demonstrate that despite qualitative dif-feren
es in sear
h spa
e topologies, the MAX-SAT 
ost model fa
tors do form the basisof an a

urate des
riptive model of lo
al sear
h in the JSP.5.1 Number of Solutions and Sear
h CostIn MAX-SAT, the number of optimal solutions 
an in
uen
e lo
al sear
h 
ost, althoughthe strength of this in
uen
e depends 
riti
ally on ba
kbone size: it is strong in problemswith small ba
kbones, and very weak in problems with large ba
kbones. In Table 1, wereport summary statisti
s for the number of optimal solutions and the lo
al sear
h 
ostfor our general JSPs. We see both a dramati
 drop in the number of optimal solutionsand a gradual in
rease in lo
al sear
h 
ost as the ba
kbone size is in
reased. Further,at a �xed ba
kbone size the di�eren
e in lo
al sear
h 
ost between the 6� 6 and 6 � 4problems is minimal, and 
an be attributed to the larger size of the sear
h spa
e in the6� 6 problem instan
es.In the bottom third of Table 1, we report the log10-log10 
orrelation between thenumber of optimal solutions and lo
al sear
h 
ost. The r-values indi
ate that both thenumber of optimal solutions and the ba
kbone size in
uen
e lo
al sear
h 
ost in thegeneral JSP. As in MAX-SAT, the 
orrelation is relatively strong for small-ba
kbonedproblems, and drops rapidly with in
reases in ba
kbone size. Although additional fa
torsare required to fully a

ount for the varian
e in lo
al sear
h 
ost for large-ba
kbonedgeneral JSPs, these results demonstrate that the intera
tion e�e
t between ba
kbonesize and the number of solutions is not unique to MAX-SAT.
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Ba
kbone SizeProblem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9Number of Optimal Solutions6� 4 481837 � 1158660 30007 � 38072 3221 � 3742 642 � 1374 21 � 226� 6 6233821 � 8070114 1405290 � 3221150 85292 � 157617 9037 � 9037 85 � 106Lo
al Sear
h Cost6� 4 6.69 � 3.34 23.05 � 20.93 52.64 � 61.22 94.76 � 136.56 312.27 � 332.276� 6 8.34 � 4.13 32.94 � 32.58 53.43 � 58.52 83.98 � 91.80 514.70 � 1853.08log10-log10 Correlation (r) Between the # of Optimal Solutions and Lo
al Sear
h Cost6� 4 -0.7508 -0.5100 -0.4905 -0.4131 -0.26836� 6 -0.7328 -0.4865 -0.3807 -0.3227 -0.2010Table 1. The number of optimal solutions, lo
al sear
h 
ost, and log10-log10 
orrelation (r)between the number of optimal solutions and lo
al sear
h 
ost for general JSPs. X � Y denotesa mean of X with a std. dev. of Y .
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Backbone SizeFig. 1. Histogram of ba
kbone sizes for 50 000 6� 4 (left �gure) and 6� 6 (right �gure) generalJSPs.5.2 Distribution of Ba
kbone SizesWhile re
tangular JSPs tend to be mu
h easier than square JSPs, this di�eren
e was notobserved in the lo
al sear
h 
osts reported in Table 1. In a straightforward experiment,we generated 100 6 � 4 and 6 � 6 general JSPs and 
omputed the lo
al sear
h 
ost forea
h problem set, leaving the ba
kbone size un
ontrolled. The mean lo
al sear
h 
ostswere 32:91 and 498:13 for the 6 � 4 and 6 � 6 problem sets, respe
tively, suggesting astrong bias in the distribution of ba
kbone sizes for the two problem types.In MAX-SAT, the distribution of ba
kbone sizes depends on the ratio of the numberof 
lauses 
 to the number of variables v [Par97℄. Under-
onstrained problem (with smallvalues of 
=v) tend to have small ba
kbones, while over-
onstrained problems (with largevalues of 
=v) tend to have large ba
kbones; the relative frequen
y of large-ba
kbonedproblems in
reases rapidly in the so-
alled `
riti
ally 
onstrained' region. In the JSP andmany other optimization problems, there is no known parameter analogous to 
=v bywhi
h we 
an 
ontrol for the expe
ted degree of 
onstrainedness. Consequently, we 
anonly observe the relative frequen
y of ba
kbone sizes in these problems.To examine the relative frequen
y of ba
kbone sizes in the general JSP, we generated50 000 6� 4 and 6� 6 problems, and 
omputed the ba
kbone size for ea
h instan
e. InFigure 1, we provide histograms illustrating the relative frequen
y of the ba
kbone sizes.The most 
ommon ba
kbone sizes for the square 6 � 6 instan
es are roughly 0:9, andare ex
eedingly rare below 0:3. In 
ontrast, the ba
kbone sizes for the re
tangular 6� 4instan
es are more uniformly distributed, with a slight bias toward smaller ba
kbone
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Problem Ba
kbone SizeSize � 0:1 � 0:3 � 0:5 � 0:7 � 0:9dinit�opt-log10(lo
al sear
h 
ost) 
orrelation6� 4 0.9890 0.9526 0.9070 0.8296 0.53036� 6 0.9912 0.9327 0.8911 0.8371 0.6484Ba
kbone robustness-log10(lo
al sear
h 
ost) 
orrelation6� 4 -0.2193 -0.3993 -0.4412 -0.5277 -0.56066� 6 -0.1621 -0.3629 -0.4507 -0.4712 -0.5134Table 2. Correlation (r) of 1) dinit�opt and 2) ba
kbone robustness with log10(lo
al sear
h 
ost)in general JSPs.sizes. We have also generated similar histograms for other small problem sizes: for ratiosof n=m > 1:5, the bias toward small ba
kbones be
omes more pronoun
ed, while forratios < 1, the bias toward larger ba
kbones is further magni�ed. Finally, we note thatthe utility of the 
orrelation between number of optimal solutions and lo
al sear
h 
ostdepends heavily on problem size; the in
uen
e is negligible for nearly all 6 � 6 JSPs(whi
h generally have large ba
kbones), and for many 6� 4 JSPs.5.3 Distan
e to Global Optima and Sear
h CostIn MAX-SAT, the mean distan
e between the initial quasi-solutions en
ountered by lo
alsear
h and the nearest optimal solution (dinit�opt) is strongly 
orrelated with lo
al sear
h
ost, a
ross all ba
kbone sizes. Intuitively, we would also expe
t the distan
e betweenthe �rst lo
al optima en
ountered by lo
al sear
h and the nearest optimal solution toin
uen
e lo
al sear
h 
ost in the JSP; the question is then \How strong is this in
uen
e?".For ea
h of our general JSPs, we generated 1000 lo
al optima, 
omputed the Hammingdistan
e to the nearest optimal solution for ea
h of the resulting optima, and re
ordedthe mean of the 1000 distan
es (the Hamming distan
e between two solutions in the JSPis the number of order variables, out of the mn(n� 1)=2 possible, with di�erent assignedvalues); as with MAX-SAT, we denote this measure by dinit�opt. We generated the lo
aloptima by applying a next-des
ent algorithm from random \a
tive" solutions [GT60℄.Our next-des
ent algorithm evaluates the neighbors of the 
urrent solution under theN1 move operator in a random order, sele
ting the �rst solution that improves on themakespan of the 
urrent solution; the algorithm terminates when no su
h improvementsare possible.In Table 2, we report the 
orrelations between dinit�opt and log10(lo
al sear
h 
ost).For ba
kbone sizes of � 0:1 through � 0:5, the 
orrelation is extremely high, and onlymoderately degrades for the two larger ba
kbone sizes. The r-values are uniformly andsigni�
antly better than those a
hieved using the number of solutions, and a

ount for asigni�
ant proportion of the varian
e in lo
al sear
h 
ost for large-ba
kboned problems.Thus, we also 
on
lude that the distan
e between initial and optimal solutions, and notthe number of optimal solutions, is the primary fa
tor in
uen
ing the 
ost of lo
al sear
hin the general JSP, independent of ba
kbone size.5.4 Ba
kbone Robustness and Sear
h CostSinger et al. propose ba
kbone robustness a 
ausal fa
tor that largely determines thesize of the quasi-solution sub-spa
e in MAX-SAT. Abstra
tly, ba
kbone robustness is a
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measure of the number of problem 
onstraints that must be relaxed to produ
e a problemwith a signi�
antly smaller ba
kbone. While in the JSP there is no analog to relaxingindividual 
onstraints (as is possible in MAX-SAT), there is a parameter 
ontrolling theglobal 
onstrainedness: deviation from the optimal makespan. Thus, we de�ne ba
kbonerobustness for the JSP as the minimum per
entage above the optimal makespan at whi
hthe ba
kbone size is redu
ed by at least half (subje
t to integral makespan 
onstraints).In the lower half of Table 2 we report the 
orrelation between the ba
kbone robust-ness and log10(lo
al sear
h 
ost) for our general JSPs. The results are very similar tothose reported by Singer et al. for MAX-SAT; a moderate negative 
orrelation for large-ba
kboned instan
es, and a gradual de
ay as ba
kbone size is de
reased. Analogous toMAX-SAT, ba
kbone robustness does appear to partially di
tate the size of the sub-spa
e 
ontaining lo
al optima in the general JSP. As we noted in Se
tion 3, Singer et al.provide a justi�
ation for the lower 
orrelations for small-ba
kboned instan
es.6 Extending the Analysis to Work
ow JSPsThe primary problem 
onstraints in the JSP are the ma
hine pro
essing orders for ea
hjob, while in MAX-SAT they are the individual 
lauses. In both 
ases, resear
hers typi-
ally generate problem instan
es su
h that these 
onstraints are uniformly random. Animportant issue is then generalization: real-world problems have non-random 
onstraints,and it is un
lear whether the des
riptive 
ost models for MAX-SAT and general JSP areappli
able to problem instan
es with more stru
tured 
onstraints. To study the e�e
tof non-random 
onstraints on the a

ura
y of the des
riptive 
ost model, we extend theanalysis of Se
tion 5 to JSPs with work
ow{whi
h impose a simple, spe
i�
 stru
ture onthe ma
hine pro
essing orders for ea
h job.First, we 
onsider the in
uen
e of the number of optimal solutions on lo
al sear
h
ost in work
ow JSPs, reported in Table 3. As with general JSPs, we see both a dramati
drop in the number of optimal solutions and a gradual in
rease in lo
al sear
h 
ost asthe ba
kbone size is in
reased. Work
ow JSPs have signi�
antly fewer optimal solutionsthan general JSPs, and the lo
al sear
h 
ost is generally an order of magnitude higher.However, the log10-log10 
orrelation between the number of optimal solutions and thelo
al sear
h 
ost is nearly identi
al with the results for general JSPs: 
orrelation is strongfor small-ba
kboned problems, but de
ays as ba
kbone size is in
reased.Next, we 
omputed the relative frequen
y of ba
kbone sizes for both the 6 � 4 and6� 6 work
ow JSPs; the resulting histograms are shown in Figure 2. Relative to generalJSPs (Figure 1), it is 
lear that the presen
e of work
ow partitions dramati
ally in
reasesthe frequen
y of large-ba
kboned problem instan
es. For the re
tangular 6� 4 problems,work
ow 
hanges a bias toward small ba
kbones in the general JSP into a relativelylarge bias toward large ba
kbones. For the 6 � 6 problems, work
ow further magni�esthe already large bias toward large ba
kbones found in the general JSP. We note that therarity of small-ba
kboned work
ow JSPs further diminishes the utility of the number ofsolutions as a predi
tor of lo
al sear
h 
ost for these instan
es.Finally, we measured the 
orrelation between dinit�opt and log10(lo
al sear
h 
ost);the results are reported in the upper portion of Table 4. Here, we see a dramati
 dif-feren
e between general JSPs and work
ow JSPs: while the in
uen
e of dinit�opt at
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Ba
kbone SizeProblem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9Number of Optimal Solutions6� 4wf 27369 � 71049 81255 � 295593 2515.25 � 4704 293 � 425 18 � 166� 6wf 1147650 � 6555440 429102 � 1676350 19017 � 44556 4553 � 6898 80 � 94Lo
al Sear
h Cost6� 4wf 119.44 � 89.32 122.2 � 114.26 333.42 � 442.39 920.72 � 1515.75 2087.44 � 2973.866� 6wf 318.77 � 113.82 513.13 � 143.72 1086.33 � 1979.39 1730.53 � 2846.15 5036.53 � 5132.54log10-log10 Correlation (r) Between the # of Optimal Solutions and Lo
al Sear
h Cost6� 4wf -0.7650 -0.6663 -0.3484 -0.2613 -0.22086� 6wf -0.7345 -0.6877 -0.4316 -0.2700 -0.2561Table 3. The number of solutions,lo
al sear
h 
ost, and log10-log10 
orrelation (r) between thenumber of solutions and lo
al sear
h 
ost for JSPs with work
ow. X � Y denotes a mean of Xwith a std. dev. of Y .
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Backbone SizeFig. 2. Histogram of ba
kbone sizes for 50 000 6 � 4 (left �gure) and 6 � 6 (right �gure) JSPswith work
ow.small ba
kbones is relatively large, it drops very rapidly, ultimately vanishing at � 0:9.Additionally, be
ause of the lesser in
uen
e of dinit�opt on lo
al sear
h 
ost, we see a
orresponding drop in the in
uen
e of ba
kbone robustness, as shown in the bottom halfof Table 4. Given the strong bias toward large ba
kbones in work
ow JSPs, we 
on
ludeby noting that the fa
tors present in the MAX-SAT and general JSP 
ost models areunable to a

ount for any signi�
ant proportion of the varian
e in lo
al sear
h 
ost inthese problems.7 Dis
ussion and Impli
ationsOur results demonstrate that dinit�opt is a good predi
tor of lo
al sear
h 
ost in boththe general JSP and MAX-SAT, despite qualitative di�eren
es in the underlying sear
hspa
es. In both 
ases, dinit�opt indire
tly measures the size of the sear
h spa
e exploredby the respe
tive lo
al sear
h algorithms. Modern lo
al sear
h algorithms for MAX-SAT(e.g., Walk-SAT [SGS00℄) basi
ally perform a random walk over the quasi-solution sub-spa
e. Consequently, it is unsurprising that sear
h 
ost is an exponential fun
tion ofthe sub-spa
e size [Hoo98℄. However, this inferen
e also applies to Taillard's tabu sear
halgorithm for the general JSP: it is e�e
tively performing a random walk in the spa
e oflo
al optima. The ability of dinit�opt to predi
t lo
al sear
h 
ost also indi
ates that thereis no, or at most a very weak, bias in the sear
h spa
es of both problems; if there were,distan
e alone would fail to a

urately predi
t lo
al sear
h 
ost.
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Problem Ba
kbone SizeSize � 0:1 � 0:3 � 0:5 � 0:7 � 0:9dinit�opt-log10(lo
al sear
h 
ost) 
orrelation6� 4wf 0.8727 0.7122 0.5109 0.1811 0.08626� 6wf 0.8231 0.6781 0.5264 0.1367 0.0711Ba
kbone robustness-log10(lo
al sear
h 
ost) 
orrelation6� 4wf -0.0029 -0.0217 -0.0372 -0.0752 -0.14236� 6wf -0.0165 -0.0348 -0.0513 -0.0941 -0.1239Table 4. Correlation (r) of 1) dinit�opt and 2) ba
kbone robustness with log10(lo
al sear
h 
ost)in work
ow JSPs.In 
ontrast, we found that dinit�opt was a very poor predi
tor of lo
al sear
h 
ost inwork
ow JSPs. Follow-up experiments indi
ate that there is a very strong bias towardparti
ular sub-optimal solutions in some of these problems: there are many more 'paths'in the sear
h spa
e to sub-optimal solutions than to optimal solutions. In other problems,we have observed very distant 
lusters of optimal solutions, suggesting that a more 
om-pli
ated de�nition of dinit�opt may be required. Our results also raise issues regardingthe des
riptive 
ost models for MAX-SAT, as we have shown that the fa
tors in
uen
inglo
al sear
h 
ost in random and stru
tured problems may in fa
t be quite di�erent.We view this resear
h as a �rst step toward understanding why lo
al sear
h algorithmsfor the JSP are so e�e
tive. We sele
ted Taillard's tabu sear
h algorithm pre
isely be
auseit serves as a baseline for more advan
ed algorithms, su
h as Nowi
ki and Smutni
ki's tabusear
h algorithm, whi
h enhan
e Taillard's algorithm through either more advan
ed moveoperators or long-term memory. With des
riptive 
ost models for the basi
 algorithm, we
an begin to systemati
ally assess the in
uen
e of these improvements on the des
riptive
ost model. Finally, we note that our analysis is only dire
tly appli
able to tabu-like sear
halgorithms for the JSP. Be
ause des
riptive 
ost models are tied to spe
i�
 algorithms, itseems likely that other fa
tors are responsible for lo
al sear
h 
ost in algorithms su
h asiterated lo
al sear
h or geneti
 algorithms, whi
h are based on prin
iples quite di�erentfrom tabu sear
h.8 Con
lusionsOur results 
learly demonstrate that the fa
tors in
uen
ing lo
al sear
h 
ost in MAX-SAT also in
uen
e lo
al sear
h 
ost in the general JSP, despite qualitative di�eren
esin the underlying sear
h spa
es. Consequently, we have a relatively 
lear pi
ture of lo
alsear
h 
ost in the general JSP, although our model fails to a

ount for a moderate amountof the varian
e in lo
al sear
h 
ost of large-ba
kboned problem instan
es. Our results alsosuggest the possibility that these same fa
tors may be appli
able in a mu
h wider rangeof optimization problems.We also shed more light on the observation that re
tangular JSPs are signi�
antlyeasier than square JSPs. If we 
ontrol for ba
kbone size, re
tangular JSPs are not sig-ni�
antly easier than square JSPs. Instead, the observed di�eren
e in diÆ
ulty stemsprimarily from the relative frequen
y of ba
kbone sizes in the two problems: large ba
k-bones are very 
ommon in square problems, while we see a bias toward smaller ba
kbonesin re
tangular problems.
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Finally, we also demonstrate that the fa
tors in
uen
ing sear
h 
ost in the generalJSP do not ne
essarily transfer to JSPs with work
ow, suggesting that the des
riptive
ost models for random and stru
tured problems may in fa
t be quite di�erent.A
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