
Toward an Understanding of Loal Searh Cost inJob-Shop ShedulingJean-Paul Watson1, J. Christopher Bek2,Adele E. Howe1, and L. Darrell Whitley11 Colorado State University, Fort Collins, CO 80523-1873 USAfwatsonj,howe,whitleyg�s.olostate.edu2 ILOG, S.A., 9, rue de Verdun, B.P. 85F-94523 Gentilly Cedex Franebek�ilog.frAbstrat. Loal searh algorithms are among the most e�etive approahes forsolving the JSP, yet we have little understanding of whih problem features inu-ene searh ost in these algorithms. We study a desriptive ost model of loalsearh in the job-shop sheduling problem (JSP), borrowing from the MAX-SATost models. We show that several fators known to inuene the diÆulty of loalsearh in MAX-SAT diretly arry over to the general JSP, inluding the numberof optimal solutions, bakbone size, the distane between initial solutions and thenearest optimal solution, and an analog of bakbone robustness. However, thesesame fators only weakly inuene loal searh ost in JSPs with workow, whihpossess strutured onstraints. While the fators for the MAX-SAT ost modelsprovide an aurate desription of loal searh ost in the general JSP, our resultsfor workow JSPs raise onerns regarding the appliability of ost models derivedusing random problems to those exhibiting spei� struture.1 IntrodutionLoal searh algorithms, partiularly those based on tabu searh, are among the moste�etive approahes for solving the JSP [BDP96℄. Yet, we have little understanding as towhy these algorithms work so well, and under what onditions. In this paper, we studydesriptive ost models of loal searh in the JSP. Desriptive ost models relate searhspae features to searh ost; better models aount for more of the variane in searhost aross di�erent problem instanes. We examine the ost of tabu searh in the JSP byonsidering an algorithm introdued by Taillard (1994), whih is losely related to manystate-of-the-art algorithms for the JSP (e.g., [NS96℄), and is signi�antly more amenableto analysis.Although no desriptive ost models for the JSP exist, researhers have expendedsigni�ant e�ort in reent years to produe relatively aurate desriptive ost models ofloal searh for MAX-SAT [SGS00℄. Intuitively, we would expet some fators present inthese models, suh as the number of optimal solutions, to inuene the diÆulty of loalsearh in other problems suh as the JSP. At the same time, both the searh spae andonstraint struture of the JSP di�er in many important ways from MAX-SAT, makingthe a-priori appliability of these models unlear.
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We investigate whether or not the desriptive ost models for MAX-SAT an beleveraged in an e�ort to understand loal searh ost in the JSP. We demonstrate thatthe fators present in the MAX-SAT ost models also inuene loal searh ost in theJSP, inluding the number of solutions [CFG+96℄, bakbone size [Par97℄, the distanebetween initial solutions and the nearest optimal solution [SGS00℄, and an analog of bak-bone robustness [SGS00℄. Together, these fators form the basis of a relatively auratedesriptive model of loal searh ost in the general JSP.The onstraints in both MAX-SAT (lauses) and the general JSP (mahine proessingorders) are randomly generated, and in expetation are unstrutured. In ontrast, theonstraints in real-world problems are often strutured. We apply the same analysis toJSPs with workow, a restrited form of the JSP with simple, strutured onstraints.We �nd that the fators present in the MAX-SAT and general JSP desriptive ostmodels only weakly inuene searh ost in workow JSPs. We onlude by disussingthe impliations of our analysis for the JSP, MAX-SAT, and loal searh in general.2 The JSP and Problem DiÆultyWe onsider the well-known n�m stati JSP, in whih n jobs must be proessed exatlyone on eah of m mahines for an arbitrary, pre-spei�ed duration. Eah mahine anproess only one job at a time, and one initiated, proessing annot be interrupted.Any job an start at time 0, and the objetive is to minimize the makespan, or themaximum ompletion time of any job. In the general JSP, the mahine proessing ordersare independently sampled from a uniform distribution. In the workow JSP, mahinesare typially divided into two equal-sized partitions ontaining mahines 1 through m=2and m=2 + 1 through m, respetively, and every job must be proessed on all mahinesin the �rst partition before any mahine in the seond partition. Within eah partition,the mahine proessing orders are sampled from a uniform distribution.While no desriptive ost models for the JSP exist, some general qualitative obser-vations regarding problem diÆulty have emerged. First, independent of loal searhalgorithm, we have the following trends:1. For both general and workow JSPs, \square" (n=m � 1) problem instanes aresigni�antly harder than \retangular" (n=m� 1) problem instanes.2. Given �xed n and m, workow JSPs are substantially more diÆult than generalJSPs.Seond, given either general or workow JSPs with a �xed n andm, the relative diÆultyof problem instanes appears to be algorithm-independent: e.g., a problem instane thatis diÆult for tabu searh is likely to be diÆult for simulated annealing. Clearly, anydesriptive ost model for the JSP must be onsistent with eah of these observations.Mattfeld et al. (1999) perform a quantitative analysis of problem diÆulty in the JSP,identifying signi�ant di�erenes in the searh spaes of some well-known 50�10 generaland workow JSPs. Spei�ally, they show that the extension of the searh spae (asmeasured by the average distane between random loal optima) is larger in workowJSPs, suggesting a ause for the generally larger searh ost assoiated with these prob-lem instanes. Two other measures, entropy and orrelation length, also demonstratedquantitative di�erenes in the searh spaes of these same problems.
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While Mattfeld et al. do identify di�erenes in the searh spaes of general and work-ow JSPs, it is unlear whether these di�erenes aount for the variane in loal searhost for di�erent problem instanes of the same size and workow on�guration. In pre-liminary experiments, we found that while the fators introdued by Mattfeld et al. didinuene searh ost, the inuene was muh weaker than for the fators we disuss inSetion 5. Furthermore, Mattfeld et al. did not investigate whether these same fatorswere responsible for the relative diÆulty of square versus retangular JSPs.3 The MAX-SAT Desriptive Cost ModelThe MAX-SAT desriptive ost model is the basis for our study. Many methods forharaterizing problem diÆulty have found appliation in a wide variety of problems, forexample phase transitions and the assoiated peak in searh ost. Given suh universals,it is important to examine, and if possible leverage, any existing analysis on problemdiÆulty. However, the literature on loal searh yields desriptive ost models for onlytwo, related problems: MAX-SAT and MAX-CSP. Outside of these two examples, thedominant methods for quantifying problem diÆulty are unable to aount for the largeost variane found in di�erent problem instanes of a given size. For example, orrelationlength [RS01℄ is stritly a funtion of problem size (e.g., the number of ities in the TSP).Intuitively, a derease in the number of optimal solutions should yield an inrease inloal searh ost. This observation formed the basis of the �rst desriptive ost modelfor MAX-SAT, in whih Clark et al. (1996) demonstrated a relatively strong (negative)log-log orrelation between the number of solutions and loal searh ost, with r-valuesranging anywhere from �0:77 to �0:91. However, the model failed to aount for thelarge ost variane in problems with very small numbers of optimal solutions, wheremodel residuals varied over three or more orders of magnitude.Singer et al. (2000) subsequently introdued a desriptive ost model that largelyorreted the de�ieny present in the Clark model, and went further by proposing aausal model for loal searh ost in MAX-SAT. The bakbone of a problem instaneis a key onept in Singer's desriptive ost model. The bakbone of a MAX-SAT in-stane onsists of the subset of literals that have the same truth value in all optimalsolutions[Par97℄. Singer demonstrated that the bakbone size does inuene searh ostin MAX-SAT, showing that when the bakbone is small, there is a strong (negative)log-log orrelation (r � �0:77) between the number of optimal solutions and the loalsearh ost. However, this orrelation nearly vanishes (r � �0:12) when the bakbone islarge [SGS00℄.Loal searh algorithms for MAX-SAT quikly loate sub-optimal quasi-solutions,that ontain relatively few unsatis�ed lauses. These quasi-solutions form a sub-spaethat ontains all optimal solutions, and is largely interonneted; one a point in thissub-spae is identi�ed, loal searh algorithms for MAX-SAT typially restrit searh tothis sub-spae. This observation led Singer to hypothesize that the size of this sub-spaeditates the overall searh ost, whih ould overome the inability of the number ofoptimal solutions to predit loal searh ost in problems with large bakbones.To test this hypothesis, Singer measured the mean Hamming distane (the numberof di�ering variable assignments) between the �rst quasi-solution enountered during
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loal searh and the nearest optimal solution, whih we denote dinit�opt, and omputedthe orrelation between dinit�opt and the logarithm of loal searh ost. The resultingorrelations were extremely high (r � 0:95) for problems with small bakbones, anddegraded only slightly for problems with larger bakbones (r � 0:75). Consequently,dinit�opt, and not the number of optimal solutions, is the primary fator inuening loalsearh ost in MAX-SAT.Singer also posited a ausal explanation for the variane in dinit�opt aross di�erentMAX-SAT instanes, whih is based on the notion of bakbone robustness. A MAX-SATinstane is said to have a robust bakbone if a substantial number of lauses an bedeleted before the bakbone size is redued by half. Conversely, an instane is said tohave a fragile bakbone if the deletion of just a few lauses redues the bakbone size byhalf. Singer argues that \bakbone fragility approximately orresponds to how extensivethe quasi-solution area is" ([SGS00℄, p. 251), by noting that a fragile bakbone allows forlarge dinit�opt beause of the sudden drop in bakbone size, while dinit�opt is neessarilysmall in problem instanes with robust bakbones.To on�rm this hypothesis, Singer measured a moderate (� �0:5) negative orrela-tion between bakbone robustness and the log of loal searh ost for large-bakbonedMAX-SAT instanes. Surprisingly, this orrelation degraded as the bakbone size wasdereased, leading Singer to hypothesize that \�nding the bakbone is less of an issueand so bakbone fragility, whih hinders this, has less of an e�et" ([SGS00℄, p. 254),although this onjeture was not expliitly tested.4 Algorithms, Test Problems, and MethodologyWe now briey desribe Taillard's tabu searh algorithm for the JSP, and introdue thetest problems and methodology we use to investigate desriptive ost models for the JSP.4.1 Algorithm DesriptionThe tabu searh algorithm we onsider in our analysis was introdued by Taillard (1994).This was the �rst tabu searh algorithm for the JSP and is the basis for more advaned,state-of-the-art JSP algorithms suh as that of Nowiki and Smutniki (1996). Taillard'salgorithm uses the Van Laarhoven move operator [LAL92℄, whih is often denoted by N1 .The N1 neighborhood is generated by swapping all adjaent pairs of jobs on any ritialpath in the urrent solution. As in most tabu searh algorithms for the JSP, reentlyswapped pairs of jobs are prevented from being re-established for a partiular duration,alled the tabu tenure; the tabu tenure is dynamially updated to avoid yling behav-ior. All runs are initiated from randomly generated \ative" solutions [GT60℄. In eahiteration of Taillard's algorithm, all N1 neighbors are generated, and the best non-tabumove is taken. The only long-term memory mehanism is a simple aspiration riterion,whih over-rides the tabu status of any move that results in a solution that is better thanany enountered in the urrent run. As Taillard indiates ([EDT94℄, p. 110), frequeny-based long-term memory is only neessary for problems that require a very large (> 1M)number of iterations, whih is not the ase for the test problems introdued later in thissetion.
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The ost required to solve a given problem instane using Taillard's algorithm is natu-rally de�ned as the number of iterations required to loate an optimal solution. However,the number of iterations is stohasti (with an approximately exponential distribution[EDT94℄), due to both the randomly generated initial solution and random tie-breakingwhen more than one 'best' move is available. Consequently, we de�ne the loal searh ostfor a problem instane as the median number of iterations required to loate an optimalsolution over 1000 independent runs; with 1000 samples, the estimate of the distributionmedian is somewhat stable [Hoo98℄ [SGS00℄.For analysis purposes, the most important feature of Taillard's algorithm is the N1move operator. More advaned ritial path move operators for the JSP, suh as that usedin Nowiki and Smutniki's algorithm, an indue searh spaes that are disonneted,suh that it is not always possible to move between a randomly generated solution and anoptimal solution. Consequently, any algorithm using suh a move operator is not Prob-abilistially Approximately Complete (PAC) [Hoo98℄: even with in�nite run-time, thealgorithm is not guaranteed to loate an optimal solution. This severely ompliates al-gorithm analysis, as it is unlear how to de�ne the searh ost assoiated with a probleminstane. However, use of a onneted move operator does not automatially guaranteethat an algorithm is PAC [Hoo98℄. While we have no analyti proof that Taillard's algo-rithm is PAC, the empirial evidene is ompelling: in produing the results disussed inSetions 5 and 6, Taillard's algorithm never failed to loate an optimal solution.4.2 De�ning a Bakbone for JSPThe de�nition of a bakbone in any problem depends on how the solutions are repre-sented. Taillard's algorithm enodes solutions using a disjuntive graph, whih ontainsn(n � 1)=2 Boolean \order" variables for eah of the m mahines, eah of whih rep-resents a preedene relation between a distint pair of jobs on a mahine. We de�nethe bakbone of a JSP, therefore, as the set of order variables that have the same truthvalue in all optimal solutions. We de�ne the bakbone size as the fration of the possiblemn(n� 1)=2 order variables that are �xed to the same value in all optimal solutions.4.3 Test ProblemsFor a variety of reasons, we are restrited to relatively small problem sizes in our exper-iments. From a tehnial standpoint, the fators present in our desriptive ost model(e.g., bakbone size and the distane between initial and optimal solutions) are funtionsof all optimal solutions to a problem instane. Generating all optimal solutions to aproblem instane is muh more expensive than merely proving optimality (the enumer-ation is expliit, in ontrast to the impliit approah harateristi of branh-and-boundalgorithms). Further, the number of optimal solutions in even small problem instanesis measured in the millions, whih an easily exeed available memory in modern work-stations. From a pragmati standpoint, we onsider a wide range of problems in ourexperiments, ontrolling for bakbone size, workow on�guration, and problem size. Westudy over 4000 problem instanes, omputing the median searh ost over 1000 inde-pendent runs for eah. Even for the problem sizes we onsider, the overall CPU timeinvested was approximately 8 CPU months on 750 MHz Pentium III workstations.
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In our experiments, we examine 6 � 4 and 6 � 6 problems, both with and withoutworkow partitions. Operation durations are sampled uniformly from the interval [1; 99℄.Bakbone size is an integral fator in our desriptive ost model. Unfortunately, even forthese problem sizes, it is infeasible to ontrol for a spei� bakbone size: omputation ofthe bakbone is onsiderably more expensive in the JSP than in MAX-SAT. Instead, we�lter for problems within �5% of a target bakbone sizeX , 0:0 � X � 1:0. We denote thebakbone size of the resulting set of problems by� X . For eah problem size, we generated100 general and workow JSP instanes at eah of the following bakbone sizes: � 0:1,� 0:3,� 0:5,� 0:7, and� 0:9. Finally, we used a onstraint-direted sheduling algorithmto ompute the optimal makespan, the bakbone size, and to enumerate all optimalsolutions. The spei� algorithm is doumented in Bek and Fox (2000), whih usesmin-slak variable and value ordering heuristis and edge-�nding onstraint propagators.5 A Desriptive Cost Model for the General JSPA-priori, it is unlear whether the fators present in the MAX-SAT ost models are rele-vant to loal searh in the JSP. In MAX-SAT, the searh spae is dominated by plateausof equally-�t quasi-solutions, and the main hallenge for loal searh is to either �nd anexit from a plateau to an improving quasi-solution, or to esape the plateau by aeptinga short sequene of dis-improving moves [FCS97℄. In ontrast, the JSP searh spae isdominated by loal optima with variable-sized and variable-depth attrator basins. Con-sequently, loal searh algorithms for the JSP spend muh of their time either esapingor avoiding loal optima. In this setion, we examine the MAX-SAT ost models in theontext of Taillard's algorithm for the JSP, and demonstrate that despite qualitative dif-ferenes in searh spae topologies, the MAX-SAT ost model fators do form the basisof an aurate desriptive model of loal searh in the JSP.5.1 Number of Solutions and Searh CostIn MAX-SAT, the number of optimal solutions an inuene loal searh ost, althoughthe strength of this inuene depends ritially on bakbone size: it is strong in problemswith small bakbones, and very weak in problems with large bakbones. In Table 1, wereport summary statistis for the number of optimal solutions and the loal searh ostfor our general JSPs. We see both a dramati drop in the number of optimal solutionsand a gradual inrease in loal searh ost as the bakbone size is inreased. Further,at a �xed bakbone size the di�erene in loal searh ost between the 6� 6 and 6 � 4problems is minimal, and an be attributed to the larger size of the searh spae in the6� 6 problem instanes.In the bottom third of Table 1, we report the log10-log10 orrelation between thenumber of optimal solutions and loal searh ost. The r-values indiate that both thenumber of optimal solutions and the bakbone size inuene loal searh ost in thegeneral JSP. As in MAX-SAT, the orrelation is relatively strong for small-bakbonedproblems, and drops rapidly with inreases in bakbone size. Although additional fatorsare required to fully aount for the variane in loal searh ost for large-bakbonedgeneral JSPs, these results demonstrate that the interation e�et between bakbonesize and the number of solutions is not unique to MAX-SAT.
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Bakbone SizeProblem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9Number of Optimal Solutions6� 4 481837 � 1158660 30007 � 38072 3221 � 3742 642 � 1374 21 � 226� 6 6233821 � 8070114 1405290 � 3221150 85292 � 157617 9037 � 9037 85 � 106Loal Searh Cost6� 4 6.69 � 3.34 23.05 � 20.93 52.64 � 61.22 94.76 � 136.56 312.27 � 332.276� 6 8.34 � 4.13 32.94 � 32.58 53.43 � 58.52 83.98 � 91.80 514.70 � 1853.08log10-log10 Correlation (r) Between the # of Optimal Solutions and Loal Searh Cost6� 4 -0.7508 -0.5100 -0.4905 -0.4131 -0.26836� 6 -0.7328 -0.4865 -0.3807 -0.3227 -0.2010Table 1. The number of optimal solutions, loal searh ost, and log10-log10 orrelation (r)between the number of optimal solutions and loal searh ost for general JSPs. X � Y denotesa mean of X with a std. dev. of Y .
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Backbone SizeFig. 1. Histogram of bakbone sizes for 50 000 6� 4 (left �gure) and 6� 6 (right �gure) generalJSPs.5.2 Distribution of Bakbone SizesWhile retangular JSPs tend to be muh easier than square JSPs, this di�erene was notobserved in the loal searh osts reported in Table 1. In a straightforward experiment,we generated 100 6 � 4 and 6 � 6 general JSPs and omputed the loal searh ost foreah problem set, leaving the bakbone size unontrolled. The mean loal searh ostswere 32:91 and 498:13 for the 6 � 4 and 6 � 6 problem sets, respetively, suggesting astrong bias in the distribution of bakbone sizes for the two problem types.In MAX-SAT, the distribution of bakbone sizes depends on the ratio of the numberof lauses  to the number of variables v [Par97℄. Under-onstrained problem (with smallvalues of =v) tend to have small bakbones, while over-onstrained problems (with largevalues of =v) tend to have large bakbones; the relative frequeny of large-bakbonedproblems inreases rapidly in the so-alled `ritially onstrained' region. In the JSP andmany other optimization problems, there is no known parameter analogous to =v bywhih we an ontrol for the expeted degree of onstrainedness. Consequently, we anonly observe the relative frequeny of bakbone sizes in these problems.To examine the relative frequeny of bakbone sizes in the general JSP, we generated50 000 6� 4 and 6� 6 problems, and omputed the bakbone size for eah instane. InFigure 1, we provide histograms illustrating the relative frequeny of the bakbone sizes.The most ommon bakbone sizes for the square 6 � 6 instanes are roughly 0:9, andare exeedingly rare below 0:3. In ontrast, the bakbone sizes for the retangular 6� 4instanes are more uniformly distributed, with a slight bias toward smaller bakbone
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Problem Bakbone SizeSize � 0:1 � 0:3 � 0:5 � 0:7 � 0:9dinit�opt-log10(loal searh ost) orrelation6� 4 0.9890 0.9526 0.9070 0.8296 0.53036� 6 0.9912 0.9327 0.8911 0.8371 0.6484Bakbone robustness-log10(loal searh ost) orrelation6� 4 -0.2193 -0.3993 -0.4412 -0.5277 -0.56066� 6 -0.1621 -0.3629 -0.4507 -0.4712 -0.5134Table 2. Correlation (r) of 1) dinit�opt and 2) bakbone robustness with log10(loal searh ost)in general JSPs.sizes. We have also generated similar histograms for other small problem sizes: for ratiosof n=m > 1:5, the bias toward small bakbones beomes more pronouned, while forratios < 1, the bias toward larger bakbones is further magni�ed. Finally, we note thatthe utility of the orrelation between number of optimal solutions and loal searh ostdepends heavily on problem size; the inuene is negligible for nearly all 6 � 6 JSPs(whih generally have large bakbones), and for many 6� 4 JSPs.5.3 Distane to Global Optima and Searh CostIn MAX-SAT, the mean distane between the initial quasi-solutions enountered by loalsearh and the nearest optimal solution (dinit�opt) is strongly orrelated with loal searhost, aross all bakbone sizes. Intuitively, we would also expet the distane betweenthe �rst loal optima enountered by loal searh and the nearest optimal solution toinuene loal searh ost in the JSP; the question is then \How strong is this inuene?".For eah of our general JSPs, we generated 1000 loal optima, omputed the Hammingdistane to the nearest optimal solution for eah of the resulting optima, and reordedthe mean of the 1000 distanes (the Hamming distane between two solutions in the JSPis the number of order variables, out of the mn(n� 1)=2 possible, with di�erent assignedvalues); as with MAX-SAT, we denote this measure by dinit�opt. We generated the loaloptima by applying a next-desent algorithm from random \ative" solutions [GT60℄.Our next-desent algorithm evaluates the neighbors of the urrent solution under theN1 move operator in a random order, seleting the �rst solution that improves on themakespan of the urrent solution; the algorithm terminates when no suh improvementsare possible.In Table 2, we report the orrelations between dinit�opt and log10(loal searh ost).For bakbone sizes of � 0:1 through � 0:5, the orrelation is extremely high, and onlymoderately degrades for the two larger bakbone sizes. The r-values are uniformly andsigni�antly better than those ahieved using the number of solutions, and aount for asigni�ant proportion of the variane in loal searh ost for large-bakboned problems.Thus, we also onlude that the distane between initial and optimal solutions, and notthe number of optimal solutions, is the primary fator inuening the ost of loal searhin the general JSP, independent of bakbone size.5.4 Bakbone Robustness and Searh CostSinger et al. propose bakbone robustness a ausal fator that largely determines thesize of the quasi-solution sub-spae in MAX-SAT. Abstratly, bakbone robustness is a
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measure of the number of problem onstraints that must be relaxed to produe a problemwith a signi�antly smaller bakbone. While in the JSP there is no analog to relaxingindividual onstraints (as is possible in MAX-SAT), there is a parameter ontrolling theglobal onstrainedness: deviation from the optimal makespan. Thus, we de�ne bakbonerobustness for the JSP as the minimum perentage above the optimal makespan at whihthe bakbone size is redued by at least half (subjet to integral makespan onstraints).In the lower half of Table 2 we report the orrelation between the bakbone robust-ness and log10(loal searh ost) for our general JSPs. The results are very similar tothose reported by Singer et al. for MAX-SAT; a moderate negative orrelation for large-bakboned instanes, and a gradual deay as bakbone size is dereased. Analogous toMAX-SAT, bakbone robustness does appear to partially ditate the size of the sub-spae ontaining loal optima in the general JSP. As we noted in Setion 3, Singer et al.provide a justi�ation for the lower orrelations for small-bakboned instanes.6 Extending the Analysis to Workow JSPsThe primary problem onstraints in the JSP are the mahine proessing orders for eahjob, while in MAX-SAT they are the individual lauses. In both ases, researhers typi-ally generate problem instanes suh that these onstraints are uniformly random. Animportant issue is then generalization: real-world problems have non-random onstraints,and it is unlear whether the desriptive ost models for MAX-SAT and general JSP areappliable to problem instanes with more strutured onstraints. To study the e�etof non-random onstraints on the auray of the desriptive ost model, we extend theanalysis of Setion 5 to JSPs with workow{whih impose a simple, spei� struture onthe mahine proessing orders for eah job.First, we onsider the inuene of the number of optimal solutions on loal searhost in workow JSPs, reported in Table 3. As with general JSPs, we see both a dramatidrop in the number of optimal solutions and a gradual inrease in loal searh ost asthe bakbone size is inreased. Workow JSPs have signi�antly fewer optimal solutionsthan general JSPs, and the loal searh ost is generally an order of magnitude higher.However, the log10-log10 orrelation between the number of optimal solutions and theloal searh ost is nearly idential with the results for general JSPs: orrelation is strongfor small-bakboned problems, but deays as bakbone size is inreased.Next, we omputed the relative frequeny of bakbone sizes for both the 6 � 4 and6� 6 workow JSPs; the resulting histograms are shown in Figure 2. Relative to generalJSPs (Figure 1), it is lear that the presene of workow partitions dramatially inreasesthe frequeny of large-bakboned problem instanes. For the retangular 6� 4 problems,workow hanges a bias toward small bakbones in the general JSP into a relativelylarge bias toward large bakbones. For the 6 � 6 problems, workow further magni�esthe already large bias toward large bakbones found in the general JSP. We note that therarity of small-bakboned workow JSPs further diminishes the utility of the number ofsolutions as a preditor of loal searh ost for these instanes.Finally, we measured the orrelation between dinit�opt and log10(loal searh ost);the results are reported in the upper portion of Table 4. Here, we see a dramati dif-ferene between general JSPs and workow JSPs: while the inuene of dinit�opt at
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Bakbone SizeProblem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9Number of Optimal Solutions6� 4wf 27369 � 71049 81255 � 295593 2515.25 � 4704 293 � 425 18 � 166� 6wf 1147650 � 6555440 429102 � 1676350 19017 � 44556 4553 � 6898 80 � 94Loal Searh Cost6� 4wf 119.44 � 89.32 122.2 � 114.26 333.42 � 442.39 920.72 � 1515.75 2087.44 � 2973.866� 6wf 318.77 � 113.82 513.13 � 143.72 1086.33 � 1979.39 1730.53 � 2846.15 5036.53 � 5132.54log10-log10 Correlation (r) Between the # of Optimal Solutions and Loal Searh Cost6� 4wf -0.7650 -0.6663 -0.3484 -0.2613 -0.22086� 6wf -0.7345 -0.6877 -0.4316 -0.2700 -0.2561Table 3. The number of solutions,loal searh ost, and log10-log10 orrelation (r) between thenumber of solutions and loal searh ost for JSPs with workow. X � Y denotes a mean of Xwith a std. dev. of Y .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

Backbone Size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

Backbone SizeFig. 2. Histogram of bakbone sizes for 50 000 6 � 4 (left �gure) and 6 � 6 (right �gure) JSPswith workow.small bakbones is relatively large, it drops very rapidly, ultimately vanishing at � 0:9.Additionally, beause of the lesser inuene of dinit�opt on loal searh ost, we see aorresponding drop in the inuene of bakbone robustness, as shown in the bottom halfof Table 4. Given the strong bias toward large bakbones in workow JSPs, we onludeby noting that the fators present in the MAX-SAT and general JSP ost models areunable to aount for any signi�ant proportion of the variane in loal searh ost inthese problems.7 Disussion and ImpliationsOur results demonstrate that dinit�opt is a good preditor of loal searh ost in boththe general JSP and MAX-SAT, despite qualitative di�erenes in the underlying searhspaes. In both ases, dinit�opt indiretly measures the size of the searh spae exploredby the respetive loal searh algorithms. Modern loal searh algorithms for MAX-SAT(e.g., Walk-SAT [SGS00℄) basially perform a random walk over the quasi-solution sub-spae. Consequently, it is unsurprising that searh ost is an exponential funtion ofthe sub-spae size [Hoo98℄. However, this inferene also applies to Taillard's tabu searhalgorithm for the general JSP: it is e�etively performing a random walk in the spae ofloal optima. The ability of dinit�opt to predit loal searh ost also indiates that thereis no, or at most a very weak, bias in the searh spaes of both problems; if there were,distane alone would fail to aurately predit loal searh ost.
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Problem Bakbone SizeSize � 0:1 � 0:3 � 0:5 � 0:7 � 0:9dinit�opt-log10(loal searh ost) orrelation6� 4wf 0.8727 0.7122 0.5109 0.1811 0.08626� 6wf 0.8231 0.6781 0.5264 0.1367 0.0711Bakbone robustness-log10(loal searh ost) orrelation6� 4wf -0.0029 -0.0217 -0.0372 -0.0752 -0.14236� 6wf -0.0165 -0.0348 -0.0513 -0.0941 -0.1239Table 4. Correlation (r) of 1) dinit�opt and 2) bakbone robustness with log10(loal searh ost)in workow JSPs.In ontrast, we found that dinit�opt was a very poor preditor of loal searh ost inworkow JSPs. Follow-up experiments indiate that there is a very strong bias towardpartiular sub-optimal solutions in some of these problems: there are many more 'paths'in the searh spae to sub-optimal solutions than to optimal solutions. In other problems,we have observed very distant lusters of optimal solutions, suggesting that a more om-pliated de�nition of dinit�opt may be required. Our results also raise issues regardingthe desriptive ost models for MAX-SAT, as we have shown that the fators inueningloal searh ost in random and strutured problems may in fat be quite di�erent.We view this researh as a �rst step toward understanding why loal searh algorithmsfor the JSP are so e�etive. We seleted Taillard's tabu searh algorithm preisely beauseit serves as a baseline for more advaned algorithms, suh as Nowiki and Smutniki's tabusearh algorithm, whih enhane Taillard's algorithm through either more advaned moveoperators or long-term memory. With desriptive ost models for the basi algorithm, wean begin to systematially assess the inuene of these improvements on the desriptiveost model. Finally, we note that our analysis is only diretly appliable to tabu-like searhalgorithms for the JSP. Beause desriptive ost models are tied to spei� algorithms, itseems likely that other fators are responsible for loal searh ost in algorithms suh asiterated loal searh or geneti algorithms, whih are based on priniples quite di�erentfrom tabu searh.8 ConlusionsOur results learly demonstrate that the fators inuening loal searh ost in MAX-SAT also inuene loal searh ost in the general JSP, despite qualitative di�erenesin the underlying searh spaes. Consequently, we have a relatively lear piture of loalsearh ost in the general JSP, although our model fails to aount for a moderate amountof the variane in loal searh ost of large-bakboned problem instanes. Our results alsosuggest the possibility that these same fators may be appliable in a muh wider rangeof optimization problems.We also shed more light on the observation that retangular JSPs are signi�antlyeasier than square JSPs. If we ontrol for bakbone size, retangular JSPs are not sig-ni�antly easier than square JSPs. Instead, the observed di�erene in diÆulty stemsprimarily from the relative frequeny of bakbone sizes in the two problems: large bak-bones are very ommon in square problems, while we see a bias toward smaller bakbonesin retangular problems.
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