
Beyond Plan Length: Heuristi Searh Planning forMaximum Reward Problems.Jason Farquhar and Chris HarrisImage Speeh and Intelligent SystemsDepartment of Eletronis and Computer SieneUniversity of SouthamptonSouthampton, SO17 1BJ, UK[jdrf99r;jh℄�es.soton.a.ukAbstrat. Reently automati extration of heuristi estimates has been shown to be extremelyfruitful when applied to lassial planning domains. We present a simple extension to the heuristiextration proess from the well-known HSP system that allows us to apply it to reward maximisationproblems. This extension involves omputing an estimate of the maximal reward obtainable from agiven state by ignoring delete lists. We also desribe how to improve the auray of this estimateusing any available mutual exlusion information. In this way we seek to apply reent advanes inlassial planning to a broader range of problems.Keywords: Domain Independent Planning, Reward Based Planning, Heuristi SearhPlanners.1 IntrodutionIn this paper we investigate reward maximisation as an alternative to plan length forthe optimisation riteria in STRIPS style problems. In reward maximisation problems weattempt to maximise the total reward obtained from the states visited and ations takenduring plan exeution, where the reward is an aribitary real-valued funtion over statesand ations. In partiular we fous on reward problems where the planners objetives arespei�ed through the rewards alloated to di�erent world states rather than as an expliitgoal whih must be ahieved.Inspired by the suess of heuristi searh in eÆiently solving goal-based STRIPSproblems (Ba00; BG99; HN01) we suggest that similar methods may be used in rewardmaximisation problems. To investigate this idea we present a modi�ation of the heuristiused in HSP whih is appliable in the reward maximisation ase.This paper is organised as follows. Setion 2 presents a mathematial model of STRIPSproblems and its reward based extensions. Setion 3 gives the derivation of our new heuristiand an outline of the algorithm used to alulate it. The �nal setions disuss future work(Se 4), ompare related work (Se 5) and present onlusions (Se 6).2 Reward Based PlanningFollowing (BG99) we represent a onventional STRIPS (FN71) domain as a tuple D =hA;Oi, where A is a set of atoms and O is a set of operators. The operators op 2 O andatoms a 2 A are all assumed ground (all variables replaed by onstants). Eah operator
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2has preondition, add and delete lists whih we denote as Pre(op), Add(op) and Del(op)respetively, given by sets of atoms from A.Suh a domain an be seen as representing a state spae where:1. the states s 2 S are �nite sets of atoms from A2. the state transition funtion f(s; op) whih maps from states to states is given by:s0 = f(s; op) = �s [ Add(op) nDel(op) if Pre(op) � sunde�ned otherwise. (1)3. the result of applying a sequene of operators is de�ned reursively assn = f(s0; hop1; ::; opni) = f(f(s0; hop1; :::; opn�1i); opn) (2)In reward based planning the domain desription is augmented to give P = hA;O; I; Riwhere I � A represents the initial situation and R is the reward funtion whih maps fromsituations to real valued rewards. R onsists of two omponents, a state based omponent,R : s 7! IR, and an operator based omponent, R : op 7! IR. The solution to a rewardbased planning problem is a sequene of operators P = hop1; :::; opni that maximises thetotal reward reeived from the states visited and operators applied during plan exeution.One partiular problem with reward based planning not found in goal based planningis the possibility of yli solutions with in�nite reward. Suh in�nities are diÆult to workwith so it is usual to modify the optimisation riteria to remove them; for example, bydisounting future rewards (Put94), optimising with respet to reward rate, or optimisingwith respet to a �nite planning horizon. A �nite horizon is used in this work though themethod ould be applied in the other ases .3 Heuristis for Reward Based Planning ProblemsHeuristi searh planners use a heuristi funtion h(s) to guide solution searh in statespae. To develop an e�etive heuristi we use the same trik that proved so e�etive inSTRIPS planning (BG99; HN01), i.e. we solve a relaxed problem ignoring operator deletelists and use this solution as a heuristi estimate in the original problem. Unfortunatelysolving even the relaxed problem an be shown to be NP-hard (BG99) so an approximatesolution must be used.In STRIPS problems one of the most suessful approximations is that used in the HSPsystem developed by Bonet and Gen�er (BG99). This deomposes the problem of �ndingthe shortest path to the goal state into one of �nding the shortest path to eah individualatom from whih an estimate of the goal distane is reonstruted. This deomposition andreonstrution is performed beause the number of atoms, jAj is generally muh smallerthan the number of states, i.e. subsets of atoms, jSj, (whih is exponential in the numberof atoms, jSj � j2jAjj). Hene performing omputations in atom spae an be signi�antlyheaper in time and spae than the equivalent omputations in state spae.For reward based problems we propose to use a modifed version of the same approxi-mation tehnique of deomposing and resonstruting state values from atom values. Webegin by de�ning the value, V (s; t), of state s as the maximal reward obtainable in getting
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3from the initial state I to this state in t steps. This value ould be alulated diretly instate spae using the forward Bellman Equation:V (s; t) = R(s) + maxop2O �R(op) + V (f�1(s; op); t� 1)� (3)where V (s; t) is the value of the state s at time step t, R(s) and R(op) are the rewardsfor being in state s and performing operation op respetively, f�1(s; op) is the inverse statetransition operator whih returns the state s0 from whih appliation of operator op resultsin the new state s, and V (I; 0) = 0.The problem de�ned by (3) is equivalent to �nding a maximal weight path through aweighted direted graph. The nodes represent states, edges the operators, and the edge andnode weights the operator and state rewards respetively. A number of eÆient algorithmswhih are polynomial in jSj an be used to solve this problem. Unfortunately as mentionedabove, jSj is generally exponential in the number of atoms making even these algorithmsostly. Hene we approximate (3) by re-formulating the problem to apply over the smallerspae of atoms. This gives the equations (4) and (5).V (p; t) = maxp2Pre(r)R(r; t) + maxp2E�(op) (R(op) + V (fPre(op)g; t� 1)) (4)V (p; 0) = �0 if p 2 Iunde�ned otherwise (5)where V (Pre(op); t) is the reward for for being in atom set fp : p 2 Pre(op)g at timestep t, and Pre(r) is the set of atoms whih de�ne reward state r. R(r; t) is the rewardobtained from being in reward state r at time t and is equal to the value of the rewardstate R(r) if all the atoms in r are valid at time t and unde�ned otherwise.Equation (4) de�nes the estimated value of an atom at time step t is the sum of theimmediate reward reeived due to the urrent state, R(r; t), and the propagated totalreward of the maximum reward path to this atom from the initial state. Equation (5) setsthe initial value of the atoms.The auray of the funtion, V (fBg; t), used to estimate value of an atom set, B, fromthe values of its onsistituent atoms, p � B, is ritial to the auray of the heuristi andhene performane of the planner. In (BG99) Bonnet and Gen�er suggest using either thesum or maximum of the atom values. Using the sum pessimistially assumes that eahatom is totally independent, hene the shortest path to the set beomes the sum of thebest paths to eah atom in the set. Using the maximum optimistially assumes that theatoms are totally dependent suh that any path whih ahieves one atom will also ahieveall other atoms whih an be reahed with shorter paths. Hene the shortest path to anatom set beomes the length of the shortest path to the last atom ahieved.In the reward maximisation ase things beome a little more omplex. If independeneis assumed then the atom set an only be valid when t is greater than the sum of the initialvalues for eah atom in the set. If total dependene is assumed then the value of the setbeomes the value of the highest reward path whih ould ahieve the set, i.e. the last atomahieved initially and after that the highest reward path longer than the sets initially validlength. In this ase, whih is used in this paper, we obtain Equation (6).
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4 V (B; t) =( maxa2B;l�len(a)�tV (a; t) if 8a 2 B, V (a; t) is de�nedunde�ned otherwise (6)where B is the set of atoms, len(a) is the number of operations required to obtain atoma's value V (a; t) and l is the number of operations required to �rst make B valid.Solving the equations (4,6,5) also orresponds to �nding the maximum weight path in agraph, the onnetivity graph (HN01). In this graph atoms are nodes and operators/rewardsare high order edges whih only beome available after a ertain subset of the nodes (theirpreonditions) are valid.Computation of the atom values an be done in polynomial time using a GraphPlan likeforward propagation proedure based upon the Connetivity Graph. Briey, the algorithmproeeds in a time step by time step manner propagating tokens from atoms to operatorsand rewards. The operators/rewards are then identi�ed as available for propagating rewardand atom validity to their e�ets when all their pre-onditions are valid. The set of validatoms is then used to ompute the updated value for all the atoms using equations (4,6,5).Using the value funtion omputed in this way, the heuristi value of the state s in theoriginal problem is de�ned as the maximal value of a valid atom in the �nal layer of therelaxed graph, Eqn (7). h(s; t) def= maxp2P t V (p; t) (7)where t is the maximum time step to whih the relaxed solution has been omputed andP t is the set of atoms valid, i.e. with de�ned values, at time t.3.1 Improving the Estimate Using Mutual Exlusion InformationOne problem with the heuristi estimates produed by the above proedure is that it takesno aount of the negative interations between atoms. This is aused by ignoring theoperators delete lists allowing extra paths to states or atoms being possible in the relaxedproblem whih do not exist in the original problem, making states beome valid earlier orwith higher reward. This is the same problem of ignored negative interations examinedin (NNK00; NK00) and an be addressed in a similar way using any available mutualexlusion information.Mutual exlusions, alled mutexs from now on, are used extensively in the Graphplanalgorithm (BF97) and represent pairs of atoms that annot our together at some depthin any plan. In the heuristi value omputation this information an be used to lose o�some of the extra paths by preventing or delay operators/rewards from beoming validuntil their pre-onditions are all non mutex. For negligible ost this information an beused in the value omputation algorithm by annotating eah operator/reward by the �rstplan depth at whih it is appliable, i.e. all its pre-onditions are non mutex. Then theoperators/reward are restrited to only be available after this depth. The tehnique an beused both for stati mutexs whih hold for all states and plan lengths and dynami mutexswhih hold only up to a ertain plan length.The ost of omputing the additional mutexs an be ontrolled by only alulating thestati mutex's one at the start of problem solving, for example by running GraphPlans
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5full graph onstrution algorithm to level-o� from the initial state. Any mutex's whihhold at level-o� this point are stati. Additional dynami mutex's and then be omputedto any required degree of auray only when neessary.4 Further WorkA prototype reward based planner has been implemented using the above heuristi evalu-ation funtion both with and without the mutal exlusion enhanhements. Initial resultsappear to validate the system with the heuristi values showing good orrelation to thetrue value of a state. We are urrently in the proess of developing an A* searh engine afull test suite for the planner. We then intend to perform omparisons with other plannersin both onventional STRIPS and reward based domains.5 Related WorkThere are obviously rih onnetions between this work and existing work on Graph-plan (BF97) and the heuristi state spae searh planners (BG99; HN01) upon whih it isbased. The idea of using mutual exlusion information to aount for negative interationsand hene improve the quality of the heuristi estimates is similar to that used in (NNK00)to improve the heuristi estimates in regression searh.This work is also losely related to work on adding probabilisti (BL98) and deisiontheoreti (PC00) abilities to the Graphplan algorithm. These systems rely on propagatingadditional probability information through the planning graph in muh the same way thatrewards are propagated in this work. This work also has signi�ant onnetions to work ondeision theoreti planning, where reward based formulations are also used. Traditionallythese systems have used dynami programming over a graphial representation of statespae to �nd optimal solutions (Put94). As disussed above in Se 2 and in (BDH99)this works well for reasonable state spae sizes but tends to beome infeasible for verylarge state spaes. Use of heuristi searh to address suh large problems has reently beenproposed by Bonet and Ge�ner (BG00).6 ConlusionsA method for extending the tehniques of heuristi planning, as used in the well knownHSP system, to the more expressive language of reward based planning was presented.The development of a domain independent heuristi for reward maximisation problemsforms the rux of our work. This heuristi is based upon omputing an estimate for themaximal reward obtainable in a relaxed problem where delete lists are ignored. We haveshown how our heuristi funtion was developed to ope with reward aumulation andgoalless planning problems. We have also demonstrated how this heuristi estimate anbe improved by using any available mutual exlusion information to take some aount ofnegative interations.
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